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Abstract.  Typical base isolated buildings are designed so that the superstructure remains elastic in design-level 
earthquakes, though the isolation layer is often quite nonlinear using, e.g., hysteretic elements such as lead-rubber 
bearings and friction pendulum bearings. Similarly, other well-performing structural control systems keep the 
structure within the linear range except during the most extreme of excitations. Design optimization of these isolators 
or other structural control systems requires computationally-expensive response simulations of the (mostly or fully) 
linear structural system with the nonlinear structural control devices. Standard nonlinear structural analysis algorithms 
ignore the localized nature of these nonlinearities when computing responses. This paper proposes an approach for 
the computationally-efficient optimal design of passive isolators by extending a methodology previously developed 
by the authors for accelerating the response calculation of mostly linear systems with local features (linear or 
nonlinear, deterministic or random). The methodology is explained and applied to a numerical example of a base 
isolated building with a hysteretic isolation layer. The computational efficiency of the proposed approach is shown to 
be significant for this simple problem, and is expected to be even more dramatic for more complex systems. 
 

Keywords:  computationally-efficient simulation; passive structural control; optimal design; lead-
rubber bearings. 
 

1. Introduction 

Passive structural control strategies (Housner et al. 1997, Soong and Dargush 1997) — such as 
passive (linear or nonlinear) dampers, friction elements, yielding metal elements, isolation devices, 
and tuned-mass dampers — are some of the most commonly implemented forms of structural 
control. For linear structures with linear structural control elements, the simulation, design and 
optimization of such systems is relatively straightforward as linear response computation, driven 
by deterministic or stochastic excitation, is well-understood and can be performed with good 
efficiency. However, if the passive control element is nonlinear, or if there are nonlinearities in the 
structural system model, then the response computation, and any design optimization using the 
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responses, becomes more computationally challenging. The typical approach simulates these 
systems by employing a generic nonlinear solver, a general tool that can be used to simulate a 
wide variety of dynamical systems, but cannot exploit the localized nature of the passive control 
elements within the overall model. 

This paper proposes a design optimization approach for linear structures with local passive 
structural control elements, enabled by a computationally-efficient simulation of the structural 
responses as well as their sensitivities to isolator design parameters. The authors’ simulation 
methodology (Gaurav et al. 2011) can be considered an exact model reduction of a linear structure 
with local features, features that are linear or nonlinear, deterministic or random, to a low-order 
Volterra integral equation (VIE) in the forces generated by these features. When the number of 
local features is small relative to the system order, and the local forces depend on a low-rank 
subset of the system degrees of freedom, this VIE can be solved forward in time with significant 
reductions in computational requirements relative to those of a conventional nonlinear solver 
(Kamalzare et al. 2015). Further, the authors have shown (Wojtkiewicz and Johnson 2014, 
Johnson and Wojtkiewicz 2014) how response sensitivities, both gradients and Hessians, can be 
computed in a similar manner. This paper, then, proposes and implements this methodology for 
design optimization of passive structural control elements in a realistic structure. 

While the approach proposed herein is general, the numerical example is an optimal parameter 
design of a hysteretic lead-rubber bearing in a base-isolated building. Base isolation (Kelly, 1986; 
Buckle and Mayes 1990, Skinner et al. 1993, Naeim and Kelly 1999) seeks to separate the 
superstructure from ground motion, insulating it, insofar as is possible, from the excitation.  
However, there are distinct trade offs between the displacement across the isolation layer and the 
motion of (and within) the superstructure. The numerical example considered herein is not 
intended to be an exhaustive study of the optimal isolation problem, but a demonstration of the 
computational advantages of the proposed simulation methodology for design optimization 
problems. One of the earliest studies of optimal base isolation parameters is by Bhatti et al. (1978). 
A series of papers by Constantinou and Tadjbakhsh (1983, 1984, 1985) examined optimal isolators 
with linear stiffness and damping alone (using a frequency domain analysis), and with friction and 
with hysteretic elements (using linearization), respectively. Park and Otsuka (1999) performed a 
parameter study, over a (small) grid of values for each key isolator parameter, of the responses of a 
bridge to scaled versions of the 1940 El Centro earthquake. Jangid studied linearization (Jangid 
2000) and time-domain approaches (Jangid 2005, 2007) to find optimal isolation parameters, 
primarily the isolator yield force, for different isolator types/models. Fragiacomo et al. (2003) used 
energy measures to search for optimal isolator parameters. Others have used probabilistic / 
reliability approaches, such as Taflanidis and Beck (2008a, b, 2009, 2010), Bucher (2009), Jensen 
and Sepulveda (2012), and Roy et al. (2014). 

