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Abstract.  Extended Kalman Filter (EKF) has been widely used for structural identification and damage 
detection. However, conventional EKF approaches require that external excitations are measured. Also, in 
the conventional EKF, unknown structural parameters are included as an augmented vector in forming the 
extended state vector. Hence the sizes of extended state vector and state equation are quite large, which 
suffers from not only large computational effort but also convergence problem for the identification of a 
large number of unknown parameters. Moreover, such approaches are not suitable for intelligent structural 
damage detection due to the limited computational power and storage capacities of smart sensors. In this 
paper, a two-stage and two-step algorithm is proposed for the identification of structural damage as well as 
unknown external excitations. In stage-one, structural state vector and unknown structural parameters are 
recursively estimated in a two-step Kalman estimator approach. Then, the unknown external excitations are 
estimated sequentially by least-squares estimation in stage-two. Therefore, the number of unknown variables 
to be estimated in each step is reduced and the identification of structural system and unknown excitation are 
conducted sequentially, which simplify the identification problem and reduces computational efforts 
significantly. Both numerical simulation examples and lab experimental tests are used to validate the 
proposed algorithm for the identification of structural damage as well as unknown excitations for structural 
health monitoring. 
 

Keywords:  Extended Kalman filter; two-stage; two-step; system identification; structural damage 

detection; unknown excitation; least- squares estimation 

 
 
1. Introduction 
 

In the past decades, numerous structural damage detection techniques have been proposed 

(Sohn et al. 2003, Wu et al. 2003, Feng 2009, Ou and Li 2010, Fan and Qiao 2011). Among them, 

techniques based on structural identification (SI) are useful as it is straightforward to identify 

structural damage by tracking the changes in the identified structural dynamic parameters (Ren et 

al. 2011, Li et al. 2011, Kim and Lynch 2012, Sirca and Adeli 2012). However, as an inverse 

problem, structural damage detection by conventional SI approaches is still a challenging task, e.g., 

it is desired to explore efficient algorithms for structural damage detection with partial 
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measurements of structural responses(Yi et al. 2011, Lei et al. 2013, Kim et al. 2013). 

On the other hand, intelligent structural damage detection based on smart sensor technology has 

received great attention in the last decade (Spencer et al. 2004, Lynch 2007, Yun and Min 2010). 

The intelligence of a smart sensor comes from the on-board microprocessor embedded with 

algorithms for self-signal processing, self-identification and self-diagnostics (Spencer et al. 2004, 

Sim et al. 2010, Yun et al. 2011) Therefore, it is necessary to investigate efficient algorithms for 

structural identification and damage detection which requires less computational effort and storage 

(Yun et al. 2011, Hsu et al. 2011, Park et al. 2013). 

Extended Kalman filter (EKF) has shown its feasibility in structural identification with partial 

measurements of structural responses (Hoshiya and Sutoh 1993, Yang et al. 2006, Lei et al. 2012, 

Xu et al. 2012, Yuen et al. 2013). However, conventional EKF based approaches require that all 

excitation inputs are measured, which limits their utilizations in practice as it may be difficult or 

even impossible to measure all structural external excitations under actual operating conditions. In 

structural health monitoring (SHM), the knowledge of external excitation is important. Therefore, 

it is necessary to investigate algorithms for the identification of structures as well as the unknown 

external excitations. Yang et al. (2007) proposed an extended Kalman filter with unknown 

excitation inputs (EKF-UI), Lu and Law (2007) presented a method based on sensitivity of 

structural responses for identifying both the structural parameters and the excitations of a structure, 

Zhang et al. (2012) presented a method for simultaneous identification of excitations and structural 

damages, and Xu et al. (2012) studied structural parameters and dynamic loading identification 

form incomplete measurements. In these approaches, structural parameters and unknown 

excitations are identified simultaneously, which are quite cumbersome with much computation 

effort for accurate identification results. 

Moreover, the extended state vector of a conventional EKF contains both the structural state 

vector of displacement and velocity responses and the unknown structural parametric vector, 

which results in large sizes of the extended state vector and the corresponding state equation 

(Hoshiya and Sutoh 1993). Since the state equation and the observation equation are highly 

non-linear with respect to the extended state vector, care should be taken for an EKF approach. 

Some approaches for the identification of structural state vector and unknown parameters in 

two-step have been presented to guarantee the stability and convergence of the numerical solution 

(Yang et al. 2006, 2007). Also, substructure approaches have been proposed to improve the 

convergence of the structural parameters and reduce the computation effort (Koh et al. 1991). It 

has been shown that for an extended state vector with the order of 2n+m (n: number of structural 

DOFs, m: number of unknown structural parameters), the computational effort of the EKF is on 

the order of (2n+m)
3
 (Liu et al. 2009). Therefore, conventional EKF approaches requirement of 

large computation effort and storage, which are not suitable for intelligent structural identification 

and damage detection due to the limited computational power and storage capacities of the 

micro-processor in a smart sensor. So far, some researchers have investigated algorithms to 

improve the performances of conventional EKF approaches (Wu et al. 2002, Lee and Yun 2008, 

Liu et al. 2009), especially Yang et al. (2006) and Huang et al. (2010) proposed the quadratic 

sum-squares error with unknown inputs (QSSE-UI) to identify structural parameters as well as 

unknown excitations in a two-step approach to reduce the computational efforts. Also, some 

researchers presented approaches of using derivative-free filtering procedures, like the unscented 

or particle ones (Julier et al. 2000, Wan and Van der Merwe 2001, Mariani and Ghisi 2007, Azam 

and Mariani 2012). 

