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Abstract.   An optimal sensor placement (OSP) method based on structural subsection technique (SST) and 
model reduction technique was proposed for modal identification of truss structures, which was conducted 
using genetic algorithm (GA). The constraints of GA variables were determined by SST in advance. 
Subsequently, according to model reduction technique, the optimal group of master degrees of freedom and 
the optimal objective function value were obtained using GA in a case of the given number of sensors. 
Correspondingly, the optimal number of sensors was determined according to optimal objective function 
values in cases of the different number of sensors. The proposed method was applied on a scaled jacket 
offshore platform to get its optimal number of sensors and the corresponding optimal sensor layout. Then 
modal kinetic energy and modal assurance criterion were adopted to evaluate vibration energy and mode 
independence property. The experiment was also conducted to verify the effectiveness of the selected 
optimal sensor layout. The results showed that experimental modes agreed reasonably well with numerical 
results. Moreover the influence of the proposed method using different optimal algorithms and model 
reduction technique on optimal results was also compared. The results showed that the influence was very 
little. 
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1. Introduction 
 

The problem of parameter identification of structural models using measured dynamic data has 
received much attention over the years because of its importance in structural model updating, 
structural health monitoring (SHM) and structural control. The quality of information that can be 
extracted from the data for estimating the model parameters depends on the number and locations 
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of sensors in the structure (Papadimitriou 2004). However, plenty of sensors would result in high 
cost of data acquisition systems (sensors and supporting instruments) and workload. Meanwhile, 
accessibility limitations constrain wide distribution of sensors in many cases. On the other hand, 
structural responses measured at specified sensor positions determine the accuracy of modal 
parameter identification and are crucial in the consequent model updating and damage 
quantification. Therefore, how to optimally determine the number of sensors and deploy them so 
that the response data acquired from those locations will result in the best identification of 
structural characteristics are challenging tasks (Yi et al. 2011). 

Normally, for structures with simple geometry, optimal sensor placement (OSP) was conducted 
according to experiences of civil engineers. However, for a large scale complicated structure, 
reliable and efficient methods are needed. Numerous approaches have been widely reported over 
the years for structural modal identification. Salama et al. (1987) improved the traditional method 
using engineers’ experiences and proposed modal kinetic energy (MKE) to select locations with 
high MKE. Based on MKE, average MKE (AMKE) and weighted AMKE (WAMKE) were 
presented (Larson et al. 1994, Chung and Moore 1993). Similar to MKE, the driving point residue 
(DPR), average DPR (ADPR) and weighted ADPR were also developed (Chung and Moore 1993). 
Meanwhile, some OSP criterions considering independence of target mode shapes were presented. 
The effectiveness independence (EFI) method developed by Kammer (1991) was commonly cited. 
The goal of the method is to select a sensor configuration which can maximize the trace and 
determinant and minimize the condition number of the Fisher information matrix corresponding to 
the target modal partitions. EFI-DPR (Imamovic 1998) is a compromise between the EFI and 
energy approach. Stephan (2012) added a second optimization criterion to EFI and determined an 
optimal set of sensors by maximizing the norm of a Fisher information matrix and avoiding the 
redundancy of information between the selected degrees of freedom. Hanis and Hromcik (2012) 
improved EFI method by modifying criterion to meet two requirements: maximize useful 
information and minimize spillover of unwanted higher modes simultaneously. The information 
entropy norm was also used, which was to minimize the uncertainty in the model parameter 
estimates (Papadimitriou et al. 2000). Subsequently, many improvements were proposed 
(Papadimitriou 2004, Papadimitriou 2005, Papadimitriou and Lombaert 2012). Ye and Ni (2012) 
presented an OSP method based on information entropy for the purposed of damage detection. The 
results show that the optimal sensor layout displays a good performance on damage identification. 
To guarantee the measured modal vectors are orthogonal, modal assurance criterion (MAC) (Carne 
and Dohmann 1995) was also used which is an ideal scalar constant relating the causal relationship 
between two modal vectors. For large scale Canton Tower, OSP based on generalized genetic 
algorithm was carried out after the model reduced by model reduction technique and the 
companions between different reduction methods were conducted (Yi et al. 2012). Then 
multi-dimensional OSP method (Yi et al. 2013) was also proposed for the Canton Tower. Guyan 
reduction (Guyan 1965), which is used to reduce the number of degrees of freedom originally, has 
been also applied for OSP (Penny et al. 1994). Kammer and Peck (2008) investigated an iterative 
Guyan expansion method for OSP and compared it with Guyan reduction method. Variance 
method was presented and compared with other five OSP methods in modal identification of a 
bridge (Meo and Zumpano 2005). Unique characteristic of variance method is that it can be used 
to determine optimal number of sensors. Cobb and Liebst (1997) introduced an OSP method for 
the purpose of identifying damaged elements.  