The nonlinear nature of these systems makes computationally challenging the use of a complex 
superstructure model to perform a full parameter study or optimization without simplifications. 
Thus, most studies of optimal isolation design make simplifying assumptions, such as using 
statistical linearization of the nonlinear hysteresis, or using very simplified models of the 
superstructure, such as rigid or single-degree-of-freedom (SDOF) models. Conventional model 
reduction must necessarily make assumptions on the behavior of the nominal system without 
regard for whether the added localized nonlinearities may excite dynamics that are poorly 
approximated by the reduced model. Other approximate methods have been employed to study 
systems with local nonlinearities, including Guyan and static reduction, component mode 
synthesis, and dynamic condensation; the reader is referred to Gaurav et al. (2011), and the 
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references cited therein, for more details. Another class of approaches, including the fast nonlinear 
analysis method (Wilson 1999) and the work of Gordis and students (Gordis and Radwick 1999, 
Norton 2002), computes the response of the locally nonlinear system as the superposition of the 
response of a related linear system with the addition of a pseudo-force imparted on the nominal 
linear system by the local features; the authors’ analysis method used herein (Gaurav et al. 2011) 
falls in this class as well but, unlike other methods in this class, fully exploits the locality of the 
nonlinear features and performs an exact model reduction. 

The following sections first summarize the proposed formulation for exploiting the localized 
nature of the nonlinearities to rapidly perform design optimization. Then, a numerical example of 
an 11-story 2-bay superstructure on an isolation layer demonstrates the efficacy and computational 
advantages of the proposed method. A lead-rubber isolation bearing is modeled as a Bouc-Wen 
hysteresis in which the yield force, the pre-yield stiffness and the post-yield stiffness are optimized. 
The responses and their gradients to the three design variables are used to minimize a mean-square 
measure of the base drift and roof acceleration subject to physically-meaningful constraints. 
Finally, a robustness analysis of the optimal design to the sharpness of the hysteresis is conducted. 

 
 
2. Methodology 

 
The proposed approach is given in this section. First, the computationally-efficient simulation 

of responses is summarized for linear systems with localized features, using a trapezoidal 
integration of the convolution integrals to arrive at a VIE (Gaurav et al. 2011). Then, the 
derivation of the sensitivities of these responses to design parameters is summarized (Wojtkiewicz 
and Johnson 2014). Finally, an extension to a design optimization framework, a preliminary 
version of which the authors proposed in Johnson et al. (2013), is detailed. 

 
2.1 Response calculation 
 
Consider two state-space structural models: a nominal one that is linear in states x, and a 

related model that is nonlinear in states X, but with the same initial condition x0 and excitation w 
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where x and X are each n-element state vectors with state matrix A and excitation influence matrix 
B, g(GX;) is a linear or nonlinear local feature vector function of a subset (or linear combination) 

GXX   of the states and of design parameters  (time-invariant, though possibly random), with 
influence matrix L. While the method is general, it is most efficient when both G and L have low 
rank; i.e., only a few states enter into the nonlinearities, and there are a few local features. 