In this paper, a two-stage and two-step approach is proposed to remove the drawbacks of 
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conventional EKF algorithms for the identification of structural damage as well as the unknown 

external excitations of a structure. In stage-one, structural state vector and unknown structural 

parameters are recursively estimated separately in a two-step Kalman estimator approach. In the 

first step, state vector is considered as an implicit function of the structural parameters (Huang et 

al. 2010, Yi et al. 2013), and the parametric vector is estimated directly by the Kalman estimator. 

In the second step, state vector of the structure is updated by the Kalman estimator. After the 

updated information of state vector and structural parameters, the unknown excitations are 

recursively estimated by least-squares estimation in stage-two. To test the effectiveness of the 

proposed algorithm, several numerical simulation examples and lab experimental tests are used. 

The paper is organized as follows: Section 2 presents the proposed algorithm of two-stage and 

two-step Kalman estimator, Section 3 demonstrates the proposed algorithm by the numerical 

examples of the identification of structural damage and unknown excitations of the Phase-I 

IASC-ASCE benchmark building for SHM, a high-rise shear building, and a large size plan truss. 

Section 4 shows the experimental validations of the proposed approach by structural damage 

detection of a multi-story shear frame with joint damage under unknown ground excitation, a lab 

multi-story shear frame under unknown excitation, and a demonstration of intelligent structural 

damage detection using a smart sensor network embedded with the proposed algorithm. 

 

 

2. The proposed two-stage and two-step algorithm 

 
The equation of motion of a structure under some unknown external excitations can be written 

as 

           , , u uMx + F x x = Gf + G f                         (1) 

where x , x and x are the vectors of structural acceleration, velocity, and displacement responses, 

respectively; θ  is the vector of unknown structural parameters;  , ,F x x θ  is the vector of 

internal force;  f  and 
u

f  are the vectors of known and unknown external excitations, 

respectively; G and u
G are the influence matrices associated with f and 

u
f , respectively. In 

general, the mass of the structure can be estimated accurately, so M is assumed known in this 

paper. 

Eq. (1) can be rewritten in state equation as 

   
  , ,

  
         

  u

u u-1

x
X g X θ f f

M F x x θ Gf + G f
            (2) 

where
T T ]  T

X x   x is the state vector of the structure. 

It is assumed that a limited number of accelerometers are deployed in the structure to measure 

its acceleration responses. Therefore, the discretized observation equation can be expressed as 

    u u, , ,          u u

k k k k k k k k k k k k k

-1y Dx v DM F x x θ Bf B f v h X θ f B f v      (3)

 

in which, ky is the measured acceleration at time kt = t  with t  being the sampling time 

step, D is the matrix denotes the locations of accelerometers deployed on the structure to measure 
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its partial acceleration responses, 1B = DM G , 1u uB = DM G , and kv is the measurement noise 

vector assumed to be a Gaussian white noise vector with zero mean and a covariance matrix 

 
 

T

i j i ijδE v v = R , where 
ij

 is the Kroneker delta.  

Instead of identifying structural state vector and unknown parameters simultaneously by 

forming an extended state vector in a EKF approach, a two-stage and two-step Kalman Estimator 

approach is proposed in this paper to remove the drawbacks of previous algorithms based on EKF. 

 

2.1 Stage-one: Identification of structural system 
 

In stage-one, structural state vector and unknown structural parameters are recursively 

estimated in a two-step Kalman estimator approach. 

 

2.1.1. Step-one: estimation of the structural parameters 

From Eq. (2), state vector X is an implicit function of the structural parameters θ denoted by

( )X θ . Differentiating both sides of Eq. (2) with respect to θ , one can derive the following 

equation as 

u( )
( ( ) )

   
   


θ θ

g X θ f f
X g X X θ θ

θ
                    (4) 

where θX  denotes 




X

θ
 

Then, the recursive estimation of θX can be derived as 

( )Δ

Δ
( , ( ), )

k+1 t

k+1|k k|k-1 t|k
k t

dt    θ θ θX X g X X θ θ                   (5) 

In step-one, recursive estimation of the structural parameters is derived based on Kalman 

estimator while state vector X is considered as an implicit function of the structural parameters 

θ . Then, Eq. (3) can be expressed as follows 

   u u

k k k k k k  y = h X θ θ f B f + v                        (6) 