Meanwhile, many new algorithms and improved optimal algorithms were presented for 
improving OSP computational efficiency. Yi et al. (2012) determined the optimum design of 
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sensor arrays for parameter identification of Canton Tower by asynchronous-climb monkey 
algorithm (AMA). Li et al. (2004) developed an efficient method using the uniform design method 
for OSP which resulted in the reduction of workload above 90%. An improved simulated 
annealing algorithm was proposed by Tong et al. (2014). Besides, some improved genetic 
algorithms (GA) were also proposed to improve the convergence speed (Yao et al. 1993, Guo et al. 
2004, Liu et al. 2008, Kang et al.2008).  

Vibration modes of large scale truss structures are very complicated, such as the jacket offshore 
platform, the signal tower, Beijing National Stadium and so on. In amount number of degrees of 
freedom, how to select some degrees of freedom which can reflect structural entirety vibration 
characteristics and have high signal to noise ratio (SNR) is very important. In addition, for the 
complicated truss structures, it is difficult to determine reasonable number of sensors only 
according to engineers’ experience.     

Therefore, for truss structures, an OSP strategy is presented. The rest of the paper is organized 
as follows: section 2 describes the proposed OSP strategy in detail, and also presents the procedure 
of the proposed method. In Section 3, simulation on a scaled jacket offshore platform is conducted 
to obtain the number of sensors and the corresponding sensor layout. In Section 4, experiment is 
conducted to verify the effectiveness of the obtained sensor layout in parameter identification. In 
section 5, the influence of the proposed method using different optimal algorithms and model 
reduction technique on optimal results is evaluated and compared. In section 6, conclusions are 
drawn. 

 
 

2. Description of the proposed OSP strategy 
 

The proposed OSP strategy includes two parts: the OSP method and the optimal number of 
sensors determination approach with their detail descriptions in section 2.1 and 2.2 respectively. 
Subsequently, the procedure of the proposed OSP strategy will be introduced in section 2.3.  

 
2.1 The OSP method 
 
For engineering structures, a sensor layout should meet many requests in actual measurements 

to provide the best performance of the structures, such as high SNR of measuring points, integrity 
and independence property of tested modes and so on. An OSP method based on model reduction 
technique and structure subsection technique (SST) was proposed. GA was selected to conduct the 
proposed OSP method, with degrees of freedom set as variables. 

In the OSP process, the determination of optimal objective function and the constraint 
conditions for variables are two critical factors, which have a great influence on the performance 
of the selected sensor layout. According to the proposed method, the two factors would be 
processed as follow.   

(1) Optimal objective function determination 
The purpose of model reduction technique, as originally conceived, was to reduce number of 

degrees of freedom in a large finite element model to make the solution of the resulting eigenvalue 
problem more manageable. This leads to degrees of freedom divided into two categories including 
master degrees of freedom (to be maintained) and slave degrees of freedom (to be removed). 
Accuracy of model reduction technique is determined by both the number and the locations of 
master degrees of freedom. So the question arises as to how the number and locations of master 
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degrees of freedom are to be determined. According to experience and analysis, some basic 
principles for the selection of master degrees of freedom are presented, such as, 

1. Number of master degrees of freedom is at least twice of interested modes.   
2. Direction of structural vibrations should be set as master degree of freedom.  
3. Locations with large mass and small stiffness should be selected as master degrees of 

freedom and so on.  
It is seen that the reasonable master degrees of freedom are able to reflect structural entirety 

vibration characteristics and have high kinetic energy. In many respects, the criterion for choosing 
locations of sensors in a large scale structure is the same with qualities of master degrees of 
freedom. Therefore, OSP process can be treated as the process of selecting of an optimal group of 
master degrees of freedom for model reduction technique. By setting the optimal group of master 
degrees of freedom as locations of sensors, the obtained sensor layout can display good 
characteristics that master degrees of freedom have, such as high SNR, the ability of representing 
structural entirety vibration characteristics and so on. 