If ));(()( θXgp tt   were known a priori, the principle of superposition dictates that the states 

X(t) and responses )(tX  of the nonlinear system can be written as the corresponding linear 

system responses x(t) and )()( tt Gxx   plus convolution integrals involving p(t)  
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where LH A
L

tet )(  is the state response to an impulse in the pattern of L, and 

LGGHH A
LL

tett  )()( . The definition of p(t) then can be rewritten using Eq. (2) 

 0θpHxgp L 




   ;d)()()()(

0

t
ttt   (3) 

which is a system of Volterra integral equations (VIEs) in non-standard form.  The authors 
previously showed (Gaurav et al., 2011) how to solve a time-discretized Eq. (3) using second-
order (trapezoidal) or fourth-order quadratures; the former is used herein as follows. Let subscript 
k denote a quantity at time tktk  ; thus, )( kk tpp  , )( kk txx  , )( kk tXX   and 

)(, kk tLL HH  . Then, discretize the convolution, separating the portion known prior to time k 
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Substituting the expression for kX  in Eq. (4) back into a time-discretization of the VIE in Eq. 
(3), and using Newton’s method to solve the resulting equation for pk, gives 
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where j
kp  denotes the jth iteration on the value of pk, and the initial estimate 1

0
 kk pp  is the 

same as the previous time step.  The iteration is terminated once the accuracy requirements are 
achieved (typical 2–3 iterations are sufficient). (Note: if 0,LH  were zero, which is the case for 

most structural systems when X  contains only displacements, then no iteration is required at all.) 
Once the sequence {p0, p1, …} has been determined, the time-discretized states Xk can be 
determined from convolution Eq. (2) using any standard approach (e.g., quadratures, FFT, etc.). 

 
2.2 Sensitivity of responses 
 
The sensitivity of p(t) to some parameter i  in );( θXg  is given by 

 
iii

i t
t

 














X

X

ggp
s

)(
)(  (6) 

The modified states depend on  only through p(t) so 
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where a trapezoidal integration is used to approximate the convolution. Substituting Eq. (8) into 
Eq. (6) evaluated at time tk, and solving for sensitivity i

ks  gives straightforward matrix solution 
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The full state sensitivity Xk /i can then be found from convolution Eq. (7) using any 
conventional method (e.g., quadratures, FFT, etc.). If needed by the optimization, second-order 
sensitivities (Hessians) can be found with a similar approach (Wojtkiewicz and Johnson 2014). 

 
2.3 Optimization procedure 
 

Consider a design optimization problem with cost functional ));(
~

( θX tJ , where XGX
~~

  is 

some linear combination of the states, and the “optimal” value of the design parameter(s)  is 
desired. To find the design point where J is minimized, one may employ non-gradient-based or 
gradient-based approaches. For the former, the proposed approach can be used to efficiently 

compute the response );(
~

θX t , from which the cost functional J is determined. To implement a 

gradient-based optimization algorithm, the gradient J/ of the cost functional with respect to the 
design parameters may be approximated by numerical methods such as finite differences, or it can 
be provided using the response sensitivities in Eq. (9), requiring fewer function evaluations and, 
thus, more computationally efficient and, typically, more accurate. The cost functional derivatives 
with respect to the design parameters can be calculated using 
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where i /
~
X  can be computed using the sensitivities i

ks  from Eq. (9) in any usual way. (Note 

that an additional term appears in Eq. (10) if J also has explicit dependence on .) 
With this computationally-efficient approach for determining the cost functional J and its 

sensitivities in Eq. (10) to the design variables, a design optimization that requires many function 
evaluations can be performed in a manner that is much faster than if the response and sensitivity 
simulation utilizes conventional nonlinear solvers that cannot exploit the localized nature of the 
isolators or other structural control devices. The primary focus of this study is to propose the use 
of this VIE approach for design optimization of (nonlinear) passive structural control devices. The 
numerical example that follows is just one such application of this method. 

 
 

3. Numerical example: Optimal design of isolation hysteresis for isolated building 
 
This example demonstrates how the proposed method can be utilized for designing an optimal 

hysteretic isolator in the isolation layer of a 100-degree-of-freedom (DOF) frame structure. In this 
example, the proposed method calculates both the responses and sensitivities for use in a gradient-
based optimization algorithm, which determines the optimal strategy in a very computationally 
efficient manner. 

