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Abstract.  The major difficulty of using Bayesian probabilistic inference for system identification is to 
obtain the posterior probability density of parameters conditioned by the measured response. The posterior 
density of structural parameters indicates how plausible each model is when considering the uncertainty of 
prediction errors. The Markov chain Monte Carlo (MCMC) method is a widespread medium for posterior 
inference but its convergence is often slow. The differential evolution adaptive Metropolis-Hasting 
(DREAM) algorithm boasts a population-based mechanism, which runs multiple different Markov chains 
simultaneously, and a global optimum exploration ability. This paper proposes an improved differential 
evolution adaptive Metropolis-Hasting algorithm (IDREAM) strategy to estimate the posterior density of 
structural parameters. The main benefit of IDREAM is its efficient MCMC simulation through its use of the 
adaptive Metropolis (AM) method with a mutation strategy for ensuring quick convergence and robust 
solutions. Its effectiveness was demonstrated in simulations on identifying the structural parameters with 
limited output data and noise polluted measurements. 
 

Keywords:  structural identification; differential evolution; adaptive metropolis-hastings; Markov chain 
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1. Introduction 
 

Most of the structural identification approaches based on heuristic optimization algorithms are 

formulated as deterministic models in which the residual errors are built-up optimization functions 

to be minimized so that the candidate model can provide relatively accurate predictions of the 

system response. Heuristic algorithms, such as the genetic algorithm (GA) (Koh et al. 2007 and 

Perry et al. 2006), particle swarm optimization (PSO) (Xue et al. 2009), and differential evolution 

(DE) (Tang et al. 2008), have been used as global-optimum searches for the fitness function of the 

prediction errors. Recently, there has been an increasing need for structural identification to 

quantify the uncertain prediction errors associated with noise or model errors. 

As is shown by Beck et al. (2010), no candidate model can exactly represent the I/O behavior 

of an actual system. It is a quixotic notion to choose only one biased model in a quest for the 
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output of the true system with uncertain prediction errors. Bayesian probabilistic inference 

provides a rigorous way of quantifying this uncertainty based on a probabilistic model that is 

defined by stochastic model classes. The model set, M, is a class of parameterized probability 

models, each of which predicts the behavior of the actual system with a prior probability density. 

The prior probability of each model indicates the initial plausibility of the individual model. In 

Bayesian parametric posterior density estimation, the identification problem is to infer the 

plausibility of each candidate model with a posterior density conditioned by the measured data; it 

is not a quest for the true structural parameters. It is usually difficult for Bayesian probabilistic 

inference identification to obtain the posterior probability density function (PDF) of the structural 

parameters, 𝑃(�̂�(𝜃)|𝑌𝑚), conditioned by the measured response, 𝑌𝑚, where �̂�(𝜃) is a stochastic 

parameter vector defining each possible model within the model set (θ is a random variable in a 

probability space Ω). The posterior PDF describes how plausible each model is if one accounts for 

the uncertainty of the prediction errors. The posterior density, 𝑃(�̂�(𝜃)|𝑌𝑚), is needed to make 

robust predictions of the performance of the system based on past observations, as was illustrated 

by Papadimitriou et al. (2001) and Beck et al. (2002). Many studies have focused on obtaining the 

posterior PDF because its calculation often requires an evaluation of multidimensional integrals 

that cannot be easily obtained. In particular, Laplace’s method of asymptotic approximation was 

utilized by Beck et al. (2002) to obtain a posterior PDF with a small-dimensional parameter space. 

To solve higher dimensional problems, an adaptive Markov chain Monte Carlo (MCMC) 

simulation method, the Metropolis-Hastings (MH) algorithm, was developed to be used in the 

Bayesian model update (Muto and Beck 2008). Since the advent of the MH algorithm, MCMC 

methods have become the primary means to obtain the posterior PDF in structural identification. 

Gibbs sampling and transitional Markov Chain Monte Carlo (TMCMC) were used by Ching et al. 

(2007). Cheung et al. (2009) used a hybrid Monte Carlo method, known as the Hamiltonian 

Markov chain method, to solve the higher dimensional Bayesian model updating problems. 

However, all of these MCMC-based identification methods use a single Markov Chain, which 

may be inefficient and unreliable when the posterior surface is complicated. It is known that 

because of the noise corrupted system response, the surface of the prediction error lies in a 

hyper-surface of a multi-dimensional parametric space. The complicated surface of the prediction 

error will definitely cause the surface of the posterior model samples to have multiple regions of 

attraction and numerous local optima. To surmount this difficulty, the ability of heuristic 

algorithms to search for the global optimum will have to be merged with the advantage of the MH 

algorithm for inferring the posterior PDF. The first combining of DE and MCMC was proposed by 

Ter Braak. (2006) in Bayesian computing; it was named the DE-MC algorithm. Vrugt et al. (2009) 

proposed a differential evolution adaptive metropolis algorithm for solving the problem of flood 

forecasting. 