In order to evaluate the effectiveness of the selected master degrees of freedom, the difference 
between natural frequency f and standard natural frequency F is set as optimal objective function 
for GA, shown in Eq. (1).  

 t tObjV f F   (1) 

where, ft is the t-th natural frequency obtained by modal analysis according to the reduced mass 
and stiffness. Ft is the t-th natural frequency by modal analysis according to the original mass and 
stiffness. 

After calculation, an optimal group of master degrees of freedom, which makes objective 
function value smallest, can be determined by GA. The selected master degrees of freedom could 
be set as locations of sensors. 

(2) Determination of constraint conditions for variables 
 
For truss structures, when there are no constraint conditions for candidate degree of freedom 

variable, the optimal sensor layout got by optimization calculation may focus on some local 
substructures, resulting in damage in other substructures not identified. To provide constraint 
conditions for the candidate degree of freedom variable, SST was proposed to guarantee the 
rationality of the distribution of sensors, with detailed description as follow:  

According to vibration characteristics of target modes and given number of sensors N, the 
structure is divided into N subsections with no overlaps between each other to make the 
distribution of sensors uniform and reasonable. By setting the number of subsections as the 
number of variables, the range of each variable is in its corresponding subsection, avoiding placing 
two or more sensors at the same candidate location.  

Normally, for different truss structures, the division method of SST would be a few different. 
For a jacket offshore platform model, the division method would be described in section 3.2.   

   
2.2 The optimal number of sensors determination 
 
In modal analysis based on model reduction technique, as the number of master degrees of 

freedom increases and the locations of master degrees of freedom become more reasonable, the 
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optimal objective function value would become smaller. When the number of master degrees of 
freedom reaches to a certain number NONS, the optimal objective function value would decrease a 
little as the number increases. It implies NONS master degrees of freedom have enough ability to 
represent the structural entirety vibration characteristics. And there is little improvement in 
description of structural entirety vibration characteristics as the number increases. 

Therefore, the optimal number of master degrees of freedom or sensors could be determined 
according to the trend of the optimal objective function value curve, which is obtained by 
conducting OSP calculations at different number of sensors. Normally, NONS is a number in a little 
range, in which the optimal objective function value tends to converge. 

 
2.3 The procedure of the proposed OSP strategy 
 
The procedure of the proposed OSP strategy is shown in Fig. 1, including two parts. The first 

part is the OSP calculation in case of given number, as shown in pink region. Second part is the 
optimal number of sensors calculation. The detailed descriptions are as follow. 
 

Dividing structure

Modal analysis based on 
reduction technique

Fitness calculation

Selection

Crossover

Mutation

New population

Satisfy termination 
Optimal objective function 

value ObjVN

Corresponding sensor layout

End

YN

Start

Gene=0

Variables explanation
Number of sensors N
Initial number of sensors No
Maximal number of sensors Nmax
Increment NUM
Generation Gene

OSP calculation

N=No+NUM

Initial population

Start

N> NmaxN

Y

N-ObjVN curve

End

Set No=N

Natural frequency f

Gene=Gene+1

 

Fig. 1 The procedure of the proposed OSP strategy 
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2.3.1 OSP calculation 
Firstly, when the number of sensors is N, the truss structure is divided into N subsections 

according to vibration characteristics. Then the OSP calculation is conducted as follow: 

 
 
In step 2, N degrees of freedom generated in step 1 are set as master degrees of freedom. 

According to the selected master degrees of freedom, model reduction technique is conducted to 
get the reduced mass and stiffness. Then, by modal analysis using the reduced mass and stiffness, 
the natural frequency f could be obtained for objective function calculation. In the step, many 
model reduction techniques developed can be adopted, such as Guyan reduction method (Guyan 
1965), Improved Reduced System (IRS) (O’Callahan 1989), Iterated Improved Reduced System 
(IIRS) (Friswell et al. 1995), and Kuhar reduced method (Kuhar and Stahle 1974) and so on. 
Influences of the proposed OSP strategy using different model reduction techniques on optimal 
results will be discussed in section. 5. 

After the optimization calculation at the given number of sensors N, the optimal objective 
function value ObjVN and corresponding optimal sensor layout would be output. 

 
2.3.2 Optimal number of sensors calculation 
By setting number of sensors N as variable, the optimal objective function values at different 

numbers of sensors can be obtained. Subsequently, the optimal number of sensors could be 
determined according to the characteristic of convergence of the optimal objective function value 
curve. 