Consider the base isolated building in Fig. 1(a). The superstructure is 11 stories tall and 2 bays 
wide; the superstructure is treated as linear, with horizontal, vertical and rotational DOFs at each 
moment-bearing joint. The superstructure, if it were a fixed-base structure, would have a 
fundamental period of 1.05 s. As a fixed base structure, the equations of motion would be 
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 gsssssss u rMuKuCuM   (11) 

where us is a vector of generalized displacements of the structure relative to the ground, for a total 
of 99 DOFs, three at each of the 33 nodes; the superstructure consistent mass and stiffness 
matrices are denoted Ms and Ks, respectively; the damping matrix Cs is computed using the 
Rayleigh method by assuming that the 1st and 10th modal damping ratios are each 3%; gu  is the 

horizontal ground acceleration; and r  [1  0  0    1  0  0    …    1  0  0]T (i.e., a 1 in each element 
corresponding to a horizontal displacement in us, and zeros elsewhere) is the influence vector. 

 
3.1 Hysteretic isolation: A lead-rubber bearing system 
 
The structure sits on a base mass that is supported by an isolation layer composed of lead-

rubber bearings (LRBs). The base drift is assumed sufficiently moderate that the low-damping 
rubber acts as a linear stiffness and viscous damping element. The lead plug is assumed to provide 
linear stiffness before yielding, and then a much lower (or zero) stiffness thereafter. Together, the 
rubber and the lead provide a hysteretic stiffness such as shown in Fig. 1b. While a bilinear model 
is commonly used for LRBs, it has been shown to result in computed accelerations that are larger 
than those observed (Skinner et al. 1993, Nagarajaiah and Sun 2000) as it overstates the sharpness 
of the lead transition from fully elastic to (partially) plastic; instead here, the computationally more 
tractable, smooth Bouc-Wen model (Bouc 1967, Wen 1976) is used. (The effect of elastic-to-
partially-plastic transition sharpness is discussed in greater detail in §3.8.) 
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Fig. 1 (a) 100 DOF base-isolated structure and (b) bilinear and Bouc-Wen hysteresis loops 
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The nominal post-yield stiffness kpost and base mass mb are chosen such that the fundamental 
mode of the isolated building, if the yield force Qy were zero, would have a period of 2.76 s, which 
is in the typical expected range (Skinner et al. 1993); kpre is the pre-yield stiffness; the isolation-
layer viscous damping coefficient cb, provided by the isolator (and/or supplemental passive 
viscous dampers), is chosen such that the isolation mode has a damping ratio of about 5.5%. The 
building weight (base plus superstructure) is W  1.28 MN and its height from the base upwards is 
h  44 m. The isolation layer is assumed to be constrained to move in the horizontal direction only, 
so multiple identical LRBs can be modeled as a single LRB. The result is a 100-DOF isolated 
structure model. The primary ground excitations used herein are the El Centro (N-S Imperial 
Valley Irrigation District substation record of the 1940 Imperial Valley earthquake; PGA 0.348 g) 
and Northridge (N-S Sylmar County Hospital parking lot record of the 1994 Northridge 
earthquake; PGA 0.843 g) ground motions sampled at 50 Hz (i.e., t  0.02 s). 

The Bouc-Wen model introduces an evolutionary variable z that is proportional to the base drift 
ub for small motion, but asymptotically approaches ±1 for large motion as the lead shears (or a 
friction pendulum isolator surface slides). The equations of motion of the base mass are given by 

 )()( bss
T

bss
T

gbbpostbbbb uuumzukucum ruKrruCr     (12a) 

 
1

bbb
 nn

zuzzuuAz    (12b) 

where   Qy[1 – (kpost /kpre)] is the peak of the non-elastic force; A  2  2  kpre /Qy (which 
constrains z  [–1,1] and makes identical the loading and unloading stiffnesses); and the exponent 
n controls the sharpness of the hysteresis loop. The superstructure equations of motion, with 
displacements us relative to the ground, are given by 
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Combining the equations of motion in Eqs. (12 (a)) and (13) yields 
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where TT
sb )]()([)( ttut uu   is the generalized displacement vector and TT ]1[~ rr  .  Note that, 