Let ˆ
kθ  and -1

ˆ
k|kX denote the estimated kθ and ˆ( )kX θ , respectively.    k k k kh X θ θ f  is a 

nonlinear function of unknown vector kθ  and can be linearized around ˆ
kθ  through Taylor 

expand, i.e.  

      u u u u

k k k k k k
ˆ ˆˆ   k k|k 1 k k k k k k          y h X θ θ f B f + v h X θ f H θ θ B f v     (7) 

in which, kH can be derived by the chain rule of partial differentiation with respect to kθ as 

k k k k   θ X θH H H X                             (8) 

where 
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   

ˆˆ ˆˆ ˆ

;  ;    

     

         
             

k k k

k,k|k k k|k k

θ X θ

θ θX X θ θ X X θ θ

h X θ f h X θ f X
H H X

θ X θ
  (9) 

The structural parameters are time-invariant and can be estimated by the Kalman estimator as 

  u uˆ ˆ ˆ ˆˆ , ,k+1 k k k k|k k k k k 
    
 θθ θ K y h X θ f B f                 (10) 

where uˆ
k k

f denotes the estimation of 
u

kf  and kθK is the Kalman gain matrix for the estimation of 

parameter vector   given by 

 k k|k-1 k k k|k k k



    T T

θ θ θK P H H P H R                      (11) 

The error covariance matrix k+1|kθP is recursively estimated by 

( )   k|k-1 k k k-1|k-2θ θ θP I K H P                        (12) 

 

2.1.2 Step-two: estimation of the structural state vector 
In step-two, the state vector is updated by the Kalman estimator based on the state equation of 

Eq. (2) and the observation equation of Eq. (3) as 

  u u

|
ˆ ˆˆ ˆ , ,k+1 k k+1 k k k k|k k k k k  

    
 XX X K y h X θ f B f                (13) 

where k+1|kX is the predicted state vector k+1X  which can be obtained by integration of Eq. (2) as 

 
( )

u

|
ˆ ˆˆ ˆ

k+1 t

k+1 k k|k-1 t|k k k kk t
g dt




    X X X θ f f                   (14) 

,kXK is the Kalman gain matrix for state vector X given by 

 | | 1k k k k -1 k k k k k k



        T T

X X X X X X XK Φ P H H P H R                (15) 

kX
Φ  is the state transition matrix which has the following form 

u

ˆˆ ,1

g( )
Δk

k|k k

t

 

    
    

 
X

X X θ θ

X θ f f
Φ I

X
                  (16) 

and the error covariance matrix ,k+1|kX
P is recursively estimated by 

| | 1 | 1k+1 k k k k k k k k k k k           T T

X X X X X X X XP Φ P Φ K H P Φ Q                (17) 

 

2.2 Stage-two: Identification of the unknown excitations 
 
After the recursive estimation of the state vector and structural parameters by the proposed 
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two-step Kalman estimator in stage-one, the unknown excitations can be estimated by the 

least-squares estimation in stage-two. 

Under the conditions: i) the number of output measurements is greater than that of the unknown 

excitations, and ii) measurements (sensors) are available at the DOFs where the external excitation 

vector uf acts, i.e., matrix uB  in Eq. (3) is non-zero; the unknown external excitations at time 

(k +1)t = t  can be estimated by least -squares estimation as 

              u u u u
k + 1 k + 1 | k k + 1k + 1 k + 1

ˆ ˆˆ[ ( ) ] ( ) , ,T 1 T
k + 1

 f B B B y h X θ f              (18) 

where u

k+1k+1
f̂ is the estimation of u

+1kf . 

 

 

3. Numerical example validations of the proposed algorithm 
 

To validate the effectiveness of the proposed algorithm, several numerical simulation examples 

are used in this paper.  
 

3.1 The phase I IASC–ASCE SHM benchmark building under unknown excitation  
 
A benchmark building for SHM was established by the IASC-ASCE for comparing various 

system identification and damage detection techniques (Bernal and Beck 2004, Johnson et al. 

2004). In the benchmark problem, several cases with different damage patterns are presented. The 

complex case 6 as shown in Fig. 1(a) is considered in this paper. In case 6, the three-dimension 

(3D) building model with asymmetric mass at the top floor is subjected to an external force 

applied on the diagonal of the top floor and the number of measured acceleration response is 

limited (sensors only deployed on the 2nd and 4th floors). Rayleigh damping assumption is 

employed and the damping matrix is assumed as 

                            C M + K                          (18) 

where  and  are two Rayleigh damping coefficients which depend on structural damping ratios 

and frequencies. In this benchmark building, the corresponding damping ratios are assumed as 1%.  

