
 
 
 
 
 
 
 

Smart Structures and Systems, Vol. 15, No. 3 (2015) 683-698 
DOI: http://dx.doi.org/10.12989/sss.2015.15.3.683                                               683 

Copyright © 2015 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=sss&subpage=8         ISSN: 1738-1584 (Print), 1738-1991 (Online) 
 
 

 

 
 
 
 

System identification of an in-service railroad bridge using 
wireless smart sensors 

 

Robin E. Kim, Fernando Moreua and Billie F. Spencer, Jr.b 
 

Department of Civil and Environmental Engineering, 
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 

 
(Received November 27, 2014, Revised February 10, 2015, Accepted February 15, 2015) 

 
Abstract.    Railroad bridges form an integral part of railway infrastructure throughout the world. To 
accommodate increased axel loads, train speeds, and greater volumes of freight traffic, in the presence of 
changing structural conditions, the load carrying capacity and serviceability of existing bridges must be 
assessed. One way is through system identification of in-service railroad bridges. To dates, numerous 
researchers have reported system identification studies with a large portion of their applications being 
highway bridges. Moreover, most of those models are calibrated at global level, while only a few studies 
applications have used globally and locally calibrated model. To reach the global and local calibration, both 
ambient vibration tests and controlled tests need to be performed. Thus, an approach for system 
identification of a railroad bridge that can be used to assess the bridge in global and local sense is needed. 
This study presents system identification of a railroad bridge using free vibration data. Wireless smart 
sensors are employed and provided a portable way to collect data that is then used to determine bridge 
frequencies and mode shapes. Subsequently, a calibrated finite element model of the bridge provides global 
and local information of the bridge. The ability of the model to simulate local responses is validated by 
comparing predicted and measured strain in one of the diagonal members of the truss. This research 
demonstrates the potential of using measured field data to perform model calibration in a simple and 
practical manner that will lead to better understanding the state of railroad bridges. 
 

Keywords:    calibrated numerical model; structural health monitoring system; railroad bridge; system 
identification; wireless smart sensors 

 
 
1. Introduction 
 

Railroads have been an important part of the transportation network for over a hundred years in 
the United States (US).The freight rail industry has been the fastest growing segment since 1980, 
accounting approximately 40 percent of the total freight moved nationwide in 2010 (FRA, 2010). 
Due to continuous growth in freight demand, the Association of American Railroad forecasts that 
rail lines exceeding their capacity will increase from 173.81 km (108 miles) to nearly 25,749 km 
(16,000 miles; AAR, 2012).In an effort to meet the expected increase in the demand, the private 
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US freight railroads have been emphasizing maintenance of their infrastructure, by organizing the 
majority of their revenue to ensure or to maintain the good state of their network. To date, as much 
as 15 to 20 percent of their total capital is used to enhance/maintain the railroad capacity (FRA, 
2010). Thus, researches that can appropriately assess such infrastructure are assuming greater 
importance.  

Amongst railroad networks, bridges form a critical link. According to the FRA documents in 
2002, the US railroad network contained an average of one bridge for every 2.25 km (1.4 miles) of 
track (GAO, 2007). Ensuring good conditions for those bridges is important because they are the 
most expensive pieces of railroad networks; replacement and construction cost of railroad bridges 
can be 11 to 550 times as much per linear foot as regular track (GAO, 2007). At the same time, 
those structures are susceptible for severe wear or deterioration when the structures age and serve 
heavier traffic than their original design to meet the increased demands. Methods for quickly 
assessing physical states of the railroad bridges whether they can accommodate increased axle 
loads, train speeds, and greater volumes of freight traffic became of primary needs for railroad 
engineers (Moreu and LaFave 2012).  