 
 

3. Case study 
 
A scaled jacket offshore platform was adopted to evaluate the effectiveness of the proposed 

OSP strategy. Firstly, the optimal number of sensors and corresponding optimal sensor layout of 
the scaled model were obtained by the proposed strategy. Secondly, MKE and maximal 
non-diagonal element of MAC matrix were used to evaluate SNR and mode independence 
properties of the optimal sensor layout. 

In the case study, the proposed method including SST, Guyan reduction and SGA was applied 
on the scaled model (called SGA method), with Guyan reduction and SGA conducting modal 
analysis and optimization calculation respectively. 

Guyan reduction technique is expressed as follow 

Step 1: Generate initial population. Each individual has N degrees of freedom.   

  Step 2: Conduct modal analysis based on model reduction technique.   

Step 3: Calculate objective function. 

Step 4: Generate new population by selection, crossover and mutation. 

Step 5: Repeat step 2 to 4 until satisfy the termination, and output the optimal objective function 
value ObjVN and the corresponding optimal sensor layout.
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(2) 

where Фm is the modes of the master degrees of freedom; Kmm, Mmm are the stiffness and mass 
matrix of master degrees of freedom respectively; Фs is the mode of the slave degrees of freedom; 
Kss, Mss are the stiffness and mass matrix of slave degrees of freedom respectively, Mss≈0. 
Neglecting the inertia terms for the second set of equations gives 

 0
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K K     (3) 

which is used to eliminate the slave degrees of freedom so that  
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              

(4) 

where Ts is the transform matrix. The reduced mass and stiffness matrices are then given by  

      T
r s sM T MT      T

r s sK T KT     (5) 

where Mr and Kr are the reduced mass and stiffness matrices. Then the natural frequency f is 
obtained by modal analysis using the reduced mass and stiffness. 
 

3.1 The scaled jacket offshore platform model 
 
Fig. 2 shows the finite element model of the scaled jacket offshore platform with 12 diagonal 

bracings, 12 horizontal bracings, 4 vertical bracings, a deck plat and 4 bottom supports. The model 
is 1.56 m height, with diagonal bracings and horizontal bracings made of 25×25×3 mm angle iron 
and vertical bracings made of 40×40×4 mm angle iron. Dimensions of deck plate and bottom 
supports are 0.5×0.5×0.008 m and 0.25×0.25×0.014 m respectively. The whole model is made of 
stainless steel with Young’s modulus of 195 GPa, Poisson ratio of 0.30, and density of 7850 kg/m3. 
It is fixed on the ground by 4 bottom supports. The initial population size NIND is 20 and the 
maximum number of generations Gene is 30. The gap GAAP is set as 0.85, which represents the 
overlap degree between the parent generation and the offspring generation. 

 

Fig. 2 Finite element model of the scaled jacket offshore platform 
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Table 1 First five modes 

 
 

Table 1 is frequencies and mode shapes of the first five modes obtained from FEM analysis. It 
is seen that the 1st, 2nd, 3rd and 5th modes are global vibrations, and the 4th mode is local vibration. 
Only global vibration characteristics are chosen as the target modes to be identified. For the large 
scale jacket offshore platforms, damages on vertical bracings have greater influence on the whole 
property of the structure than damages on diagonal and horizontal bracings. Therefore only the 1st, 
2nd, 3rd and 5th modes are selected. 

 
3.2 Application of the proposed OSP strategy on the scaled platform  
 
To identify global vibration modes of the scaled model, sensors would be placed on vertical 

bracings, which are usually set as major monitoring objects. SST is applied as follow: 
1. In order to guarantee integrity of target modes, the number of sensors N was set as S times as 

number of vertical bracings M, where S was an integer larger than 1.  
2. Every vertical bracing was divided into S subsections equally along axial direction. In each 

subsections, only one sensor was placed.  
3. The number of variables is equal to the number of subsections (N). Degrees of freedom in 

the i-th subsection are set as the search space of the i-th variable (1≤i≤N). 
Therefore, the number of sensors on each bracing was same and the distribution of sensors on 

each bracing was from bottom to top, guaranteeing the rationality of the distribution to some 
extent. Parameters of the method for the scaled jacket offshore platform were set: initial number of 
sensor N0=4; increment NUM=4; maximal number of sensors NMAX=40. 