Since the benchmark building model is three-dimension, the structural state consists of the 

displacement and velocity response at each floor level in the x, y and rotational directions, 

respectively. The unknown structural parametric vector is 1 2 16( ), , , , , 
Tk k k  as shown in 

Fig. 1(b). The external force applied at the top floor is assumed unknown. The first four damage 

patterns in the benchmark problem are studied herein as shown in Fig. 1(a), i.e., damage patterns 

include damage pattern 1 (DP1): all braces in the first story are removed, damage pattern 2 (DP2): 

all braces in both the 1st and 3rd floors are removed, damage pattern 3 (DP3): one brace is 

removed in the 1st story, and damage pattern 4 (DP4): one brace is removed in each of the 1st and 

3rd stories. To consider the influence of measurement noise, structural acceleration responses are 

superimposed with the corresponding white noise with 2% noise- to- signal ratio in root mean 

square (rms). The initial guess of the structural parameters are selected with 30% bias with their 

actual values and the initial values for the state variables are zero. 
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(a) The configuration of the benchmark building 

model 

(b) 3D building model with 12 DOFs 

Fig. 1 The Phase-I IASC-ASCE Benchmark building model for SHM 

 

 

  
(a) Displacement responses in x-direction of the 1st 

floor (DP1) 

(b) Displacement responses in y-direction of the 

3rd floor (DP4) 

  
(c) Velocity responses in x -direction of the 1st 

floor (DP3) 

(d) Velocity responses in x-direction of the 3rd 

floor (DP4) 

Fig. 2 Comparisons of identification results with actual values 
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In Figs. 2(a)-2(d), the identified displacement and velocity responses (in solid curves) are 

compared with their corresponding actual values (in dashed curves). The convergences of the 

identified element stiffness k1 and k2 of the building in damage pattern 1 are shown in Figs. 3(a) 

and 3(b). It is noted that the identified stiffness parameters converge quite fast. Then, the identified 

external excitation is compared with its actual value in Fig. 4. From the above comparisons, it is 

observed that the proposed algorithm can accurately identify structural responses, structural 

parameters as well as the unknown external excitation even though the sensors are only deployed 

on the 2nd and 4th floors of the building model. 

In Tables 1-1 and 1-2, the identified stiffness parameters of the benchmark building in 

undamaged, damage pattern1 (DP1), damage pattern 2 (DP2), damage pattren3 (DP3), and damage 

pattern 4 (DP4) are summarized and compared with their corresponding actual values, respectively. 

It is demonstrated that the proposed algorithm can identify all structural stiffness parameters with 

good accuracy and detect structural damage based on the reduction of the identified stiffness 

parameters as indicated by the values in bold face in these two tables. However, the identification 

accuracy decrees when the measurement noise level increases. 

 

 
Table1-1 Comparisons of stiffness parameters in the benchmark model (DP1 and DP2) 

Stiffness 

 

Undamaged Damage Pattern 1 Damage Pattern 2 

Actual 

(MN/m) 

Identified 

(MN/m) 

error 

(%) 

Actual 

(MN/m) 

Identified 

(MN/m) 

Stiffness 

reduction 

(%) 

Actual 

(MN/m) 

Identified 

(MN/m) 

Stiffness 

reduction 

(%) 

k1 53.3 55.1 3.45 29.2 29.7 -44.28 29.2 30.3 -43.11 

k2 34.0 33.8 -0.49 9.84 10.2 -70.07 9.84 10.2 -70.09 

k3 53.3 54.9 2.98 29.2 28.8 -45.89 29.2 30.1 -43.58 

k4 34.0 34.4 1.14 9.84 9.11 -73.34 9.84 10.1 -70.36 

k5 53.3 51.8 -2.85 53.3 53.1 -0.40 53.3 50.5 -5.22 

k6 34.0 33.3 -2.20 34.0 33.2 -2.34 34.0 34.2 0.57 

k7 53.3 51.5 -3.29 53.3 53.4 0.20 53.3 51.1 -4.29 

k8 34.0 34.8 2.23 34.0 34.9 2.59 34.0 33.5 -1.44 

k9 53.3 51.3 -3.70 53.3 50.7 -4.84 29.2 28.1 -47.24 

k10 34.0 34.4 1.25 34.0 34.1 0.31 9.84 9.72 -71.50 

k11 53.3 51.4 -3.61 53.3 52.8 -1.00 29.2 28.5 -46.61 

k12 34.0 34.5 1.32 34.0 33.8 -0.63 9.84 9.71 -71.56 

k13 53.3 53.0 -0.53 53.3 54.6 2.39 53.3 52.0 -2.40 

k14 34.0 34.6 1.69 34.0 33.2 -2.47 34.0 34.3 0.87 

k15 53.3 53.6 0.58 53.3 55.0 3.13 53.3 53.3 0.06 

k16 34.0 33.7 -1.02 34.0 35.6 4.59 34.0 33.9 -0.26 
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Table1-2 Comparisons of stiffness parameters in the benchmark model (DP3 and DP4) 

Stiffness 

 

Damage Pattern 3 Damage Pattern 4 

Actual 

(MN/m) 

Identified 

(MN/m) 

Stiffness 

reduction  

(%) 

Actual 

(MN/m) 

Identified 

(MN/m) 