Numerous researchers have employed system identification to develop models of highway 
bridges that can help in assessing the state of bridge infrastructure. Because initial models for the 
bridge may not be 100% successful for assessing dynamic properties, models are usually updated 
using measurements from dynamic testing. Various model updating approaches have been 
proposed (e.g., Brownjohn and Xia 2000, Jaishi and Ren 2005, Deng and Cai 2009, Morassi and 
Tonon 2008). While aforementioned literature used models that well represent global features of 
the bridge, Catbas et al. (2007) asserted that for accurate and practical condition evaluation of a 
structure, models should not only be updated with global attributes, but also with local data; when 
local responses are estimated from global-only calibrated model, results may be render 
meaningless. As such, in some of applications, global responses are measured from ambient 
vibration tests using accelerometers. Then, local characteristics, such as strain, are captured from 
controlled tests; the bridge is usually closed for the revenue traffic while a truck of known mass 
runs over the bridge (Catbas et al. 2008, Brenner et al. 2010). Although this type of test strategies 
is relatively easy to achieve in highway bridges, in the case of railroad bridges, performing such 
tests can be much expensive and hard. In consequence, railroad bridges received comparably less 
attention in this topic. Thus, a framework for monitoring railroad bridges that can efficiently reach 
global and local calibration of a model for system identification under revenue traffic needs to be 
devised. 

To date, only a limited number of studies have conducted system identification of in-service 
railroad bridges. Ahmadi and Daneshjoo (2012) implemented a full-scale monitoring system on a 
railroad bridge (Firoozeh Railroad Bridge, Iran). They collected acceleration responses of the 
bridge under a train of known speed and weight passing and extracted key parameters of the bridge. 
Giles et al. (2011, 2012) implemented a full-scale monitoring system on the Government Bridge at 
the Rock Island Arsenal using wireless smart sensors (WSSs). The efficient and multi-metric 
system allowed understanding of the global behavior of the bridge (Cho et al. 2014). Local 
responses are also measured from fiber optic strain sensors. However those sensors were only 
suitable for static measurements, because of the aliasing effects (Van Damme et al. 2007). In their 
application, however, because the bridge could swing to allow river traffic (i.e., barges) to pass, 
and thus traffics are closed and static loads governed during the period, use of those sensors were 
adequate. From the member strain under self-weight, the health of the bridge was assessed. In 
addition, system identification of the bridge was performed comparing global responses of the 
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bridge with a finite element (FE) model (Cho et al. 2014). While these methods have been 
successful in monitoring railroad bridges, a framework for dynamic tests and calibrated models 
that can help practically assess in-service railroad bridges based on global and local responses has 
not been provided. 

This paper demonstrates the use of measured data to identify a railroad bridge and calibrate an 
FE model to understand the global and local behavior of an in-service railroad bridge. This effort 
includes three distinct phases: (i) selection of a railroad bridge and implementation of a monitoring 
system with WSSs; (ii) an FE model development based on original construction design; and (iii) 
model calibration and validation using global and local responses of the bridge. In the monitoring 
system, WSS networks were installed on a steel truss railroad bridges. An FE model is developed 
and updated with field measurements so that the model can well represent the bridge both globally 
and locally. The results of this study demonstrate a framework, which can be used for 
understanding an in-service railroad bridges under revenue traffic to help railroad engineers 
managing their bridges. 

 
 

2. Description of test bridge and monitoring system 
 

A structural health monitoring (SHM) system was installed on a railroad bridge owned by 
Canadian National Railway (CN). The system comprised a set of WSSs, which provide services 
suitable for efficient monitoring system. During the research period, the system was able to collect 
various measurements. The uniqueness of the test bridge enabled rich collection of the 
measurements. This section demonstrates a successful layout of the system and examples of field 
data. 

 
2.1Test bridge 
 
A railroad bridge located over the Little Calumet River near Chicago, IL (see Fig. 1) has been 

selected in this study for assessing its structural conditions. Among the four bridges shown in the 
Fig. 1, the instrumented bridge is an intermediate truss bridge (the bridge with an arrow); the 
West-most bridge in the Fig. 1 is the Metra lane, another truss bridge carrying freight and 
passenger trains located the East to the test bridge, the East-most bridge is closed for the traffic. 
The bridge is about 95 m long, 21 m tall, and 10 m wide steel bridge and made of A36 American 
Society for Testing and Materials (ASTM).The bridge opened for service in 1971, with an 
expected life of 100 years. The test bridge carries two tracks, CN1 track on the West side and CN2 
track on the East side, which both are open for South and North bound freight and passenger trains. 
About ten freight trains and six Amtrak trains run on either CN1 or CN2 track in a daily basis. 
Those characteristics of the bridge make the bridge suitable and unique for the test bridge;(i) the 
test bridge is made of steel, which is the most common type in the US (53% of entire railroad 
bridge inventory, FRA, 2008); (ii) adjacent bridges are open to the traffic exciting the test bridge 
without changing mass of the bridge by carrying the train loads; and (iii) high traffic with various 
types of trains on the test bridge allows rich data collection from the monitoring system.  