In this paper, an improved differential evolution adaptive Metropolis-Hastings algorithm 

(IDREAM) is proposed for updating the posterior PDF of the structural identification model. 

Compared with other MCMC based identification methods, it runs different parallel Markov 

chains simultaneously and the posterior samples mutually exchange information along the iteration. 

Numerical examples of updating the posterior PDF of a linear structural system are presented, with 

which the effectiveness and efficiency of IDREAM are investigated. The influence of the 

incomplete measurements and noise errors on the posterior PDF of the parameters is discussed. 
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2. Problem statement 
 

In the Bayesian probability logic identification framework, the measured response is used to 

estimate the posterior density of the plausibility for each I/O model in a model set instead of 

estimating biased parameters for only misrepresentative models (models with biased parameters 

that cannot represent the actual behavior of the true system). Here, let 𝑦𝑚(𝑡) denote the measured 

response at each time step (        ). The stochastic model set, M, is defined by a structural 

parameter vector,  �̂�(𝜃)  .�̂� (𝜃) �̂� (𝜃)   �̂�  (𝜃)/   
  (𝜃    ,   is a random variable in 

a probability space  ), where 𝑛𝑚 is the number of parameters for model  𝑚   , and    is 

the number of stochastic samples. The initial plausibility of each model parameterized by 

�̂�(𝜃 ) (𝑘          )  is defined as a prior density function, 𝑃(�̂�(𝜃)| ) . The updated 

plausibility of each I/O model considering the uncertainty of the measured response is defined as 

the posterior density, 𝑃(�̂�(𝜃)|𝑦𝑚   ), which from Bayes’ Theorem gives 

𝑃(�̂�(𝜃)|𝑦𝑚  )  𝑃(𝑦𝑚|�̂�(𝜃)  ) ∙ 𝑃(�̂�(𝜃)| )/𝑃(𝑦𝑚| )               (1) 

where  (  | ̂( )  ) is obtained from a probabilistic model that accounts for the uncertainty of 

the prediction errors between the measured response and the stochastic output of the model set 

specified by each random model variable, �̂�(�̂�(𝜃) 𝑡 ). Let   
 (𝑡)= 𝑦 

𝑚(𝑡)  �̂� 
 (�̂�(𝜃 ) 𝑡) denote 

the prediction error at each time interval (𝑡          , 𝑘          , and j=1,…, 𝑚, where 𝑚 

is the number of available measurements). The predictive PDF for the model output (white noise is 

considered as the measurement error; it thus obeys a normal distribution) at each time interval is 

𝑃(𝑦 
𝑚(𝑡)|�̂�(𝜃)  )  𝑃(  (𝑡)|�̂�(𝜃)  )  

 

√ 𝜋𝜎𝑗
 
[−

1

2𝜎𝑗
2( 𝑗

 ( )− ̂𝑗(�̂�(𝜃)  ))
2]

, j=1,…, 𝑚    (2) 

Hence, the predictive PDF (which is the likelihood function) seen from the whole time history 

is 

𝑃(𝑦𝑚|�̂�(𝜃)  )  
 

(∏ √ 𝜋𝜎𝑗
 
𝑗=1 )𝑁𝑡

 
[−∑

1

2𝜎𝑗
2∑ ( 𝑗

 ( )− ̂𝑗(�̂�(𝜃)  ))
2𝑁𝑡

𝑡=1
 
𝑗=1 ]

           (3) 

The vector of the prediction error variance,   
 , is an independent parameter corresponding to 

each candidate model in the model class, M. The term, 𝑃(𝑦𝑚| ), is called the evidence of the 

model class, and it equals 

𝑃(𝑦𝑚| )  ∫𝑃(𝑦𝑚|�̂�(𝜃)  ) ∙ 𝑃(�̂�(𝜃)| )𝑑𝜃                (4) 

The difficulty in estimating the Bayesian posterior density is none other than approximating 

this multi-modal and high-dimensional integral. A direct and easy-to-understand approach would 

be the Monte-Carlo method. However, a direct MC simulation usually requires a large number of 

MC samples, which makes it inefficient. On the other hand, the Metropolis-Hastings (MH) 

algorithm (Chib et al. 1995) is a new Markov-chain Monte-Carlo simulation tool, and it can meet 

this challenge. In the MH algorithm, it is unnecessary to accurately calculate the model evidence in 

Eq. (4). The Markov chain samples are initially distributed according to the prior PDF and updated 

with a jumping distribution. The samples in the Markov chain are selected according to the MH 

acceptance rate and eventually converge to a stationary probability density which can be seen to be 

the desired posterior PDF of the model parameters. However, the scale of the jumping distribution 
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is hard to decide for the MH algorithm. This is an important problem because choosing a suitable 

transition strategy for the samples in the Markov chain influences not only the convergence speed 

but also the robustness of the solutions. 