since kpostub + z cannot be in the nominal system in Eq. (12(a)), as it depends on design 
parameters, kbub is added to both sides of the equation to preserve the stability of the nominal 
system, where kb  750 kN/m is the nominal post-yield stiffness that results in the 2.76 s isolation 
period. The equation of motion in Eq. (14) can be rewritten in the state space form of Eq. (1) with 
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and a modification g that is a 12  vector function 
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where T
bb ][)( zuut X  and T

postprey ][ kkQθ . While Qy and kpre do not appear explicitly 

in Eq. (16), , A,  and  are functions of them. Since g1 is linear in the states, it would typically be 
included in the nominal system (in A); since g1 depends on , it is excluded from the nominal 
system so that  can be varied as a modification to the nominal system. The exponent n is 
considered initially to be 1, which results in smooth hysteresis loops, but relaxed in §3.8. 

 
3.2 Baseline LRB design 
 
To provide a performance baseline, the same structure equipped with an LRB system, with the 

suggested (Skinner et al. 1993) yield force of 5% of the building weight for small to moderate 
earthquakes such as El Centro and 15% for strong earthquakes such as Northridge, and pre-yield to 
post-yield stiffness ratios of 6 and 10 for moderate and strong excitations, respectively (the values 
most commonly used in the literature). Thus, the two baseline designs are: (a) for El Centro, an 
LRB with a yield force 0.05W, pre-yield stiffness 6kb and post-yield stiffness kb; i.e., 

T
bb

0
EC ]605.0[ kkWθ ; and (b) for Northridge, an LRB with a yield force 0.15W, pre-yield 

stiffness 10kb and post-yield stiffness bk ; i.e., T
bb

0
N ]1015.0[ kkWθ . For a baseline LRB 

system, one may select either a smooth or bilinear hysteresis; the latter (using an n  100 Bouc-
Wen model as an approximation) is adopted here due to its wide usage in the literature, with root 
mean square (RMS) base drift and roof acceleration of 1.84 cm and 77.40 cm/s2, respectively, for 
El Centro, and 6.34 cm and 130.22 cm/s2, respectively, for Northridge. 

 
3.3 Sensitivity formulation 
 
For this numerical example, the sensitivity to each design parameter is computed analytically.  

The required partial derivatives of g with respect to the parameters  and to the states X , are 
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 (18) 

where the subscript k denotes evaluation at time kt. For example, the sensitivities of the base drift 
with respect to Qy, kpre and kpost (at the design point discussed subsequently) are shown in Fig. 2, 
along with those obtained by numerical integration of the analytical sensitivity equations, which 
were computed using ode45 with relative and absolute tolerances both set to 10–10; the expressions 
for the exact analytical sensitivity equations can be found in Kamalzare (2014). 
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3.4 Design of the optimal base isolation 
 
To find the “best” choice of the design parameters, one may use a parameter study over a fine 

grid of design variable values or a conventional gradient-based optimization algorithm, with 
comparisons of some performance metric(s) to those of a baseline design. Studies in the literature 
have employed objectives such as minimizing the superstructure drift or absolute acceleration 
subject to a constraint on the base drift; others have used reliability measures. Here, a cost 
functional expressed in terms of mean square (MS) responses is used, defined as a weighted linear 
combination of the MS base drift 2

bu  and the MS absolute roof acceleration 2
a
ru , where 

g94
a
r uuu   , as follows 
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where )( 02
)( θ  is a MS response of a baseline design. A MS response is approximated herein as 
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where tf  Nt is the simulation duration and ub,k  ub (kt).  The optimization is performed using 
a gradient-based active-set algorithm, the fmincon command in MATLABTM. The derivative of the 
cost functional with respect to the design parameters is given by 
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fmincon is selected because it can exploit gradient information, which is available through 
Eq. (21), and can accommodate the constraints: (i) the yield force is always strictly positive, 
Qy > 0; (ii) the pre-yield stiffness is greater than or equal the post-yield stiffness, kpre ≥ kpost; and 
(iii) the post-yield stiffness is always non-negative, kpost ≥ 0. 
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Fig. 2 Base drift response sensitivity to the design parameters when subjected to the 1940 El Centro ground 
motion at the design point 
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3.5 Preliminary Optimization over Qy and kpre  
 
