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Abstract.    A new procedure is proposed for assessing probabilistic condition of structures considering 
effect of measured data uncertainty. In this procedure, multiple Finite Element (FE) models are identified by 
using weighting vectors that represent the uncertainty conditions of measured data. The distribution of 
structural parameters is analysed using a Principal Component Analysis (PCA) in relation to uncertainty 
conditions, and the identified models are classified into groups according to their similarity by using a 
K-means method. The condition of a structure is then assessed probabilistically using FE models in the 
classified groups, each of which represents specific uncertainty condition of measured data. Yeondae bridge, 
a steel-box girder expressway bridge in Korea, is used as an illustrative example. Probabilistic condition of 
the bridge is evaluated by the distribution of load rating factors obtained using multiple FE models. The 
numerical example shows that the proposed method can quantify uncertainty of measured data and 
subsequently evaluate efficiently the probabilistic condition of bridges. 
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1. Introduction 
 

The purpose of condition assessment is to provide a diagnosis of its current state, predict 
upcoming performance degradation, and ultimately prevent gradual or sudden failure. The 
accuracy of an assessment can be assured by a reliable Finite Element analysis. However, FE 
models frequently lack accuracy in terms of the actual behavior of a structure. The discrepancies 
between predicted and observed behavior are mainly accounted by modeling uncertainty, which is 
a combination of various factors including assumptions in the design process, deterioration of the 
structures, variability of material properties, and the limited resolution of the FE model and 
numerical errors in discretization using finite number of elements.  

The modeling uncertainty can be reduced by updating the FE model using measured data, of 
which procedure mostly involves solving an optimization problem (Park et al. 2012). The 
conventional updating procedure usually assumes that the measured data is accurate and involves 
deterministic values, thus a single optimal FE model is identified. However, measured data is also 
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deterministic values, thus a single optimal FE model is identified. However, measured data is also 

known to exhibit considerable variability due to non-stationary behavior of structure, noise and 

bias during data acquisition, numerical error in data processing, and influence of adverse 

environmental conditions such as temperature and humidity variation. The risk of an error in the 

identification of single updated model under the existence of data uncertainties has been reported 

(Robert-Nicoud et al. 2000, Schuëller et al. 2008).  

Variability of FE model caused by data uncertainty can be dealt by using a probabilistic 

approach such as inverse Stochastic FEM (Mares et al. 2006, Soize et al. 2008, Govers and Link 

2009). Bayesian model updating has also been proposed to find the most plausible posterior PDF 

of structural parameters (Katafygiotis et al. 1998, Beck and Au 2002, Park et al. 2010). 

Uncertainty of measured data can also be represented by variation of weighting factors for 

optimization problem (Friswell and Mottershead 1999, Steenackers and Guillaume 2006). The 

non-uniqueness of optimal model due to uncertainties has also been dealt by identification of 

multiple models (Zarate and Caicedo 2008, Groulet et al. 2010). 

This paper proposes a procedure for a probabilistic condition assessment of structures 

considering measured data uncertainty. In this procedure, multiple Finite Element (FE) models are 

identified through successive optimizations by using sets of weighting vectors. The successive 

optimizations can overcome the limitation of conventional single model update to deal with the 

uncertainty of measured data, and estimate probabilistic information about the structural condition. 

The distribution of multiple FE models is analysed using the Principal Component Analysis (PCA) 

in relation to uncertainty conditions of measured data. The PCA is utilized for dimension reduction 

and feature extraction of the multiple models, and improving the clustering accuracy. The multiple 

FE models can be classified into groups according to their similarity by using a K-means 

clustering. Combined use of PCA and K-means clustering can provide probabilistic information 

about state of the structure, and reduce subjectivity in the interpretations and assessments. Finally, 

the condition of a structure can be expressed probabilistically by the distribution of performance 

indices such as load rating factor using FE models in the classified groups, each of which 

represents specific uncertainty condition of measured data. Furthermore, probability of failure is 

also estimated using multivariate normal distribution function describing the distribution of 

structural parameters. Yeondae bridge, a steel-box girder expressway bridge in Korea, is used as an 

illustrative example. In the example, the distribution of load rating factors and the probability of a 

bridge failure are evaluated for probabilistic assessment of bridge condition. Numerical example 

shows that the proposed method can quantify uncertainty of measured data and subsequently 

evaluate efficiently the probabilistic condition of bridges. 