 

 

3. IDREAM for Bayesian inference of parameter estimation 
 

This study presents an improved differential evolution adaptive Metropolis-Hastings algorithm 

(IDREAM) aimed at overcoming the difficulty of choosing a suitable jumping scale in the 

algorithm. The IDREAM algorithm starts by choosing samples represented as a dimensional 

vector �̂�, and the kh sample is denoted as �̂�  (𝑘         ). The number of samples is twice the 

parametric dimension, as is proposed in J. Vrugt et al. (2009). The initial states of the Markov 

chain samples are drawn from the search domain by using Latin hypercube sampling (LHS). The 

density function of each sample in the initial state can be computed as a prior density 𝑝(�̂�0
 ) for 

𝑘         . 
 

3.1 DE mutation of the MC samples 
 

In the differential evolution adaptive Metropolis-Hastings (DREAM) algorithm (Vrugt et al. 

2009), the samples are updated by using the difference between randomly chosen pairs of samples 

in the current state. Let ∆�̂�
 =�̂� + 

  �̂� 
  denote the jump scale between the updating state (s+1) 

and current state (s) of the sequence k in the Markov chain. In the DREAM algorithm, the samples 

are updated as 

∆�̂�
  (𝑢𝑑 +  𝑑)𝛾(𝛿 𝑑) 0∑ �̂� 

𝑟1( )  ∑ �̂� 
𝑟2( )𝛿

 = 
𝛿
 = 1+ 𝜀              (5) 

where 𝜀 is a small random vector that is drawn from  𝑑(0 Σ̂). This variable is the same as the 

jumping scale vector in the classic MH algorithm, which is called the random-walk strategy. In the 

MH algorithm, the jump scale 𝜀 obeys a Gaussian distribution in which the variance, Σ̂, decides 

the jumping direction and scale of the MC samples. It is clear that the efficiency of this algorithm 

is strongly affected by 𝜀. So how we choose an appropriate jumping scale for the samples 

transition is a difficulty especially for high-dimensional problems. This problem can be solved 

with Eq. (5), where the jumping scale equals an adaptive multiple of the difference between pairs 

of randomly chosen samples in the current state. 𝛿 is the number of chosen pairs, and 𝑟 (𝑗) and 

𝑟 (𝑛)  are respectively different and random integers that are chosen from the integer set 

{1,2,…k-1,k+1,…,  }. The term 𝑢𝑑 us the d-dimensional unit vector, and  𝑑 signifies a small 

random vector drawn from a uniform distribution to assure the ergodicity of each individual 

Markov chain. The scaling factor 𝛾 is decided by the values of 𝛿  and 𝑑, where d is the 

parametric dimension. From Eq. (5), it is clear that in DREAM, only the sequences in the current 

state are used to update the samples in the Markov chain. In this study, we propose a new update 

pattern in which the sequence having the largest plausible density in the current state k and the one 

with the maximum posterior PDF from the initial state to the current state are used for the updating 

of the Markov chain samples 

∆�̂�
  𝑤 

 (�̂� 
𝑐𝑏𝑒   �̂� 

 ) + 𝑤 
 (�̂� − 

𝑔𝑏𝑒  
 �̂� 

 ) + (𝑢𝑑 +  𝑑)𝛾(𝛿 𝑑)∑ 𝑤∗ 
 .�̂� 

𝑟1( )  �̂� 
𝑟2( )/𝛿

 = + 𝜀(6) 
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where �̂� 
𝑐𝑏𝑒   denotes the sample with the maximum density in the current state (sth state) and is 

called the “current-best individual”, and �̂� − 
𝑔𝑏𝑒  

 denotes the sequence with the maximum density 

in the previous states (from the initial state to the sth state) and is called the “global-best 

individual”. �̂� 
𝑟1( )  and �̂� 

𝑟2( )  are randomly chosen individuals in the current state and are 

different from each other. The weighting factors, 𝑤 
 , 𝑤 

  and 𝑤 
 , are the distance between the 

individuals 

{
𝑤 
  𝑑 

 /𝑑 𝑢𝑚
   𝑤 

  𝑑 
 /𝑑 𝑢𝑚

  𝑤∗ 
  𝑑 

 /𝑑 𝑢𝑚
  

𝑑 𝑢𝑚
  𝑑 

 + 𝑑 
 + ∑ = 

𝛿 𝑑 
 

                  (7) 

where 𝑑 
  and 𝑑 

  are respectively the Euclidean distance from sequence �̂� 
  to the 

“current-best” sample �̂� 
𝑐𝑏𝑒   and the distance from the sequence �̂� 

  to the “global-best” sample 

�̂� 
𝑔𝑏𝑒  

, and 𝑑 
  is the Euclidean distance of are randomly chosen sample pairs excluding the 

individual �̂� 
  in the Markov chain. From Eq. (6), one can see that the biggest difference of 