A preliminary study of this example in which only Qy and kpre are free design variables is useful 

as a first step since the response metrics can be computed over a fine grid of the two design 
variables to verify that the method is efficient and accurate. This simpler design optimization 
problem, discussed in greater detail in Johnson et al. (2013), uses the same model but fixes 
exponent n  1 and post-yield stiffness kpost  kb. Considering the cost functional Eq. (19), the 
design point for the El Centro earthquake is determined to be (0.0507W, 5.94kb), which results (not 
surprisingly) in basically the same RMS base drift and roof acceleration performances as the 
baseline (0.05W, 6kb). A record from the 1994 Northridge earthquake with a PGA similar to that of 
the El Centro record was also used for this 2-D optimization: the E-W motion of the Northridge 
earthquake recorded at the USC 90003 station at 17645 Saticoy St (PGA 0.368 g); using the same 
baseline (0.05W, 6kb), the optimization converges to a different design point (0.0401W, 8.73kb) for 
Northridge-Saticoy, which results in reductions of about 1% and 4% in RMS base drift and roof 
acceleration, respectively, relative to the baseline. To converge to the design point, these solutions 
required only 6 iterations, making a total of 19 function evaluations, for the El Centro earthquake, 
and 13 iterations (29 function evaluations) for Northridge-Saticoy; the quick convergence is 
facilitated by providing the gradient information. The proposed method was found to provide an 
optimization that is about an order of magnitude faster than with the conventional solver ode45. 
To verify that these optimizations converged to the correct results, a parameter study was 
performed over the two-dimensional design space as shown in Fig. 3, which confirms that the cost 
functionals are convex and well-behaved around the design points.  

 
3.6 Optimization over Qy, kpre and kpost  
 
The preliminary study in the previous section assumes a fixed post-yield stiffness kpost  kb, 

2.03

2.07

2.1

2.2

2.2

2.
3

2.3

2.3

2.
4

2.4

2.4

2.5

2.5

2.5

3

3

3

4

4 4

5

5
59 918 18

yield force Q
y

[%W]

pr
e−

yi
el

d 
to

 p
os

t−
yi

el
d 

st
iff

ne
ss

 ra
tio

 k
pr

e/k
po

st

2 4 6 8 10

2

4

6

8

10

12

14

1.92
1.94

1.97

1.97

2

2

2.1

2.1

2.2

2.2

2.4

2.4

2.4

2.6

2.6

2.6
3

3

3

4

4 4

5

5 5
8 811 11

yield force Q
y

[%W]

pr
e−

yi
el

d 
to

 p
os

t−
yi

el
d 

st
iff

ne
ss

 ra
tio

 k
pr

e/k
po

st
2 4 6 8 10

2

4

6

8

10

12

14

(a) 1940 El Centro (b) 1994 Northridge-Saticoy 

Fig. 3 Cost contours as a function of two design parameters for two historical earthquakes 
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which likely limits the isolation performance and the optimal isolation design may be rather 
different if post-yield stiffness is included as a design variable. Thus, the full design space in this 
example includes the yield force Qy, the pre-yield stiffness kpre and the post-yield stiffness kpost; 
variations in these values are achievable in practice by changing the isolation device characteristics 
(e.g., physical device size, proportion of lead plug to rubber/steel, ratio of steel-to-rubber, etc.). 
The initial guess to start the optimization is chosen to be the same as the baseline values: 
(Qy, kpre, kpost)initial  (0.05W, 6kb, kb) and (0.15W, 10kb, kb) for the El Centro and Northridge 
earthquakes, respectively. 

The design point for the El Centro earthquake is determined to be (0.0641W, 5.75kb, 0.484kb), 
which results in reductions of about 6% and 11% in RMS base drift and roof acceleration, 
respectively, relative to the baseline (0.05W, 6kb, kb). When the Northridge (Sylmar) earthquake 
excitation is applied to the system, the optimization yields a different design point 
(0.1371W, 12.45kb, 0.61kb), which results in reductions of about 4% and 8% in RMS base drift and 
roof acceleration, respectively, relative to the baseline (0.15W, 10kb, kb). To converge to the design 
point, these solutions required only 12 iterations (26 function evaluations) for the El Centro 
earthquake, and 18 iterations (43 function evaluations) for Northridge; the quick convergence is 
again facilitated by providing the analytical gradient information from Eqs. (17) and (18). 