 

 

2. Updating multiple finite element models 
 
2.1 Formulation of successive optimization problems 
 

A procedure for updating a FE model involves different types of measured data, e.g., natural 

frequencies, mode-shapes, damping ratios, displacement, strain, and so on, in order to prevent the 

occurrence of under-fitted solutions. This represents the multi-objectivity of a FE model update 

problem. However, it was pointed out that the multi-objective optimization of more than three 

objectives would be computationally too expensive, and may converge to the wrong solution (Jung 

et al. 2010). Especially in case of the large-scale structure examples, the problem of convergence 
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and the credibility of a solution may be worsened because sufficient number of structural 

parameters and target responses should be considered. As an alternative, the problem of finding an 

optimal FE model satisfying various types of responses can be formulated as an aggregated 

single-objective function by assigning a weighting factor for each residual. Typically, a single FE 

model is updated by optimization of the objective function. The single updated model can reflect 

specific structural condition and is not suitable to represent probabilistic condition of the structure 

considering uncertainty of the measured data.  

In this paper, successive optimization is proposed to deal with the uncertainty of measured data, 

and to estimate probabilistic condition of structure. For the purpose, a set of optimization problems 

with each member in the set corresponding to a different choice of the weights are constructed.  

Varying weighting factors represent different levels of measurement uncertainties. Accordingly, 

multiple FE models are updated from the optimization problems incorporating measurement 

uncertainties. An optimization problem corresponding to a specific choice of the weight factors is 

expressed as follows 

     ij
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T

iii rwJ θθrWθ 
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min  subjected to ubilb θθθ         (1) 

The objective function Ji, denoted by the index i, is a component in the sets of optimization 

problems corresponding to a different choice of the weights Wi, by which specific uncertainty 

condition is represented. The subscript j denotes different type of measurements. The θ is a vector 

of updated structural parameters that are normalized to the initial values. Structural parameters of 

different units and magnitudes can be considered effectively by the normalization. The vector of 

updated structural parameters for the i-th optimization problem is expressed as 

 TPiiii  ,,, 21 θ  where P is the number of parameters. The optimal value of θi that can 

minimize the objective function is identified within a reasonable range defined by θlb and θub, a 

lower and upper bound vector, respectively. Weighting factor wji in Eq. (1) represents weight for 

the residual of j-th response. An weighting vector  TMiiii www ,,, 21 W , composed by M 

weighting factors, represents specific uncertainty condition of measured data in the i-th 

optimization. The residual rj represents discrepancy between the analytical model and a real 

structure with respect to the j-th type of measurement. 
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where u is the concerned responses such as displacement and natural frequency, subscript n 

represents the n-the measurement within the Nu total measurements, subscripts a and m represent 

the analyzed and measured values, respectively. When calculating mode-shape residual riϕ, Modal 

Assurance Criterion (MAC) is generally adopted. 
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where m and a are mode-shape of real structure and analysis model, respectively.  

The Sequential Quadratic Programming (SQP) is utilized to find optimal FE models for the 
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constrained non-linear optimization problems, each of which is characterized by a weighting 

vector Wi representing specific uncertainty condition. The SQP method approximates the objective 

function to a quadratic model, and solves a sequence of optimization sub-problems iteratively until 

convergence is achieved. Karush-Kuhn-Tucker (KKT) conditions and the rate of change of the θ 

are considered to check convergence.  

 

2.2 Identification of multiple FE models from sets of weighting vectors 
 

Weighting factors can be determined by the reciprocals of the variance of the corresponding 

measurements (Friswell and Mottershead 1999). In this paper, various levels of measurement 

uncertainty are represented by variation of the weighting vector Wi. Varying relative magnitude of 

weighting factors for different responses account for different level of uncertainty. For example, 

smaller weight factor can be assigned to the measured data that is expected to contain large 

uncertainty. On the other hand, large weighting factor of a residual implies that the related data 

contain small uncertainty. In this way, a weighting vector Wi can represent specific condition of 

measurement uncertainties. Accordingly, various conditions of data uncertainty can be reflected by 

sets of weighting vectors as  NWWWW ,,, 21  .  