IDREAM from DREAM is that the posterior samples are updated using both the maximum PDF in 

the current state and that of the previous states, while the updated samples of DREAM are 

orientated between the chosen pairs of samples only in the current state. IDREAM enhances the 

convergence speed especially in the early stage because the difference between the individual and 

the “best” sample is definitely large owing to the diversity of samples in the initial state. From Eq. 

(7), it is clear that samples farther away from the “best” sample possess a larger jumping scale 

because the weight factor is positively propositional to the distance. As for the “best” sample, the 

update method is the same as in DREAM, i.e., Eq. (5). The convergence becomes slower in the 

later stages when the diversity of the samples in the Markov chain decreases. Because of this, a 

crossover strategy (Storn et al. 1997) is used to keep the diversity of the MC samples high. 

Assertion: IDREAM yields a Markov chain which is irreducible and aperiodic with a unique 

stationary distribution with the target pdf π(∙)  . Proof: the proof consists of two parts: 

1. If the sample of the kth chain coincides with the position of the global-best and the 

current-best individual, the probability of a jump from sample in the state s of the chain to the 

sample in the state s+1 is the same as in the DREAM algorithm, in which the conditional 

probability of jumping forward, p( ̂s
k →  ̂s+ 

k ), is equal to that of jumping back, p( ̂s+ 
k →  ̂s

k). 
For the individuals who are different from the “best” sample in the current state, s, the distance and 

the corresponding weighting factor decrease quickly in the later stages (especially following a 

sufficient burn-in period) as the populations converge. The deviations (random walks) of the 

randomly chosen sample pairs mainly decide the transitions of each chain. The      samples 

can been seen as updated conditionally on the other chains obeying the reversibility property of the 

Markov chain, because the Jacobian of the transformation (Hastie 2012) implied in Eq. (6) is close 

to 1 in absolute value, (Vrugt et al. 2009), and the first two items of Eq. (6) play limited roles in 

the transition Markov chains during the later stages (Note: �̂� 
𝑐𝑏𝑒   is equal to �̂� − 

𝑔𝑏𝑒  
 in the later 

stages). 2. Detailed balance is achieved with an accepting rule having probability 

min(𝑝(�̂� + ) 𝑝(�̂� )⁄   ). Each chain maintains conditional detailed balance, because the chains are 

aperiodic and not transient with the random walk generated by Eq. (6). The    chains are 

irreducible with the unbounded support of the distribution of 𝜀 in Eq. (6). This concludes the 

assertion. 
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3.2 DE crossover strategy for the MC samples 
 

The crossover strategy is implemented in d dimensions of the current samples, �̂� 
 , and the 

updated posterior samples, �̂� + 
 , and a trial sample �̂� + 

  
 is generated with 

�̂� + 
  

={
�̂� 
  
        𝑖𝑓 𝑈 ≤   𝐶𝑅

�̂� + 
  
                   𝑜𝑡ℎ 𝑟𝑤𝑖𝑠 

                       (8) 

where j=1,2,…,d; 𝑈  is the jth independent random number uniformly distributed in the range of 

[0,1]. CR is a crossover probability defined by the user. 

 

3.3 Metropolis acceptance 
 

The density of the new sample, 𝑝(�̂� + 
 ), and the Metropolis acceptance (Haario et al. 2001) 

can be calculated with the updated samples in the Markov chain 

α(�̂�  �̂� + ) =𝑚𝑖𝑛 0
𝑝(�̂� +1)

𝑝(�̂� )
  1                         (9) 

The algorithm accepts the candidate state �̂� +  with probability min(1,α(�̂� +  �̂� )), and keeps 

the current state �̂�  with probability 1-min(1, α(�̂� +  �̂� )). This process is repeated in several 

iterations, and after a burn-in period, the chain of samples approaches a stationary distribution. The 

desired posterior PDF can be obtained from these Markov-chain samples, excluding the ones in 

the burn-in period. 

 

3.4 Gelman-Rubin convergence condition 
 

The IDREAM algorithm ends by checking the Gelman-Rubin convergence condition (A. 