 

Order of mode Frequency（Hz） Mode shape 

1st 27.191 First bending（X -45°direction）

2nd 27.343 First bending（X +45°direction）

3rd 42.214 First torsion 

4th 74.899 Deck plate vibration 

5th 109.80 Bracings vibration 

Fig. 3 Number of sensors - Optimal ObjV value curve 
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Optimal ObjV values at different number of sensors were obtained as shown in Fig. 3. It is seen 

that when number of sensors N is around 20, optimal ObjV value curve tends to converge.  
When number of sensors is 20, 24 and 28, the optimal sensor layouts are shown in Fig. 4. From 

Fig. 4(a), it is seen that the distribution of 20 sensors covers whole vertical bracings with all 16 
bolted connections captured, which is good for obtaining integrity vibration modes and identifying 
damage like looseness of bolt. Meanwhile, from Figs. 4(b)-4(c), it is observed that the distributions 
of 24 and 28 sensors also reasonably cover whole vertical bracings with 8 and 16 bolted 
connections captured respectively.  

 
3.3 Evaluations of the obtained optimal sensor layout 
 
Two parameters EN and MACmax were used to evaluate vibration energy and mode 

independence property of N sensors, with results shown as Figs. 5(a) and 5(b) respectively. 
EN is MKE sum of N selected sensors as expressed in Eq. (6).  

 1 1 1 1

( )
N T N T

N it it ij jt
i t i t j

E E M
   

     
 

(6) 

where Eit is MKE of the i-th sensor in the t-th mode, Φit is the i-th sensor corresponding coefficient 
in the t-th mode, Φjt is the j-th coefficient in the t-th mode, Mij is the term in the i-th sensor 
corresponding row and j-th column of the finite element model mass matrix, T=1, 2, 3, 5, N is the 
given number of sensors, from 4 to 40. 

In order to compare average energy of N sensors with average energy of all nodes on 4 vertical 
bracings, ENT is given as 

 
1 1

( / ) (( ) / )
Total T

NT Ave Total it
i t

E N E N E Total N E Total
 

        (7) 

 
(a) Number of sensors is 20 (b) Number of sensors is 24 (c) Number of sensors is 28 

Fig. 4 Optimal sensor layout of SGA method 
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where Total is the number of nodes on 4 bracings; ETotal is MKE sum of Total nodes; EAve is the 
average MKE of all nodes on vertical bracings.   

MACmax is maximal non-diagonal element of MAC matrix (Eq. (8)). 

 

 
   

T

i j

ij
T T

i i j j

MAC
 


    

 

(8) 

where Φi and Φj are the i-th and j-th modal vector of N sensors respectively.  
From Fig. 5(a), it is seen that EN is always higher than ENT at different given number of sensors 

N, verifying sensors obtained by the proposed method have relatively high vibration energy and 
SNR. From Fig. 5(b), it can be observed that MACmax at different optimal number of sensors is 
around 0.04, satisfying request.  

From the distributions of sensors and evaluation results, when N=20, 24 and 28, the 
corresponding optimal sensor layouts got by the proposed OSP method can obtain relatively 
complete and independent modes and also guarantee high SNR of sensors. The optimal number of 
sensors can be determined as 20. 

 
 

4. Experiments and results 
 
4.1 Experimental set-up and instruments 
 
Experimental set-up and instruments are shown in Figs. 6 and 7 respectively. CA-YD-103 

accelerometer was used to measure acceleration time history and the impulse was applied using a 
force hammer. Both response and excitation signals were collected and analyzed by DASP 
software to get mode parameters. Sensors were placed according to the optimal sensor layout when 
N=20. 

 
 

 

(a) EN results (b) MACmax results 

Fig. 5 Evaluations of proposed method
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4.2 Experimental results 
 
Frequencies of the 1st, 2nd and 4th modes are presented in Table 2 along with the results of the 

finite element analysis. It is seen that both frequencies of simulation and experiment agree 
reasonably well. MAC matrix of tested modes is shown in Table 3. It is observed that the MACMAX 
is 0.056, satisfying request well. 