 
2.2 Monitoring system 
 
WSS networks implemented on the bridge aimed for an efficient SHM system with various 
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 Six ISM400 sensors at A-E, A-W, B-E, B-W, C-E, and C-W.  
 Two ISM400 sensors on 2.1 m higher locations from C-E and C-W, to eliminate the spatial 

aliasing and to captures way behavior of the bridge.  
 Two SHM-H sensors at D-E and D-W to enhance the quality of the network effectively, 

while keeping total cost of the system low (Jo et al. 2012). 
 One SHM-S sensor on a diagonal member of the bridge to provide local responses of the 

bridge. It was placed about 1.2 m South from C-Win Fig. 2. This member was chosen 
because of its uniqueness; the member experiences both tension and compression as the 
train passes the bridge.  

In the final design of the network, two subnets were prepared; one for acceleration sensor nodes 
and the other for the strain sensor node. All acceleration sensor nodes were placed symmetrically 
in longitudinal direction (i.e., East and West), to allow obtaining asymmetric behavior under train 
loading on one side of the track. Those nodes were synchronized and provided synchronized 
responses with in a subnet of the truss bridge, which is then used for understanding the global 
behavior of the bridge. SHM-S sensor measured local responses of the bridge. Other than listed 
above and shown in Fig. 2, several SHM-S sensors were deployed on the rails both outside and 
inside the bridge as well. The sensors measured the train wheel loads, but the scope of this study 
will only cover the measurements from the structure. Finally, a base station PC, located at the 
North of the bridge (E-E in Fig. 2) controlled and collected data measured from two WSS 
networks (acceleration sensor network and strain sensor network). Having only 11 sensors, the 
system realized efficient and cost effective WSS networks tailored to monitor the global and local 
responses of the bridge under the train traffic. 

 
2.3 Example of measured data 
 
The measurements from the monitoring system under various train traffic formed a database for 

system identification. Fig. 3 shows an example of the acceleration response of the bridge when 
northbound Amtrak was passing the bridge on CN1 track at over 80 km/h. On each plot, the first 
vertical dashed line around 180 seconds indicates when Amtrak is entering the bridge, while the 
second vertical line near 190 seconds denotes exiting the bridge. As Amtrak passes the bridge, the 
bridge is excited laterally and vertically at similar degree (±15 mg). However, relatively small 
accelerations in longitudinal direction inform that Amtrak did not experience much change in 
acceleration (e.g., neither accelerating nor breaking). Because Amtrak is light and fast, the 
response of the bridge is similar that under impact tests. The transient responses after Amtrak left 
the bridge can give rich information of the global characteristics of the bridge.  
 
 
3. System identification 

 
This section explains the peak-picking method, an output-only system identification method. 

This method has been chosen due to its advantages over other methods for being fast, simple, and 
straight forward to extract key features of a structure. The accuracy of the selected method is 
shown as well, by comparing the results with Natural Excitation Eigensystem Realization 
Algorithm (NExT ERA). 
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(a) Lateral acceleration. (b) Vertical acceleration. 
 

(c) Longitudinal acceleration. 