Gelman et al. 1992), and calculates the R̂ -statistic by using the last 50% of the samples in each 

chain. Let k be the number of the sequences used to calculate R̂ , and let B be the variance 

between the sequence means and W signify the average of the within sequence variances 

(B=  × ∑ (�̂�𝑖  �̅̂�)
  

𝑖= /(k   ), and W=∑ 𝑠𝑖
  

𝑖= /𝑘, where 𝑠𝑖
  is the variance of the sequence). 

Furthermore, the target posterior variance is estimated as �̂� =
 − 

 
𝑊 +

 

 
𝐵. The Gelman-Rubin 

convergence parameter, R̂, can be calculated as 

R̂=√
 + 

 
×
�̂�2

𝑊
 
  − 

 ×  
                           (10) 

If R̂ <  .  for all dimensions (Gelman et al. 1992), it means that the Markov chain has 

converged to a stationary distribution; otherwise, the posterior sample is updated with Eq. (6). 

 

3.5 IDREAM based parametric posterior density estimation 
 

The procedure of IDREAM-based Bayesian probability inference parameter estimation is as 

follows: 

Step 1: The initial    sequences for the Markov chain are drawn by Latin hypercube sampling 

with the predefined maximum and minimum boundary of the structural parameters and number of 
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samples,   , while respecting the prescribed limits of the search space. Calculate the prior density 

and the likelihood function using Eqs. (2) and (3).  

Step 2: Update the posterior sample of the Markov chain by using Eqs. (6) and (7).  

Step 3: The samples are updated according to the crossover probability calculated with Eq. (8). 

Calculate the density for the each updated sample in the Markov chain. 

Step 4: Use the Metropolis acceptance (Eq. (9)) to decide whether to accept the new samples.  

Step 5: Return to Step 2 to Step 4, considering the burn-in period and calculate the Gelman 

statistic condition using Eq. (10) for each dimension of the stochastic parameter. If the stopping 

criteria are met, (R̂ <  .  or the max. iteration number is reached) stop the algorithm; otherwise, 

return to Step 2. 

 

 

4. Numerical study 

 
A numerical simulation of a 5-DOF linear time invariant (LTI) system was carried out to verify 

the IDREAM algorithm. The actual system output was simulated from a linear structural system (a 

one-dimensional shear frame structure). For sake of clearly exhibiting that only the measurement 

uncertainty is considered, the second-order differential dynamic equation of the structural system 

is described by the state-space representation as 

[
�̇� (𝑡)
�̇� (𝑡)

]  0
0 I

  − 𝐾   − 𝐶
1 [
𝑣 (𝑡)
𝑣 (𝑡)

] + 0
0
 I
1Γ𝑇𝑢(𝑡)           (11) 

where M, C, and K are mass, damping, and stiffness matrices, I is a 𝑛 × 𝑛 identity matrix, 

Γ  ,       -𝑇   is a  × 𝑛  position vector. 𝑣 (𝑡)  and 𝑣 (𝑡)  are state space vectors 

respectively representing the displacement and velocity, and 𝑢(𝑡) is the input of the system. 

Equation (11) includes a Rayleigh damping matrix C, where the modal damping ratio (ζ
𝑟
) is set to 

5% in the first two modes (r=1, 2) (Mita 2003). 

𝐶  𝛼 + 𝛽𝐾,  ζ
𝑟
 

𝛼

 𝜔𝑟
+
𝛽𝜔𝑟

 
                    (12) 

The system output is an acceleration value that is assumed to be contaminated by Gaussian 

white noise 𝑤 (t)~N(0, 𝜎 (𝜃)), (j=1,.. m). The measured output vector is thus 

𝑦(𝑡)  ,  − 𝐾   − 𝐶- [
𝑣 (𝑡)
𝑣 (𝑡)

]  Γ𝑇 ∙ 𝑢(𝑡) + 𝑤(  (𝜃), t)          (13) 

The input was the 1940 El Centro ground motion (N-S acceleration measured at the Imperial 

Valley Irrigation District substation in El Centro, CA, during the 1940 Imperial Valley earthquake) 

lasting 40 s. It was normalized so that its peak was 10 cm/s2, and the sampling frequency was 

decimated as 50 Hz (Fig. 1). The Newmark-beta method was used to calculate the structural 

response. An output acceleration (acc.) with different Gaussian white noise levels (Eq. (13)) was 

assumed. To show the effectiveness of the method for an identification problem with a large noise 

level, the noise level (nl.) was chosen to have a standard deviation of 30% or 100% of the 

corresponding signal; i.e., if 𝜎𝑎𝑐𝑐. 𝑖 is the standard deviation of the 𝑖 ℎ floor acceleration (relative 

to the ground), then the noise affecting the measurement of that floor’s acceleration has an RMS 