To verify that these optimizations converged to the correct results, a small parameter study was 
performed. Fig. 4 shows contour line slices of the cost functional for the El Centro and Northridge 
(Sylmar) earthquake excitations. Clearly, each design point found by the optimization is in the 
region of the cost functional minimum, around which the cost functional is convex. 

 
3.7 Timing and accuracy of the proposed approach 
 
In this section, the computational cost of the proposed optimization method is compared with 

one employing a conventional nonlinear solver: the ode45 command in MATLAB. The accuracy 
of both ode45 and the proposed method can be tuned, the former by setting options for the 
absolute and relative tolerances, and the latter by choosing the integration time step. To ensure a 
fair comparison, preliminary studies showed that the accuracy of ode45 with the default 
parameters (relative tolerance 10–3, absolute tolerance 10–6) and the proposed method using a 
second-order accurate trapezoidal integration with 215 time steps of t  0.92 ms duration each, 
both give relative response accuracy of order 10–3. Fig. 5 shows the accuracy of the proposed 
method using graphs of base drift and absolute roof acceleration of the structure, respectively, at 
the design point for the El Centro excitation as calculated by the proposed method as well as a 
reference “exact” solution calculated by ode45 with the relative and absolute tolerances both set 
to 10–10. The computational cost of the proposed method includes one-time calculations and  
repeated ones that, in this example at the design point, take about 2.13 s and 5.81 s, respectively, 
on a computer with a 3.4 GHz Intel core i7-2600 processor and 8 GB of RAM, running MATLAB 
R2013a under Windows 7. The same calculation takes about 87.50 s if MATLAB’s ode45 (with 
default tolerances) is used as the solver. This leads to a computation speed-up of 11.0 for a single 
simulation but 14.8 in a typical optimization with 25 function evaluations performed. 

Computing the sensitivities of the cost functional with respect to the three design parameters at 
each step doubles or triples the computation time, relative to computing the cost functional alone, 
of both MATLAB’s ode45 and the proposed method; however, as expected, including gradient 
information results in much faster convergence to the “optimal” design point: for El Centro, 
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MATLAB’s fminsearch (a non-gradient based method) takes about 53 iterations (118 function 
evaluations), which is 4–5 times larger than for the gradient-based fmincon, so, at least for this 
example, there is a clear computational benefit provided by including the analytical gradients. 

Note that the proposed method here uses a subdivision of the convolution space to compute 
portions of the integral in the Volterra integral equation using fast Fourier transforms (Gaurav et al. 
2011); further, the accuracy and computational efficiency would be expected to be even more 
superior if the fourth-order integration previously discussed by the authors (Gaurav et al. 2011) 
were used instead of the second-order trapezoidal integration adopted in this study. 
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Fig. 5 Structural responses to the El Centro earthquake using the design point isolation 
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3.8 Investigation of the transitional region of the Bouc-Wen model 
 
Traditionally, for the sake of simplicity, many researchers have used the bilinear behavior for 

the hysteretic loops. However, the Bouc-Wen model introduced in Eq. (12(a)) provides a 
formulation that allows modeling a smooth transition from the pre-yield to post-yield regions. This 
is mainly controlled by the exponent n, which is greater than or equal to 1. Using n  1 results in a 
very smooth transition and n → ∞ models the strict bilinear loops; the most common values used 
in the literature are n  1, 2 and ∞. Among all parameters in this Bouc-Wen model (i.e., Qy, kpre, 
kpost and n), n is the one with the least tangible physical meaning; thus, this final section 
investigates the effect on the optimal isolator design of assuming different values for n. 

As shown in Fig. 6, the shape of the hysteresis loops changes significantly for different values 
of n and, as expected, will result in a different “optimal” design point. Assuming the same baseline 
performance, the optimization is repeated for n  1, 2, 10 and 100 and the design points and 
performance metrics (RMS base drift and roof acceleration) are shown in Table 1 for the El Centro 
earthquake. It is clear that the “optimal” Qy and kpost are very sensitive to the value of n as they 
change by 21% and 130%, respectively, in this example as n changes from 1 to 100. In contrast, 
kpre changes very slightly and appears relatively insensitive to exponent n. 