In order to evaluate the accuracy of the obtained experimental mode parameters, the 
comparison parameter CPij was defined, 

 /ij ij ijCP     (9) 

 
 

Fig. 6 Experimental setup 

(a) Charge amplifier (b) Signal acquisition interface 

Fig. 7 Experimental instruments 
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Table 2 Frequency results 

 
 
Table 3 MAC matrix 

 
 
 
where φij is i-th coefficient in the j-th tested mode, Φij is numerical mode parameter  
corresponding to φij. The average comparison value of j-th mode, ACPj was expressed 

     /
N

j ij
i

ACP CP N


   
 


1

 (10) 

where N is number of sensors. Modified experimental result, Φij
’ 

 '
ij ij jACP    (11) 

 

 

Order of mode Experiment (Hz) Simulation (Hz) Error Mode shape 

1st 26.087 27.191 4.06% First bending（X -45°direction）

2nd 27.051 27.343 1.07% First bending（X +45°direction）

4th 41.512 42.214 1.66% First torsion 

MACij 1st 2nd 4th 

1st 1 0.037 0.056 

2nd 0.037 1 0.055 

4th 0.056 0.055 1 

Fig. 8 Average differential values between simulation and experiment 
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Then, the average difference ratio of j-th mode (Eq. 12) was obtained with results shown in Fig. 
8. From Fig. 8, it is seen average difference ratios of all three modes are around 0.1. Although 
some errors exist, mode shapes between experiment and simulation agree reasonably well. 

 
'( ( ) / ) /

N

j ij ij ij
i

ADV N


   
1

                                (12) 

 
 
5. Discussions 

 
In section 3 and 4, the effectiveness of the proposed strategy based on SST, Guyan reduction 

and SGA was verified. In this section, different algorithms and model reduction techniques were 
adopted to investigate their influences on optimal results.  

In 1990s, Penny (1994) presented an iterative OSP method based on Guyan reduction with the 
procedure as follows,  

(1) Calculate stiffness (Kii) mass (Mii) ratio of i-th degree of freedom, Kii/Mii.   
(2) Delete the degree of freedom with biggest ratio value. 
(3) Recalculate stiffness matrix K and mass matrix M. 
(4) Jump to step1 until reach the given number of sensors. 
In order to compare the effectiveness of the iterative reduction approach with GA, the iterative 

OSP method proposed by Penny was applied in OSP of the scaled model. Meanwhile, the niched 
genetic algorithm (NGA) was also used, which displays a better performance than SGA. 

Moreover, besides Guyan static reduction technique, there are some dynamic reduction 
techniques including IRS and IIRS, which are more accurate than Guyan reduction. In order to 
compare with the effectiveness of Guyan reduction in OSP, IRS was also selected to conduct OSP 
of the scaled model with its transform matrix shown in Eq. (13). 

     1

IRS s s r s
T T SMT M K   (13) 

where matrix S is expressed in Eq. (14). 

 
1

0 0

0
ss

S
K 

 
  
 

 (14) 

As a whole, there are total 4 different methods, including Penny’s iterative method (called 
Iterative method), the proposed method including SST, Guyan reduction and SGA (called SGA 
method), the proposed method including SST, Guyan reduction and NGA (called NGA method), 
the proposed method including SST, IRS and SGA (called IRS method).    

Optimal ObjV value curves of the 4 methods are shown in Fig. 9. The right Y axis is for IRS 
method and the left one is for the other 3 methods. From Fig. 9, it is seen that optimal ObjV values 
of IRS method are much smaller than the other 3 methods using Guyan reduction, proving that 
modal analysis based on IRS is more accurate than Guyan reduction. It is in accordance with 
reference (Friswell et al. 1995). 

Trends of the optimal ObjV curves of the 3 methods using Guyan reduction (Iterative method, 
SGA method and NGA method) agree reasonably well. The optimal numbers of sensors 
determined by both SGA and NGA are same around 20 (as red circle shown), and the optimal 
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number of sensors got by Iterative method is around 32 (as purple circle). However, the 
characteristic of convergence of IRS method is worse than the other 3 methods. According to the 
trend of optimal ObjV value curve of IRS method, NONS can be set as 28. 

When N=20, 24 and 28, optimal sensor layouts of Iterative method, NGA method and IRS 
method are shown in Figs. 10-12, with optimal results of SGA method shown in Fig. 4. 

From Fig. 10, it is observed that the distributions of sensors of Iterative method are 
unreasonable and some sensors are close with each other (as red circles shown). It is because SST 
is not adopted in the iterative process. Besides, Iterative method is based on the iterative reduction 
approach, in which the adjacent iterative steps are greatly dependent on each other, resulting in 
difficulty of obtaining global optimum results. 