𝜎𝑖  𝑛𝑙.× 𝜎𝑎𝑐𝑐. 𝑖. The response of the 5th DOF with and without 100% noise is shown in Fig. 1. 
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Fig. 1 Input and measured noise 

 

 

The influence of the limited availability of measurements was also assessed. In the “full 

output” scenario, measurements of all DOFs were available, whereas in the “partial output” 

scenario, only data from floors 3 and 5 were available. The mass was assumed to be known and 

deterministic; hence, an n-DOF system with m-available measurements can be described by a 

model set, of which the stochastic parameterized vector for each model is 

�̂�(𝜃)=*𝑘 (𝜃)   𝑘 (𝜃) ζ (𝜃) ζ (𝜃) 𝜎 (𝜃)   𝜎𝑚(𝜃)+           (14) 

where 𝑘𝑖 denotes the stiffness of ith -DOF, n is the number of structural DOFs; ζ  and ζ  are the 

damping ratio of the first two modes; 𝜎𝑖 denotes the standard deviation of the ith measurement 

noise, m is the number of measurements; 𝜃 denotes the random variables in the sample space, 

Ωθ. 

Table 1 lists the structural properties together with the simulated measurement error for each 

available DOF. The parametric dimension was 12 for the full output scenario and 9 for the partial 

output scenario. The parameters of the IDREAM algorithm were set as follows: the number of 

Markov chain samples (  ) was 20, the crossover probability (CR) was 0.85, and the number of 

sample pairs (𝛿) was 5. These prescribed parameters were tested and also suggested by the 

developer of the algorithm. If the number of samples is increased, such as to 50 or 100, the results 

may improve a little at the expense of a higher computing cost. The search domain was 0.5 to 2.0 

times the true value, which depends on prior knowledge about the structural system. The prior 

distribution followed a uniform distribution at the search boundary.  

The results obtained by the original DREAM algorithm are shown for comparison in the full 

output scenario (Tables 2(a) and 2(b)) and partial output scenario (Tables 3(a) and 3(b)). From 

Tables 2 (a) and 2(b), it is clear that both algorithms performed very well in the noise-free 

scenario. As the magnitude of the measured noise increased, the relative errors of the identified 

solutions remained small. The maximum relative error for the most plausible value of structural 

stiffness, i.e., the sample with the maximum posterior density (�̂�𝑀𝐴𝑃), ranged from zero in the 

no-noise case to 0.502% in the 30% noise case and up to 1.987% in the 100% noise case when 

using the DREAM algorithm. 

0 4 8 12 16 20 24 28 32 36 40
-0.1

0

0.1

time (s)

u
(t

) 

m
/s

2

 

 

0 4 8 12 16 20 24 28 32 36 40
-0.2

0
0.2

time (s)

5
th

 a
cc

.

m
/s

2

 

 

0 4 8 12 16 20 24 28 32 36 40
-0.2

0
0.2

time (s)

5
th

 a
cc

. 

m
/s

2

 

 

Input

no noise

100% noise

742



 

 

 

 

 

 

Posterior density estimation for structural parameters using improved differential evolution… 

 

Table 1 Structural properties and measurement errors 

Stiffness  ( 0 N/m)  (𝜎𝑖) m/s2 30% noise 100% noise 

Levels  1 2.000 

C
as

e 
 

1
 
 

Levels  1 0.0049 0.0162 

Level  2-5 1.000 Levels  2 0.0074 0.0248 

Mass  (kg) Levels  3 0.0076 0.0252 

Levels 1-4 50 Levels  4 0.0077 0.0256 

Level  5 45 Levels  5 0.0095 0.0317 

Damping ratio  

C
as

e 
2
    

ζ  0.05 Levels  3 0.0076 0.0252 

ζ  0.05 Levels  5 0.0095 0.0317 

 

 
Table 2 (a) Identified results of structural parameters (full output scenario) 

 no noise 30% noise 100% noise 

 DREAM IDREAM DREAM IDREAM DREAM IDREAM 

𝑘  
 error 0.000 0.000  0.352 0.164  0.656  0.250 

cov. 0.000 0.000  0.906 0.533  3.263  1.641 

𝑘  
 error 0.000 0.000  0.324 0.242  1.558  0.114 

cov. 0.000 0.000  0.683 0.399  2.462  1.286 

𝑘3 
 error 0.000 0.000  0.298 0.353  1.987  0.198 

cov. 0.000 0.000  0.812 0.459  2.946  1.474 

𝑘  
 error 0.000 0.000  0.172 0.045  0.658  0.717 

cov. 0.000 0.000  0.813 0.465  2.789  1.564 

𝑘5 
 error 0.000 0.000  0.502 0.299  1.155  1.083 

cov. 0.000 0.000  0.937 0.530  3.227  1.835 

ζ  
 error 0.000 0.000  1.307 0.813  3.442  2.035 

cov. 0.000 0.000  1.591 0.871  5.545  2.946 

ζ  
 error 0.000 0.000  0.887 1.217  1.677  0.499 

cov. 0.000 0.000  1.158 0.635  3.951  2.095 

* the error is in %; the cov. (the ratio of the standard deviation to the mean) is in % 