Fig. 3 Bridge responses under northbound Amtrak on CN1 track measured at A-W (located near CN1 
track) 

 
 
3.1 Output-only system ID 

 
In civil engineering structures, measuring input to the structure is difficult in most cases; hence, 

the modal parameters can identified from output-only system identification. A number of 
researchers provided frequency domain approaches to estimate the natural frequencies and mode 
shapes of the structure reasonably. Some widely used techniques are the frequency domain 
decomposition (FDD), Eigensystem Realization Algorithm (ERA), and peak-picking methods 
(Brincker et al. 2001, Juang and Pappa 1985, Brownjohn 2003). The expansion of those 
techniques uses acceleration measurement due to the ease of measuring acceleration rather than 
velocity and displacement of the structure. Among those, the peak-picking method is one of the 
simplest and fastest implementation for ambient vibration response (Brincker et al. 2001).  

Felber (1993) introduced the peak-picking method for reliable estimation of modal frequencies 
and mode shapes for ambient vibration measurements. The basic theory of this method is that the 
frequency response goes to an extreme around the fundamental frequency. The method assumes 
that the structure is linear, the excitation is ambient, and the damping of the structure is light with 
well-separated modes (Felber 1993). The natural frequencies of the structure are identified from 
the peaks of normalized cross power spectral densities (PSD)s, and the mode shapes are found 
from the ratio of cross PSDs. Although the theory behind peak-picking may be comprehensive, 
this method is highly practical and user-friendly. During the process, peaks in the PSDs are 
selected based on the physical understanding. This feature allows the method to be understood by 
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a group of variety background. For this reason, this method has been chosen in this study. 
To obtain accurate results in the peak-picking method, both low noise levels in the signals and 

clear, distinctive peaks are essential. Low accuracy in the lower frequencies in the MEMS based 
low-cost accelerometers may harm the use of the methods for civil structures, where the 
fundamental frequencies are usually low (Su et al. 2010, Nagayama et al. 2005). To enhance the 
accuracy, Nagayama et al. (2010), suggested using limited number of high-sensitivity acceleration 
for the reference signals when calculating cross-PSDs. Such multi-metric network offers 
cost-effective extraction of the system identification with increased accuracy for peak-picking 
method.  

 
3.2 Modal identification 
 
In this section, system identification of the bridge using a set of signals from the acceleration 

network is presented. In the modal analyses, peak-picking and NExT ERA methods are employed 
to find fundamental characteristics of the bridge. Used measurements are transient responses of the 
bridge after Amtrak crossed the bridge. This signal is preferred over other records, such as under 
or after a freight train, because the effect of Amtrak increasing the weight of the bridge is 
negligible due to its light weight and fast speed (over 80 km/h). Fig. 4(a) shows vertical responses 
from the West side of WSSs, which are sampled at 25 Hz. Although the vibration level of the 
measurements are small, due to light damping of the structure, the bridge experienced more than 
40 seconds of gradual decrease of the response. Fig. 4(b) shows auto spectral density calculated 
using Hanning Window with 1024 NFFT. The line with ‘+’ marker corresponds to the lateral 
vibration collected from a sensor at D-W (see Fig. 2). This SHM-H sensor shows apparently lower 
noise level within the frequency zone of interest with clear peaks at fundamental frequencies of the 
bridge. To benefit the modal analyses by reducing the total noise level in the network, auto spectral 
density of D-W sensor was used as the reference signal in the identification of the lateral mode 
shapes. 

 
 

 

(a) Time history (b)Auto spectral density. 

Fig. 4 Vertical responses measured from the West side of the truss bridge 
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Peak-picking NExT ERA 
1st lateral mode 

 
  

2nd lateral mode 

 
  

3rd  lateral mode 

 
  

1st vertical mode 

 
 

Fig. 5 Mode shape comparison, Peak-picking and ERA comparison 
 

Fig. 5 compares mode shapes from peak-picking and NExT ERA methods. In the peak-picking 
method, the peaks are manually selected from auto spectral density. For visualization purposes and 
to ease the task of picking peaks from the reference auto spectral density, signals are regulated and 
divided by the minimum noise level. As a result, they end up having the same noise level. By 
doing so, the reference signal shows the highest amplitude at the pick. Then, mode shapes are 
calculated at the selected frequencies by using the reference auto spectral density.  
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Table 1 Natural frequency comparisons; Peak-picking and NExT ERA comparison 