Stiffness 

reduction (%) 

k1 53.3 54.2 1.64 53.3 52.8 -0.91 

k2 21.9 22.2 -34.69 21.9 22.6 -33.60 

k3 53.3 52.9 -0.76 53.3 53.1 -0.46 

k4 34.0 33.8 -0.63 34.0 33.2 -2.22 

k5 53.3 53.3 -0.03 53.3 54.7 2.69 

k6 34.0 34.3 0.94 34.0 32.8 -3.45 

k7 53.3 55.2 3.49 53.3 53.1 -0.30 

k8 34.0 33.8 -0.66 34.0 34.0 0.10 

k9 53.3 51.8 -2.81 41.2 40.9 -23.36 

k10 34.0 34.1 0.33 34.0 34.4 1.24 

k11 53.3 51.8 -2.74 53.3 50.9 -4.58 

k12 34.0 34.2 0.54 34.0 34.6 1.85 

k13 53.3 52.8 -0.97 53.3 53.3 0.08 

k14 34.0 34.4 1.11 34.0 33.6 -1.22 

k15 53.3 53.3 -0.06 53.3 54.4 2.10 

k16 34.0 34.1 0.39 34.0 34.8 2.31 

 

 

3.2 A high-rise shear building under unknown excitation 
 
In order to validate the performances of proposed algorithm in dealing with a large number of 

unknown parameters, identification of structural damage of a 30-story high-rise shear building 

under unknown excitation is selected an example. The mass of the building model is concentrated 

on the floor level and set to be 60 kg for each floor, the value of story stiffness is 1.2*10
5 
N/m for 

each floor and the corresponding viscous damping value of each floor is 200 N*s/m. An unknown 

external excitation is applied at the top floor of the building. It is assumed that only 18 

accelerometers are deployed at the 1st, 3nd, 5th, 7th, 10th, 12th, 14th, 17th, 19th, 21th, 23th, 25th, 

27th, 29th, 20th floor, respectively and the theoretical computed acceleration responses are also 

superimposed by the corresponding white noise with 2% noise- to- signal ratio in rms.  

In this example, the number of unknown parameters is 60 and the size of extended state vector 

is 120. However, the proposed algorithm can identify the structural parameters, state vector and 

the unknown external excitation in a two-stage and two-step approach. The initial guess of the 
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structural parameters are selected as: story stiffness ki,0 =0.8*105 N/m ; ci,0 =150 N*s/m. 

(i=1,2,…16). The initial values for the state variables are assumed zero. 

Table 2-1 gives the comparisons between the identification results of story stiffness and the 

corresponding actual values. Table 2-2 shows the similar comparisons for the damping parameters. 

The identified external excitation is shown in Fig. 5 with comparison to its actual value. From 

these comparisons, it is shown that the proposed algorithm can identify unknown structural 

parameters and excitation with satisfied accuracy for a structure with a large number of unknown 

parameters. However, the identification accuracy is also influenced by the level of measurement 

noise. 

 

 

  
(a) Convergences of identified k1 (b) Convergences of identified k2 

Fig. 3 Convergences of identified stiffness parameters (DP1) 

 

 

 

 

Fig. 4 Comparison of the identified excitation and the actual one on the benchmark model 
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Fig. 5 Comparison of the identified excitation and the actual one on the shear building model 

 

 

 
Table 2-1 Comparisons of story stiffness in the high-rise shear building 

Stiffness 

parameters 

Actual  

 (10
5
N/m) 

Identified 

(10
5
N/m) 

Error 

(%) 

Stiffness 

parameters 

Actual  

 (10
5
N/m) 

Identified  

(10
5
N/m) 

Error 

 (%) 

k1 1.20 1.18 -1.34 k16 1.20 1.20 0.11 

k2 1.20 1.20 0.17 k17 1.20 1.18 -1.31 

k3 1.20 1.21 0.45 k18 1.20 1.20 0.31 

k4 1.20 1.22 1.39 k19 1.20 1.19 -1.03 

k5 1.20 1.21 1.01 k20 1.20 1.21 1.13 

k6 1.20 1.20 -0.06 k21 1.20 1.20 0.07 

k7 1.20 1.20 -0.32 k22 1.20 1.20 0.19 

k8 1.20 1.21 0.45 k23 1.20 1.23 2.11 

k9 1.20 1.21 0.46 k24 1.20 1.20 -0.35 

k10 1.20 1.19 -0.71 k25 1.20 1.20 0.10 

k11 1.20 1.20 0.09 k26 1.20 1.19 -0.94 

k12 1.20 1.21 0.72 k27 1.20 1.19 -1.14 

k13 1.20 1.22 1.31 k28 1.20 1.19 -0.59 

k14 1.20 1.20 -0.09 k29 1.20 1.20 0.22 

k15 1.20 1.21 0.61 k30 1.20 1.22 2.02 
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Table 2-2 Comparisons of damping parameters in the high-rise shear building 

Damping 

parameters 

Actual  

 (N*s/m) 

Identified 

 (N*s/m) 

Error 

(%) 

Damping 

parameters 

Actual  

 (N*s/m) 