It is also important to investigate the effect on response when the isolators are designed using 
an inaccurate value of n. (The effects of incorrect Qy, kpre and kpost are not studied herein because 
they can be experimentally determined fairly easily for a particular device whereas the exponent n 
is often neglected in curve-fitting from laboratory tests.) The response metrics for the system at the 
design points shown in Table 1 are evaluated for isolators with different n values and the 
percentage change in their performance metrics, compared to the original design point responses, 
are calculated and shown in Table 2. It is reported in the literature (Skinner et al. 1993, 
Nagarajaiah and Sun 2000) that assuming bilinear hysteresis overestimates the roof acceleration; 
this is confirmed by comparing the corresponding columns of Table 2. This study shows that 
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designing with a larger n always results in overestimating the actual RMS roof acceleration; but, 
no clear conclusions can be made about the RMS base drift. Further investigations (not included 
here for the sake of brevity) showed that the peak base drift and peak roof acceleration have 
similar variation trends as the corresponding RMS metrics, though the changes are less significant 
and mostly remain less than 4–5%. 

 
 

4. Conclusions 
 
To enable the optimal design of passive isolation systems, this paper proposes extending a 

computationally efficient approach previously developed by the authors for systems with local 
features (linear or nonlinear, deterministic or random) but are otherwise linear. This approach can 
provide highly efficient simulation of both responses and their sensitivities to the design 
parameters in the isolation element models. The methodology was briefly summarized and then 
applied to the optimal design of a base isolation system to find the optimal yield force and pre-
yield and post-yield stiffnesses of a hysteretic isolation layer for an 11-story 2-bay isolated 
building. The isolator was modeled with Bouc-Wen hysteresis and (small) viscous damping. A 
baseline design, using a yield force that is 5% or 15% of the building weight and a pre-yield 
stiffness that is 6 or 10 times that of the post-yield stiffness, as suggested in the literature for a 
moderate and strong ground motions, respectively, are used for comparison. The optimal design 
for the El Centro earthquake results in about 6% and 11% reductions in RMS base drift and roof 
acceleration, respectively, relative to the baseline; for the Northridge earthquake, the 
corresponding reductions are 4% and 8%, respectively. 

 
 
Table 1 Design points for different exponent n values for the El Centro earthquake 

n 1 2 10 100 

Qy /W [%] 6.4142 5.8800 5.0892 5.0613 

kpre /kb  5.7506 5.3100 5.3099 5.3527 

kpost /kb  0.4840 0.5490 1.0508 1.1144 

bu  [% change rel. to 0
bu ]   –6.42   –2.54   3.20   2.96 

a
ru  [% change rel. to 0

a
ru ] –10.81 –10.20 –6.44 –4.82 

J      1.67     1.76   1.94   1.97 
 

Table 2 RMS base drift and roof acceleration percent changes when the design points are evaluated at 
different exponent n values 

 RMS base drift changes (%) RMS roof acceleration changes (%) 

 
Design n 

Actual exponent n Actual exponent n 

1 2 10 100 1 2 10 100 

1 0 –1.57   8.27 10.93 0   9.98 20.62 22.31 

2 3.51 0   6.24   9.25   –8.18 0   8.51   9.64 

10 3.66 –0.72 0   0.58 –11.19 –5.87 0   0.86 

100 3.94 –0.73 –0.47 0 –11.56 –6.48 –0.80 0 
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The proposed approach was able to perform the design optimization function evaluation 
simulations more than one order of magnitude faster; the computation speed-up was 14.8 for a 
typical parameter study or iterative optimization of this relatively small numerical example. 
However, since various types of passive structural control elements are being studied for large 
structures, such as high-rise buildings and long-span bridges, requiring far more complex models 
than the numerical considered herein, the gains in computational efficiency of the proposed 
optimization method are expected to be even more pronounced for such structural models. 
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