 

 

Table 2 (a) shows that the accuracy of �̂�𝑀𝐴𝑃 when using IDREAM was better than that of 

DREAM. The maximum relative error fell to 0.353% in the 30% noise case and 1.083% in the 

100% noise case. The parameter with the largest uncertainty obtained by the two algorithms was in 

the damping ratio. The largest coefficient of variance (cov.) of the damping ratio was 1.591% in 

the 30% noise case, and it increased to 5.545% in the 100% noise case for the DREAM algorithm. 

For IDREAM, the coefficient of variance (cov.) of the damping ratio ranged from 0.871% to 

2.946%. It is clear that the parametric uncertainty was additive as the measurement error increased. 

Table 2 (b) shows that the two algorithms can identify the exact value of the noise standard 
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deviation, 𝜎𝑖 in Table 1. In the noise-free scenario, both solutions were as small as zero. For the 

100% noise case, the maximum error emerged in the third DOF at 2.341% for DREAM and at 

2.562% for IDREAM. The identified results for the partial output case are listed in Tables 3(a) and 

3(b). 

From Table 3(a), it can be seen that when there was a noise error, the maximum relative errors 

of �̂�𝑀𝐴𝑃 were smaller for IDREAM than for DREAM. In the 30% noise case, the maximum 

relative error for DREAM was 1.855%, but only 1.501% for IDREAM, while in the 100% noise 

case, the maximum error decreased from 5.602% to 5.214%. 

 

 
Table 2 (b) Identified results of prediction errors (full output scenario) 

 no noise 30% noise 100% noise 

 DREAM IDREAM DREAM IDREAM DREAM IDREAM 

𝜎  
 error  0.000  0.000 0.967 0.080 2.060 0.204 

cov.  0.000  0.000 0.136 0.082 0.172 0.055 

𝜎  
 error  0.000  0.000 0.966 0.034 0.725 2.562 

cov.  0.000  0.000 0.074 0.042 0.183 0.043 

𝜎3 
 error  0.000  0.000 0.445 0.731 2.341 0.678 

cov.  0.000  0.000 0.088 0.051 0.084 0.032 

𝜎  
 error  0.000  0.000 0.185 1.879 1.302 1.128 

cov.  0.000  0.000 0.075 0.049 0.070 0.042 

𝜎5 
 error  0.000  0.000 1.108 1.741 2.237 0.128 

cov.  0.000  0.000 0.096 0.022 0.111 0.048 

* the error is in %; the cov. (the ratio of the standard deviation to the mean) is in % 

 

 
Table 3 (a) Identified results of structural parameters (partial output scenario) 

 no noise 30% noise 100% noise 

 DREAM IDREAM DREAM IDREAM DREAM IDREAM 

𝑘  
error 0.019 0.010 1.404 1.501  2.227 2.546 

cov. 0.000 0.000 4.267 2.606  16.58 7.761 

𝑘  
error 0.082 0.025 1.025 0.794  4.372 1.450 

cov. 0.000 0.000 2.216 1.351  10.33 4.584 

𝑘3 
error 0.072 0.018 1.855 0.196  5.602 0.725 

cov. 0.000 0.000 2.710 1.530  12.69 5.538 

𝑘  
error 0.089 0.014 1.041 0.511  2.722 2.376 

cov. 0.000 0.000 2.145 1.222  8.633 4.224 

𝑘5 
error 0.106 0.028 1.233 1.189  0.859 4.485 

cov. 0.000 0.000 2.243 1.358  12.32 4.171 

ζ
 
 

error 0.050 0.030 1.066 0.406  1.667 5.214 

cov. 0.000 0.000 2.110 1.179  6.774 4.024 

ζ
 
 

error 0.016 0.006 1.564 1.067  0.273 0.972 

cov. 0.000 0.000 2.142 1.258  7.930 4.020 

* the error is in %; the cov. (the ratio of standard deviation to the mean) is in % 
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Table 3(b) Identified results of prediction errors (partial output scenario) 

 no noise 30% noise 100% noise 

 DREAM IDREAM DREAM IDREAM DREAM IDREAM 

𝜎3 
error  0.000  0.000  0.950  2.406  2.675  0.669 

cov.  0.000  0.000  0.145  0.114  0.207  0.089 

𝜎5 
error  0.000  0.000  1.240  0.982  0.490  0.557 

cov.  0.000  0.000  0.096  0.094  0.116  0.091 

* the error is in %; the cov. (the ratio of standard deviation to the mean) is in % 