Identified  

(N*s/m) 

Error 

 (%) 

c1 200 191.4 -4.32 c16 200 192.4 -3.78 

c2 200 198.6 -0.68 c17 200 192.7 -3.64 

c3 200 202.7 1.37 c18 200 192.9 -3.55 

c4 200 205.8 2.88 c19 200 192.1 -3.95 

c5 200 206.8 3.42 c20 200 196.8 -1.59 

c6 200 198.2 -0.88 c21 200 200.8 0.39 

c7 200 192.9 -3.56 c22 200 204.9 2.44 

c8 200 194.9 -2.55 c23 200 206.2 3.12 

c9 200 191.2 -4.40 c24 200 199.7 -0.17 

c10 200 195.9 -2.06 c25 200 199.1 -0.45 

c11 200 195.6 -2.22 c26 200 190.5 -4.77 

c12 200 206.6 3.29 c27 200 197.9 -1.04 

c13 200 208.1 4.07 c28 200 197.0 -1.50 

c14 200 197.4 -1.30 c29 200 209.0 4.51 

c15 200 196.6 -1.69 c30 200 211.6 5.81 

 

 

3.3 A large size plan truss under unknown excitation 
 

To validate the proposed algorithm for damage detection of other types of structures, a large 

size plane truss is selected as an example. As shown in Fig. 6, the plane truss consisting of 23 bars 

is subjected to an unmeasured external excitation. All the bar elements have the same cross-section 

area A = 8.947×10
-5 

m
2
, mass density ρ = 7850 kg/m

3
 and the Young’s module E = 2×10

7
 Pa. The 

length of each horizontal bar is 2m while it is  m for each inclined bar. In the finite element 

model, the structural global mass matrix M and global stiffness matrix K can be formulated by the 

assemblage of each element mass matrix and element stiffness matrix, in which the stiffness 

parameter of the i-th element is defined as /i ik EA l . Rayleigh damping is employed with 

structural damping ratios assumed as 1 2 0.03    for the first and second modes. 

In this numerical example, it is assumed that the vertical acceleration responses at nodes 1, 2 

and 4, and the lateral acceleration responses at nodes 6, 7, 8, 9, 10, 11, 12 are not observed. All the 

calculated acceleration responses are polluted by white noise with 2% noise-to-signal ratio in rms. 

Assumed that structural damage occurs in bar element 9 and element 17. The proposed algorithm 

is utilized to identify structural parameters as well as the unknown excitation. The initial guess of 
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the structural parameters are selected with 30% bias with their actual values and the initial values 

for the state variables are assumed zero. 

The identification results of equivalent element stiffness are shown in Table 3 and compared 

with those of actual values. It is demonstrated that the proposed algorithm is capable of detecting 

and localizing structural damage from the reductions of the identified equivalent element stiffness 

parameters as indicated by the values in bold faces in Table 3. Fig. 7 shows the identified 

unknown excitation which is in close agreement with the actual excitation. 

 
Table 3 Comparisons of truss element stiffness parameters 

Element 

stiffness 

(N/m) 

Undamaged 

(Actual) 

Undamaged 

(Identified) 
Error(%) 

Damaged 

(Actual) 

Damaged 

(Identified) 
Error(%) 

k1 1265.4 1257.5 -0.62 1265.4 1258.9 -0.51 

k2 894.8 886.0 -0.98 894.8 883.6 -1.25 

k3 1265.4 1271.0 0.44 1265.4 1274.7 0.74 

k4 894.8 889.8 -0.56 894.8 889.2 -0.63 

k5 1265.4 1248.2 -1.35 1265.4 1252.8 -1.00 

k6 894.8 902.6 0.88 894.8 896.5 0.20 

k7 1265.4 1257.8 -0.60 1265.4 1261.7 -0.29 

k8 894.8 909.1 1.60 894.8 874.1 -2.31 

k9 1265.4 1266.0 0.05 885.8 886.9 0.12 

k10 894.8 892.4 -0.27 894.8 886.1 -0.97 

k11 1265.4 1266.9 0.12 1265.4 1259.9 -0.43 

k12 894.8 924.5 3.32 894.8 878.8 -1.78 

k13 1265.4 1255.8 -0.75 1265.4 1269.5 0.32 

k14 894.8 897.2 0.28 894.8 893.6 -0.13 

k15 1265.4 1264.6 -0.06 1265.4 1267.6 0.18 

k16 894.8 906.2 1.28 894.8 865.3 -3.29 

k1 1265.4 1272.9 0.60 1265.4 1279.1 1.09 

k17 894.8 895.7 0.11 626.4 611.2 -2.43 

k18 1265.4 1250.9 -1.14 1265.4 1254.6 -0.85 

k19 894.8 896.0 0.14 894.8 921.6 2.99 

k20 1265.4 1252.2 -1.05 1265.4 1245.5 -1.57 

k21 894.8 891.1 -0.41 894.8 917.7 2.56 

k22 1265.4 1237.5 -2.21 1265.4 1250.8 -1.15 
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Fig. 6 A large size plan truss subject to an unknown excitation 

 

 

 

Fig. 7 Comparison of the identified excitation and the actual one on the truss 

 

 

4. Experimental validations of the proposed algorithm 
 

To further validate the feasibility of the proposed algorithm, two lab experimental tests on the 

identification of structural damage and unknown external excitations are used in this paper. Also, 

an experimental demonstration of intelligent structural damage detection of a lab multi-story 

model based on smart sensors embedded with the proposed algorithm is studied. 