 
 

 
 

 
 

Fig. 9 Number of sensors - Optimal ObjV value curves of 4 methods 

 
(a) Number of sensors is 20 (b) Number of sensors is 24 (c) Number of sensors is 28 

Fig. 10 Optimal sensor layouts of Iterative method 
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The optimal sensor layouts of the other 3 methods using SST are more reasonable than Iterative 
method. From Figs. 4, 11 and 12, it is seen that the distributions of sensors could cover whole 
vertical bracings (except Fig. 12(a)) with bolted connections well captured. 

In order to investigate the influence of the proposed method using different model reduction 
techniques on optimal results, comparisons of optimal sensor layouts obtained by SGA method and 
IRS method were conducted. From Figs. 4 and 12, it is observed that the distributions of sensors 
got by SGA method are as good as IRS. When N=28, it is seen that the distributions of sensors of 
both methods are exactly same (as shown in Figs. 4(c) and 12(c)). It shows that the proposed 
method using different model reduction techniques has little influence on the optimal sensor 
layouts. 

 
 

 

 

(a) Number of sensors is 20 (b) Number of sensors is 24 (c) Number of sensors is 28 

Fig. 11 Optimal sensor layouts of NGA method 

 
(a) Number of sensors is 20 (b) Number of sensors is 24 (c) Number of sensors is 28 

Fig. 12 Optimal sensor layouts of IRS method 
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In order to investigate the influence of the proposed method using different optimal algorithms 
on optimal results, comparisons of optimal results got by SGA method and NGA method were 
conducted. When N=24, the optimal ObjV value curves of both methods are shown in Fig. 13. 
From Fig. 13, it is observed that optimal ObjV value using NGA quickly tends to a constant and 
the average optimal ObjV values of NGA method is steadier than SGA method, proving NGA 
method shows a better characteristic of convergence. From Figs. 4 and 11, it is seen that sensor 
layouts of both method could cover whole structures and distributions of sensors are all reasonable 
and acceptable. When N=20, 24 and 28, there are 12, 12 and 20 locations of sensors obtained by 
SGA method same with NGA method’s results. It demonstrates the influence of the proposed 
method using different optimal algorithms on optimal results is very little. 

 
 

 
 

Fig. 13 Optimal function value curves of SGA method and NGA method 

(a) EN results (b) MACmax results 

Fig. 14 Evaluations of the 4 methods
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In order to evaluate the 4 methods quantitatively, the parameters EN and MACmax were adopted 
with results shown in Fig. 14. From Fig. 14(a), it is observed that the average vibration energy of 
sensors obtained by the 4 methods is higher than the average energy of all nodes on vertical 
bracings, demonstrating that the proposed method using model reduction technique can guarantee 
high vibration energy of selected locations, which is good for improving SNR.  

From Fig. 14(b), at different number of sensors, mode independence property got by SGA 
method, NGA method and IRS method constantly satisfies request well. However, optimal sensor 
layouts obtained by Iterative method shows relatively bad independence property at some cases, 
for example when N=12, N=24, demonstrating SST plays an important roles in controlling the 
distribution of sensors. 

 
 

6. Conclusions 
 

For large scale truss structures, an OSP method using SST, model reduction technique and GA 
was proposed. According to the optimal ObjV value curve, an optimal number of sensors 
determination approach was also presented. Simulation was conducted on a scaled jacket offshore 
platform to obtain the optimal number of sensors and corresponding sensor layout by the proposed 
OSP strategy. Subsequently, the experiment was carried out to verify the effectiveness of the 
optimal sensor layout. Moreover, the influence of the proposed method using different optimal 
algorithms and reduction techniques on optimal results was discussed. Some conclusions are 
summarized as follows:  

   For large scale truss structures, an OSP method was proposed. Sensor layout obtained by 
the proposed method has high SNR and maintains good independence between tested modes. 
   The method to determine the number of sensors was also proposed for truss structures. The 
effectiveness of the proposed method has been verified according to the results. 
   By comparing Iterative method and the proposed method, it is seen that SST plays an 
important role in guaranteeing the rationality of the distribution of sensor layout. 
   For the scaled jacket offshore platform, it is observed that the influence of the proposed 
method using different optimal algorithms and model reduction techniques on optimal results 
is little. 
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