To include all possible conditions of measurement uncertainties, the generated weighting 

vectors are uniformly distributed in feasible space. The directional angles of the weighting vector 

are taken as variables. For example, if we deal with FE model update associated with three types 

of responses, a weighting vector Wi include three weighting factors. The Wi can be expressed by 

the three directional angles as Eq. (4). 
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where αi, βi and γi are directional angles between the Wi and three axes for the responses. By 

setting the norm of the Wi as one and considering dependency between directional angles, the Eq. 

(4) can be expressed with two variables as  

T

iiiii 



   22 coscos1,cos,cosW              (5) 

Therefore, generating weighting vectors for three types of responses is equivalent to sampling 

two directional angles α and β uniformly in 2-D Euclidean space (Fig. 1(a)). The direction angles 

are acute, i.e., 0 ≤ α ≤ π/2 and 0 ≤ β ≤ π/2 because the weighting factors should be larger than or 

equal to zero. Fig. 1(b) shows the consequent weighting vectors that compose surface of 1/8 

sphere in the first octant. 

In case N weighting vectors are generated as  NWWWW ,...,, 21 , N optimal FE models are 

finally identified by N successive optimizations and compose a matrix of optimal structural 

parameters  NθθθΘ ,...,, 21 . The i-th column vector θi indicates the properties of the i-th 

updated model, and each of the p rows corresponds to considered structural parameter. Thus, the 

matrix Θ expresses the variability of multiple FE models by the distribution of structural 

parameter values. Fig. 2 shows an example of updated multiple FE models distributed in the space 

of structural parameters. Each point represents probable status of structure under the employed 

uncertainty condition, which is represented by a corresponding weighting vector. Accordingly, 
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distribution of the updated FE models provides probabilistic information about the structural 

condition due to the measurement uncertainties. 

 

 

3. Probabilistic structural condition assessment using multiple FE models  
 

3.1 Analysis of structural parameters distribution of multiple FE models 
 

The Principal Component Analysis (PCA) is utilized for the purposes of dimension reduction and 

feature extraction of the multiple models. Applying the PCA is also beneficial to improve the 

clustering accuracy (Ding and He 2004). In addition, the PCA enables to visualize multiple FE 

models using a couple of principal components only, thus analysis on the grouped models 

becomes easier. 

 

 

 
 

(a) Uniform sampling of two directional angles (b) Generating sets of weighting vectors  

Fig. 1 Example of weighting vector generation for three types of responses 

 

 

Fig. 2 Distribution of multiple FE models in the space of structural parameters 
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As a first step to find principal components, the covariance of structural parameters for the N 

optimal FE models are computed. 

   ]][][[
T

EEE ΘΘΘΘS               (6) 

Each entry of the covariance matrix S is calculated as 
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where θpi is p-th component of optimal structural parameter vector θi, and pθ is a mean value 

given by Eq. (8).  
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By applying eigenvector decomposition on S, eigenvector matrix u and eigenvalue matrix Λ 

are obtained. 

T
uΛuS                  (9) 

The eigenvector matrix u contains principal components in its column vectors, which are bases 

of transformed space. The contribution of principal components to explain the variance of the 

distribution of structural parameters is calculated from diagonal components of Λ. 

Finally, the coordinate of each model in the transformed space is calculated as  

 θθuθ  i
T

i
ˆ                (10) 

where  TP ,,, 21 θ . 

The relationship between the distribution of structural parameters and uncertainty conditions of 

the measured data can be characterized by the principal components on the transformed space. 

 

3.2 Grouping of multiple FE models according to similarity 
 

The K-means method is further implemented in order to classify the multiple FE models into 

several groups according to the similarity, which is now revealed by the application of PCA. 