 

 

  
(a) DREAM (b) IDREAM 

Fig. 2 Progress of identification of stiffness of 5th floor (partial output, 100% noise) 

 

 

 

Fig. 3 Histogram of marginal density for each parameter (100% noise, partial output) 
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Comparing Table 3(a) with Table 2(a), it is clear that the loss of available measurements leads 

to an increase in parametric uncertainty, because the maximum coefficient of variance for the 

structural parameters adds from 2.946% to 7.761% at the same noise level. Table 3(b) shows that 

the actual prediction error standard deviation can be well estimated even if only measurements of 

the 3rd and 5th DOFs are available. The maximum error of the estimated prediction errors, �̂�𝑀𝐴𝑃, 

was 2.406% in the 30% noise case and 0.669% in the 100% noise case. For the DREAM 

algorithm, the corresponding errors were 1.240% in the 30% noise case and 2.675% in the 100% 

noise case. (Note that the maximum error of the estimator prediction errors seems larger for the 

30% noise scenario than for the 100% noise scenario. The reason for this phenomenon is the 

denominator for calculating the relative error in the case of 30% noise is smaller than that in the 

case of 100% noise.) 

 Fig. 2 shows the progress of identification of the stiffness of the 5th DOF at the 100% noise 

level in the partial output scenario. In Fig. 2, each plot with a different color denotes the progress 

of a Markov Chain, which means there were 20 posterior MC samples at each iteration. We can 

see that the posterior samples of the Markov chain obtained by IDREAM were more stable than 

those of DREAM, which leads to a smaller uncertain range. The marginal posterior density of the 

parameters using IDREAM can be obtained by using kernel density estimation on the stationary 

Markov chain samples excluding the sequence during the burn-in period, as is shown in Fig. 3. 

 

 

 
(a) DREAM 

 
(b) IDREAM 

Fig. 4 Convergence of Markov Chain (100% noise, partial output) 
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(a) Response range considering the identified parametric uncertainty 

 
(b) Response range considering the identified std. of prediction error 

Fig. 5 95% uncertainty ranges for acceleration of 5th DOF (100% noise, partial output) 

 

 

Figs. 4(a) and 4(b) indicate that the Markov chain converged for each identified parameter 

when using DREAM and IDREAM in the scenario of partial outputs and 100% noise. Comparing 

Fig. 4(a) with Fig. 4(b), however, makes it clear that IDREAM already converged by the time 

4000 iterations were reached, but the Markov chains of DREAM were still unstable. Therefore, 

IDREAM converged faster than DREAM. Combing the solutions in Tables 2 and 3, we can 

conclude that IDREAM outperformed DREAM because of its earlier convergence and robustness 

of the posterior samples without decreasing the accuracy of the results. 

The posterior uncertain range that assures a reliability of 95% can be obtained from the 

posterior samples of the model class which denotes the plausibility of each I/O system. Fig. 5 

shows the ranges for part of the time history (5 seconds). Fig. 5 (a) is the uncertain response range 

of a stochastic I/O system parameterized by identified parameters of the posterior candidate model 

set with 95% assurance and without prediction errors at each time interval. On the other hand, Fig. 

5(b) shows the uncertain range of the response with 95% assurance and with measurement errors 

at each time interval by incorporating the identified standard deviation of the prediction error. Fig. 
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5(a) illustrates the effectiveness of the Bayesian identification method because the parametric 

uncertain response range is close to the actual system response. Moreover, in Fig. 5(b), the 

percentage of the response considering a 100% measurement error within the uncertain range that 

covers the prediction error is 94.75%. 

 

 

5. Conclusions 
 

A framework of Bayesian probability inference for identification based on an improved 

differential evolution adaptive Metropolis-Hasting (IDREAM) algorithm was proposed. Compared 

with the DREAM algorithm, its novelty lies in a new sample updating pattern that speeds 

convergence and improves the stability of the posterior samples. IDREAM runs MCMC 

simulations in parallel and keeps the diversity of samples by using a DE crossover strategy. This 

gives it a strong ability to search for the global optimum and to resolve the problem that the MH 

algorithm has in choosing an approximate jump scale. A numerical simulation of a 5-DOF system 

demonstrated its potential for solving identification problems with a high noise level and with 

partial output data. In conclusion, IDREAM is a new approach to obtaining the posterior density of 

a model class that cannot be easily found with the classic Monte-Carlo method due to the difficulty 

in calculating high-dimensional integrals. 
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