 

4.1 A frame structure with joint damage under shake table test 

 
It has been shown that beam-column joints in a frame structure are more susceptible to damage 

than the other members of the structure under severe excitation such as strong earthquakes (Li et al. 

2007, Karayannis et al. 2011, Zhang and Han 2013). But there are only a few studies on the 

identification of beam-column joint damage (Chen 2008, Weng et al. 2009, Katkhudat et al. 2010, 

Xia 2011, Xu et al. 2012). Since the performances of the joints are critical factors in many 

structural damages or collapses, it is necessary to investigate efficient methods for damage 

identification of frame structures with joint damage under earthquake excitation. However, 

damage detection of a frame structure with joint damage involves the identification of more 

unknown structural parameters due to the unknown joint connection stiffness in addition to those 

of the beam and column element stiffness, which needs algorithms that can overcome the 

drawbacks of conventional EKF approaches. 
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(a) Photo of the frame (b) FE model with locations of joint damage 

Fig. 8 Experimental test of a six-story steel frame with joint damage from Weng et al. (2009) 

 

 

In this paper, the experimental data of the shake table test of a 1/3-scaled 6-story steel frame 

structure with loosened bolts (Weng et al. 2009, Xia 2011) are used. As shown in Figs. 8(a) and 

8(b), the frame model in the lab is a symmetric single bay six-story structure (Weng et al. 2009). 

The constructions of connections are: (i) beam-floor is welded connection, and (ii) column-beam, 

bracing-floor and structure-shake table are bolted connections. A joint of the frame is considered as 

semi-rigid connection which is modeled as a zero-length rotational spring with rotational stiffness 

parameter  and joint damage is represented by the reduction of beam-column connection rigidity 

parameter . More details can be found in the Ph. D dissertation of Xia (2011). The mass on each 

floor lumped mass is 862.85 kg. Structural damping is assumed as Rayleigh damping. The method 

of static condensation is used to reduce the number of degrees of freedom of the finite-element 

model, whereas the same number of unknown structural parameters in the original complex 

structure has been retained in the reduced-order system. This approach not only reduces the 

number of required sensor measurements but also removes response quantities which are difficult 

to measure, such as the rotational acceleration of a nodal point (Weng et al. 2009, Xia 2011). 

Based on the static condensation, the reduced-order FE model of the fame is a 6-DOF symmetric 

structure with a total of 21 unknown structural stiffness vector given by = [kb1, kb2 ,…,kb6 , kc1 , 

kc2,…, kc6 ,0,  1,, 6, a,] , in which kbi and kci, (i=1,2,…,6) are the equivalent element stiffness 

parameters of the i-th beams and columns, respectively,  0 is the rotational stiffness parameter of 

the column connected to the ground, and  i (1=1,2,…,6) is the rotational spring stiffness of the 

beam-column joints at the i-th floor (Weng et al. 2009, Xia 2011). 

It is difficult to measure the dynamic responses rotational angles in frame structures. In this 

paper, accelerometers installed on each floor for the lateral acceleration responses are used while 

the base excitation of the shake table is assumed unknown. The sampling frequency of the 

measurements is 200 Hz. Some patterns of joint damage scenarios are artificially introduced (bolt 
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loosened at different levels of floor) as shown in Fig. 8(b) where black dots indicate the locations 

of bolt loosening. Two damage patterns are considered in this paper as follows: 

Damage pattern 1 (DP1): bolts loosened on1st floor; 

Damage pattern 2 (DP2): bolts loosened on both 1st and 4th floors; 

Table 4 shows the identification results of structural stiffness parameters for the undamaged and 

damage patterns 1-2. From the reductions of the identified joint stiffness (rotational stiffness) 

indicated by the values in bold faces in the table, the locations and degrees of joint damage in the 

frame can be detected. 