Combined use of PCA and K-means clustering can group the multiple models, and reduce 

subjectivity in the interpretations and assessments. The objective function for the clustering is 

given by  


 


K

k

N

i

kiikrJ
1 1

2
ˆ μθ           (11) 

where μk is the centroid of the k-th cluster and rik indicates membership of the i-th model in the k-th 

cluster. If the i-th model is assigned to cluster k then rik = 1, otherwise rik = 0. Term inside Σ 

measures the sum of the inner-distances of data points that are assigned to the k-th cluster. The 

algorithm iteratively finds centroids of clusters μk and rik for each of N updated models. The 

number of clusters K is determined by calculating score function which evaluates the quality of 
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clustering by two quantities: the Between Cluster Distance (BCD) and the Within Cluster Distance 

(WCD). The former one indicates the degree of separation of clusters from each other, whereas the 

second term indicates the degree of compactness of each cluster. The score function is thus defined 

as 

WCDBCDFS ..              (12) 

where  
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where nk is the number of FE models in the k-th cluster, and μ  is the mean of centroids of all K 

clusters. Score function values are calculated for different number of clusters, and optimal number 

of clusters for the maximum score is chosen.  

The FE models in each identified group may be characterized by similar property of weighting 

vectors each of which represents specific uncertainty condition of measured data. Thus, depending 

on the features of the groups and characteristic of concerned assessment, a specific group of FE 

models is selected to assess the condition of structures probabilistically. 

 

3.3 Probabilistic assessment of condition using the multiple FE models  
 
A set of FE models provides the probabilistic information about the structural condition 

considering measurement uncertainties. Thus, the variability of multiple models indicates a 

likelihood of status that the structure may exhibit under the employed uncertainty of measured data, 

rather than modeling uncertainty. Accordingly, the updated models can be used for probabilistic 

assessment of structural condition.   

The condition of structure can be expressed as distribution of any types of structural 

performance index, such as load rating factor, seismic fragility and safety index. In this paper, 

distribution of Load Rating Factors (RF) is calculated by numerical simulations with the multiple 

FE models. The distribution of RFs provides statistical information about vehicle load carrying 

capacity of bridge. When all models are used, the estimated distribution can consider overall 

variability of multiple models caused by all possible conditions of data uncertainty. A group of 

similar models can also be selected to consider specific status of structure according to the 

classified conditions of data uncertainty. 

When the statistical information is not necessary, a model representing each cluster can also be 

selected from the centroids of clusters by Eq. (15).  

  θμuθ
-1

 c
T

c            (15) 

where μc is the coordinate of centroid of selected group in the principal component space, and θc  

the corresponding structural parameters. Structural assessment using the representative model 

yields the average condition of the structure. 

Probability of bridge failure is also evaluated for rigorous probabilistic assessment. A 
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probability model for multiple FE models is obtained by fitting a multivariate normal distribution 

to the matrix of transformed structural parameters Θ̂ . Once the mean vector 
θ
μ ˆ  and covariance 

matrix 
θ

Σ ˆ  are identified, a set of offspring models are sampled from the PDF ),()ˆ( ˆˆ θθ
Σμθ Np   

and expressed by a matrix 
offspringΘ̂ . The offspring models in principal component space is 

inversely transformed to the space of structural parameters as 1θΘuΘ


 

offspring

T

offspring
ˆ , where 1


 

is a row vector of which components are 1, and 
offspringΘ  indicates structural parameters of 

offspring models. Through the numerical simulation using the offspring models, probabilistic 

assessment of structural condition can be conducted rigorously. In this paper, probability that the 

bridge does not meet the safety criteria with respect to the rating factor (RF) is calculated by using 

the offspring models. The RF equals to 1 defines a safety criteria indicating necessity of bridge 

reinforcement or vehicle regulation due to insufficient load carrying capacity, rather than actual 

collapse of the bridge.  

The overall procedure for multiple FE model identification, grouping and probabilistic 

condition assessment is shown in the flow chart (Fig. 3).  

 

 

4. Application to the assessment of bridge condition 
 
4.1 Application to Yeondae bridge 
 
Yeondae bridge is comprised of a composite steel box girder with two cells as shown in Fig. 4. 

The bridge is located in a test road section of the expressway 45 in Korea.  

Static loading tests were carried out under various load cases using two test trucks, and 

dynamic loading tests were conducted by running test trucks on the bridge with a varying speed 

from 5 km/h to 100 km/h. Natural frequencies, mode-shapes and dynamic amplification factor 

were identified from the instrumented accelerations and dynamic displacements (Kim et al. 2013). 