Candidate Modes Peak-picking  [Hz] (Error [%]†) NExT ERA  [Hz]<EMAC> 

1st lateral 1.542(0.065) 1.541<99.84> 

2nd lateral 3.014(0.660) 3.034<99.99> 

3rd lateral 3.390(0.732) 3.415<99.99> 

1st vertical 3.592(1.756) 3.530<99.92> 
†Absolute error: A (|A-B|/B), where A = Peak-picking; B = NExT ERA 

 
 
In NExT ERA method, on the other hand, the cross correlation matrix based on the selected 

reference signals is calculated. Then, the system properties are extracted by employing the 
eigenvalue problem for the system realization matrix solved through the decomposed of the 
Hankel matrix (Juang and Pappa 1986, James et al. 1993). To select only meaningful modes, those 
with high Extended Modal Amplitude Coherence (EMAC) are chosen (Pappa et al. 1993). Table 1 
summarizes differences between natural frequencies identified in two methods. Having less than 
2% differences in the results, peak-picking method can be considered as reliable and accurate as 
NExT ERA method while preserving simplicity and user-friendliness. 

 
 

4. Finite element model 
 

For several decades, FE models have been widely used for simulating and assessing the 
structural behavior under arbitrary structural conditions. To build a model with such capability, a 
preliminary analytical FE model is developed in Matlab® using the shop drawings from CN’s 
construction records. The model contains 345 nodes and 724 elements. The boundary conditions at 
the North and South bearing supports are pin and expandable, respectively. Nodes are frame 
connected, which can transfer rotational moments to adjacent elements. The initial FE model 
developed based on the drawing is shown in Fig. 6. Table 2 summarizes first four modes identified 
using this model.  

 

 

Fig. 6 The bridge model 
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Fig. 12 Member strain comparison with field measured data and static estimation 
 
 
Static analysis is used to estimate the strain from the FE model, observing that the dynamic 

component in the measured data is not significant. In the analysis, the location of the train is 
determined at each time step. For example, the first time step assumes that the head of train is at 
the South entrance of the bridge. Then, the wheel loads are distributed at the nodal points of the 
bridge model as a series of point loads. After obtaining the member strain at the time step, train 
location is re-determined assuming the train headed the North with small amount. This sequence is 
iterated until the train fully exits the North end of the bridge. Fig. 12 shows the comparison of 
static estimation and field measurements. Overall, 200 iterative time steps were used in the 
analysis. The obtained strain well captures the maximum compression and tension that the member 
actually experienced. For practical purposes, obtaining those maximum values are usually the ones 
of most concern, exerting that the proposed approach is adequate. Subsequently, one can conclude 
that this approach has potentials to be expanded for estimating bridge responses under arbitrary 
revenue train with given wheel loads. However, due to dynamic interactions between the vehicle, 
track, and the bridge, some discrepancies between the estimated strain and measured strain are 
observed around 4 seconds. Thus, a further evolution of the model to include dynamic analyses of 
the model needs to be performed. 

 
 

6. Conclusions 
 
This paper demonstrated an approach to system identification and dynamic testing with the 

goal of understanding the in-service response of railroad bridges. High fidelity data has been 
obtained from a structural health monitoring (SHM) system using wireless smart sensors (WSSs). 
The final deployment of the system has considered obtaining asymmetric responses and reducing 
physical aliasing, while retaining cost-effectiveness. Then, a finite element model has been 
developed based on the shop drawings. Because the initial model did not well represent the bridge, 
selected parameters are updated. The final model was validated using both global and local 
responses of the field-measured data; acceleration responses of the bridge validated the global 
features of the bridge and a member strain demonstrated that the model could well capture the 
local responses of the bridge. The static analysis proposed in this paper indicated that the approach 
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could well capture the maximum compression and tension of the selected member, while dynamic 
approach is still required if reconstructing accurate strain history is of concern. Nonetheless, with 
this accurately calibrate model and static analysis, a sufficient level of assessment about the bridge 
can be made. For example, arbitrary wheel loads and train topologies can be determined from the 
model simulation and allowable member strain. This result showed the potential of turning a 
model from explanatory in nature to having powerful predictive capabilities that can help 
assessing the state of the railroad bridge. 
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