In this study, three types of measured data are employed: the first 3 natural frequencies and the 

associated mode-shapes, and vertical displacements of box girders obtained by 3 static load cases 

(Figs. 5 and 6). 

 

4.2 Identification of multiple FE models 
 
A baseline FE model has been developed based on the design documents. The box girders, 

cross frames and bracings are modeled using three-dimensional frame elements, and elastic spring 

support elements are used to represent the bearings. The equivalent sectional properties of each 

box girder are calculated considering the composite concrete deck. The structural behavior 

computed by using this FE model was proven to be in good accordance with the actual one 

measured at the completion of construction (Kim et al. 2013). 

The baseline FE model is updated by the proposed procedure in order to evaluate condition of 

the bridge. In the optimization process, 37 structural parameters are considered including the 

coefficient of spring support elements, the mass of structural and substructural members, Young’s 

modulus of the composite box-girder, cross frame and slab, moment of inertia of girder and cross 

frame. Table 1 summarizes the structural parameters and their allowable bounds considered in the 

optimization. 
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Fig. 3 Overall schema of multiple FE model identifications, feature extraction, and probabilistic 

assessment of structural condition considering data uncertainty 

 

 

 

  
(a) Composite twin box-girders (b) Side view 

  

(c) Plan view (d) Elevation 

Fig. 4 Yeondae bridge 

 

 

Baseline FE model

Measurement data

Weighting matrix (*)

W=[W1, W2,…, WN]

(*) Consideration of data uncertainty

Multiple FE models (**)

Θ=[θ1, θ2,…, θN]

Id
e
n
ti
fi
ca

ti
o
n
 o

f 
m

u
lt
ip

le
 F

E
 m

o
d
e
ls

Application of PCA

Grouping of FE models

by using K-means method

ΘuΘ
Tˆ

Selection of a specific 

group of FE models or 

representative FE model

(**) Successive optimizations

Fe
a
tu

re
 e

xt
ra

ct
io

n
 a

n
d
 

g
ro

u
p
in

g
 o

f 
m

u
lt
ip

le
 F

E
 m

o
d
e
ls

Fitting a PDF to distribution of

the updated FE models  

to obtain             a)ˆ(θp

Sampling              of offspring 

models from the   …..
offspringΘ̂

Distribution of 

rating factors

Probability of 

failure

Inverse transform of    …

to obtain offspring FE models

  1θΘuΘ
-1 

 offspring

T

offspring
ˆ

offspringΘ̂

P
ro

b
a
b
ili

st
ic

 a
ss

e
ss

m
e
n
t 
o
f 

st
ru

ct
u
ra

l 
co

n
d
it
io

n

)ˆ(θp

4@45,000=180,000

759



 

 

 

 

 

 

Hyun-Joong Kim and Hyun-Moo Koh 

 

 
 

 

(a) The 1
st
 mode (2.32Hz) (b) The 2

nd
 mode (2.61Hz) (c) The 3

rd
 mode (3.42Hz) 

Fig. 5 Measured modal properties 

 

 

  

(a) Three load cases (b) The measured displacements of box girders (mm) 

Fig. 6 Measured static displacements 

 

 

 

The objective function for the i-th optimal FE model is formulated as Eq. (16) considering three 

types of responses. 

      iiiiififi

T

ii rwrwrwJ  θrWθmin           (16) 

where rif is the natural frequency residual, riϕ the mode-shape residual, and riδ the displacement 

residual. The 300 sets of weighting vectors are sampled to represent uncertainty of the responses 

and, accordingly, a matrix of structural parameters  30021 ,...,, θθθΘ   for the 300 updated FE 

models are identified by successive optimizations.  

 

4.3 Analysis of structural parameters distribution of multiple FE models 
 

A matrix of transformed coordinate of 300 FE models Θ̂  is obtained along with eigenvector 

matrix u and eigenvalue matrix Λ by applying PCA to the by applying PCA to the Θ . The Fig. 7 

shows the contribution of a few dominant principal components for the variance of the FE models 

in the case of Yeondae bridge, which indicates that more than 90% of the variance of the multiple 

FE models can be explained by the first 9 principal components. 
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Table 1 Structural parameters and their allowable bounds considered in the optimization 

Structural parameters 
Allowable 

bounds (%) 

Coefficients of spring support elements in  

translation and rotational direction 
±30 

Mass of girders (span 1, 2, 3, 4), cross frame ±10 

Young’s modulus of girders (span 1, 2, 3, 4), cross frame, and slab ±20 

Torsional stiffness of girders (span 1, 2, 3, 4), cross frame, and slab ±25 

Moment of inertia (Iyy) of girders (span 1, 2, 3, 4), cross frame, and slab ±10 

Moment of inertia (Izz) of girders (span 1, 2, 3, 4), cross frame, and slab ±10 

Area of transverse slab ±30 

Mass of substructural member (vertical, rotational) ±30 

 

 

Fig. 7 Contribution of each principal component in the variance of multiple FE models 

 

The relationship between the distribution of structural parameters and uncertainty conditions of 

the measured data can be characterized sufficiently by the two largest principal components in this 

example, as represented by gradual variation of weighting factors along the principal axes in Fig. 8. 

Although not presented here, we found that the relationship between the distribution of structural 

parameters and uncertainties does not reveal any specific characteristics in the spaces defined by 

other remaining higher-order principal components. Each point represents each of multiple FE 

models in the orthogonal space. The 2nd principal axis obviously explains the relationship 

between multiple FE models and the weighting factor for natural frequency residual (Fig. 8(a)). 

Variation of the weighting factor for mode-shape residual is also well represented by combination 

of the 1st and 2nd principal axes in Fig. 8(b). In the meantime, wide dispersion of higher 

weightage of mode-shape may suggest the insignificance of MAC based residual due to different 

orders of identified modal parameter and the structural matrices as discussed in Mukhopadhyay et 

al. (2012). The variation of weighting factor for displacement residual is less apparent than others 

(Fig. 8(c)). 
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(a) Natural frequency (b) Mode-shape (c) Static displacement 

Fig. 8 Variation of the weighting factors of each measured data for updated FE models  

 
 

 

Fig. 9 Scores of clustering for different number of clusters 

 
 

K-means method is then applied to the Θ̂  to classify models according to similarity. The 

value of score function is evaluated to assure the quality of cluster results while varying the 

number of clusters from 1 to 10, where the optimal number of clusters is found to be three (Fig. 9). 

According to the estimated scores, the multiple FE models are classified into three groups as 

shown in Fig. 10.  

 
 

  

Fig. 10 Classification of multiple FE models into 3 groups 
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Table 2 Number of FE models in each cluster and characteristics of clusters 

 Cluster 1 Cluster 2 Cluster 3 

Number of  

FE models 
99 160 41 

Characteristic 

of cluster 

Higher weighting factor for 

mode-shape residual 

Higher weighting factor for 

natural frequency residual 

Higher weighting factor for 

displacement residual 

 
 
Each group, or cluster, can be characterized by the variation of weighting factors. For example, 

FE models characterized by higher weighting factor for natural frequency residual, shown in more 

bright yellow color in Fig. 8(a), are grouped together in the cluster 2. The cluster 2 also includes 

the models for which all the measurement types are weighted equally. Thus, the FE models in the 

cluster are expected to be suitable for the evaluations requiring good prediction on the natural 

frequency, such as seismic fragility analysis. Similarly, the cluster 1 and cluster 3 are characterized 

by higher weighting for mode-shape and displacement residuals, respectively (Figs. 8(b) and 8(c)). 

The multiple FE models can be classified into distinct groups without subjectivity by the combined 

use of PCA and K-means. Table 2 shows the number of FE models in three clusters, and their 

characteristics with respect to weighting factor. 
 
4.4 Probabilistic assessment of bridge condition using load rating factor 
 

Condition assessment of bridges evaluates the remaining resistance capacity of major structural 

components of bridge against external loads. Especially, the vehicle load carrying capacity is 

quantified by evaluating load rating factor. The Rating Factor (RF) is usually computed by using a 

single updated FE model by which bridge condition is reflected restrictively. On the contrary, the 

proposed procedure utilizes multiple updated FE models that can represent possible states of 

structural conditions, and the estimated rating factors provides statistical information on bridge 

condition. 

The rating factors are evaluated with respect to the maximum positive bending moment for the 

strength limit state I (MLTM 2012). Table 3 shows the results obtained by using different sets of 

FE models: all the identified FE models and FE models in each of the three clusters. Since rating 

factors are highly dependent on the stiffness of the bridge, it can be concluded that the mean value 

of 2.16, computed by using FE models in the cluster 3 that is characterized by higher weighting 

factors for displacement residual, represents properly the current condition of the bridge. This is 

also confirmed by more rigorous analysis where highly refined updated FE model based on 

measured data produced a rating factor of 2.15  (Kim et al. 2013). It is noteworthy that, when 

50% of the FE models closest to the centroid of each cluster are used, all the standard deviations 

have decreased considerably while the mean values have not changed much. Fig. 11 also shows 

that using the FE models of cluster 3 results in narrower and shifted distribution of rating factor 

compared to the case of using all the identified FE models. 
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Table 3 Rating factors using different set of FE models 

 
All identified FE 

models 
Cluster 1 Cluster 2 Cluster 3 

Mean value 2.06 2.06 (1.98)
*
 2.03 (2.03)

*
 2.16 (2.18)

*
 

Standard deviation 0.129 0.153 (0.104)
*
 0.089 (0.064)

*
 0.128 (0.081)

*
 

( )
*
 : values estimated by using 50% closest FE models to the centroid of each cluster 

 

 

Fig. 11 Distribution of rating factors estimated by using all identified FE models and FE models in the 

cluster 3 

 
 
When probabilistic information is not necessary, the proposed procedure can simply use one 

representative FE model located at the centroid of each cluster. In this case, the rating factors are 

evaluated as 2.01, 2.01 and 2.11 for cluster 1, 2 and 3, respectively, which are close to the mean 

values for each cluster. Thus, the evaluation of bridge condition using the representative FE model 

can also reflect each cluster’s characteristics in this procedure. 

The probability of bridge failure is computed as  1 RFPp f . Here, the limit state function 

indicates insufficient load carrying capacity. To evaluate the probability, a distribution of rating 

factors is estimated by numerical simulations with 10,000 offspring FE models, which are 

generated from a multivariate normal distribution for the updated FE models. Then, the probability 

of insufficient load carrying capacity is evaluated by using a Gaussian PDF that is fitted to the 

distribution of rating factors. The evaluations are repeated by using FE models of each cluster, 

respectively. Table 4 lists statistical properties of the rating factors estimated by using the 

offspring models, and the probability of bridge failure for the identified clusters. The probability 

computed by using FE models in each cluster is significantly small compared to the one using all 

the identified FE models because data uncertainties are well taken care by clustering. The 

probabilistic assessment of the current structural condition by the proposed procedure can provide 

useful and efficient information for optimizing repair and maintenance plan in terms of lifetime 

cost and safety. 
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Table 4 Statistical parameters of rating factors obtained by using 10,000 offspring models and probability of 

insufficient load carrying capacity 

 
All identified FE 

models 
Cluster 1 Cluster 2 Cluster 3 

Mean value of RF 2.01 2.09 2.06 2.15 

Standard deviation 

of RF 
0.39 0.26 0.24 0.26 

pf 2.54×10
-3

 1.57×10
-5

 4.38×10
-6

 4.18×10
-6

 

 
 

 

Fig. 12 Fitting of a Gaussian distribution (μ = 2.01, σ = 0.39) to the distribution of rating factors estimated 

by considering all identified FE models 

 
 

5. Conclusions 
 

In this paper, a new procedure for assessing probabilistic condition of bridge considering 

measured data uncertainty has been proposed. The uncertainty of measured data is represented by 

the variation of weighting vectors. Multiple updated FE models are identified by successive 

optimizations using varying weighting vectors for specific measured data, and are classified into 

groups according to their similarity by using Principal Component Analysis (PCA) and K-means 

clustering. Probabilistic condition of a structure is properly assessed by using a selected group of 

updated FE models depending on the degree of data uncertainties. It is shown in the application 

example of Yeondae bridge that the proposed procedure can effectively evaluate probabilistic 

distribution of load rating factors for representing the current remaining resistance capacity of the 

bridge. The probabilistic assessment of the current structural condition by the proposed procedure 

can provide useful and efficient information for optimizing repair and maintenance plan in terms 

of lifetime cost and safety. 
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