 

 

 
Table 4 Identification results of stiffness parameters of the experimental 6-story frame 

Stiffness 

Parameters 

Identified Stiffness Parameters 

Undamaged 
Damage 

Pattern 1 

Stiffness 

Degradation  

Damage 

Pattern 1 

Stiffness 

Degradation 

kb1(kN/m) 839 779 7.2% 763 9.1% 

kb2(kN/m) 808 741 8.3% 749 7.2% 

kb3(kN/m) 790 726 8.1% 767 2.8% 

kb4(kN/m) 728 738 -1.4% 764 -5.0% 

kb5(kN/m) 739 801 -8.4% 800 -8.4% 

kb6(kN/m) 807 828 -2.6% 804 0.3% 

kc1(kN/m) 71.9 76.4 -6.3% 75.2 -4.7% 

kc2(kN/m) 82.1 78.8 3.9% 76.2 7.2% 

kc3(kN/m) 77.9 80.1 -2.9% 82.1 -5.4% 

kc4(kN/m) 79.3 80.2 -1.2% 76.0 4.0% 

kc5(kN/m) 72.6 73.9 -1.9% 75.0 -3.3% 

kc6(kN/m) 87.8 90.1 -2.6% 85.9 2.2% 

 0 12.8 11.9 6.3% 13.8 -7.8% 

 0.38 0.16 59.4% 0.15 60.5% 

 0.46 0.43 6.5% 0.43 6.5% 

 0.62 0.58 6.4% 0.59 4.8% 

 0.56 0.55 1.5% 0.16 72.1% 

 0.74 0.79 -6.8% 0.78 -5.4% 

 0.88 0.91 -3.1% 0.89 -1.2% 
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4.2 A multi-story shear frame model under unknown excitation 

 
Identification of structural damages of an 8-storey shear frame model as well as the unknown 

excitation in lab experiment is studied. As shown in Fig. 9(a), the 8-storey frame model with 1.6 m 

tall and 0.35 m*0.25 m in plan behaves as a lumped mass shear frame. A magnetic shaker induces 

external excitation to the model at the 3rd story level which is installed a force transducer to record 

the excitation force. 6 light PCB accelerometers are deployed on the 1st, 3rd, 5th, 6th, 7th and 8th 

floors to measure the acceleration responses at the corresponding floor levels as shown in Fig. 

9(b). The sampling frequency is 1 kHz for all measured data. Fig. 10(a) gives the details about the 

connection between floors and columns. Structural damage is simulated by replacing the flexible 

columns with thinner ones as shown in Fig. 10(b), which results in the reduction of corresponding 

story stiffness. In this experiment, structural damage is assumed to occur in the 6th story by 

replacing the four columns with thinner ones, which leads to the reduction of k6. The initial guess 

of the structural parameters are selected as ki,0 =100kN/m (i=1,2,…,8) and the initial values for the 

state variables are assumed zero. 

Figs. 11(a) and 11(b) show the convergences of the identified floor k2 and k6 of the undamaged 

building (in dashed curves) and the damaged building (in solid curves), respectively. It is noted 

that the identified stiffness parameters converge quite fast. Fig. 12 shows the identified unknown 

external excitation to the undamaged frame model, which is close to the actual excitation recorded 

by the force transducer. In Table 5, the identification results of story stiffness of the undamaged 

and damaged frame model are shown in the 2nd and 3rd columns, respectively. From the relative 

change of identified story stiffness indicated by value in bold face in the 4th column in Table 5, it 

is clearly shown that the proposed algorithm can detect structural damage of the frame model.  

 

 

 

  
(a) The eight-story lab shear frame model (b) Data acquisition during the experiment 

Fig. 9 Experimental study with an eight-storey building model 
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Table 5 Identified story stiffness of the experimental multi-story frame 

Story 
Stiffness [kN/m] 

Relative Change 
Undamaged Damaged 

1st 123.04 124.34 1.06% 

2nd 134.97 132.02 -2.19% 

3rd 129.66 135.25 4.31% 

4th 131.10 128.80 -1.75% 

5th 133.77 131.96 -1.37% 

6th 132.81 79.96 -39.79% 

7th 130.29 131.83 1.18% 

8th 130.96 130.46 -0.38% 

 

 

  

 
(a) The installation of the PCB accelerometers (b) Two types of columns 

Fig. 10 Beams and columns of the shear building model 

 

  

(a) Convergence of identified stiffness k2 (b) Convergence of identified stiffness k6 

Fig. 11 Convergences of identified floor stiffness 
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Fig. 12 Comparison of the identified excitation and the actual one on the lab shear frame model 

 
 
4.3 A demonstration of intelligent structural damage detection with the proposed 

algorithm 

 
Based on the proposed algorithm of two stage and two-step approach, computational effort and 

storage requirements are greatly reduced compared with the conventional EKF approaches. This 

reduction may be not remarkable for a current advanced computer which has strong computing 

processor unit and large storage capacities, but it is significant for intelligent structural 

identification and damage detection implemented by smart sensors in which the micro-processors 

have limited computational power and storage capacities. To demonstrate the superiorities of the 

proposed algorithm, the proposed algorithm is embedded into the micro-processor of smart sensors 

in a wireless sensor network (WSN) developed by the authors (Lei et al. 2011). The designed 

WSN has a two-level cluster-tree architecture in which distributed sensors are grouped into 

clusters and a cluster head is assigned to each cluster to coordinate the sensors. The cluster head 

contains a low power digital signal processor (DSP) with strong computing capacity. Thus, the 

WSN provides distributed computation resources at group level, which is useful for the 

implementation of computational algorithms for structural health monitoring. Some lab and in 

field experiment tests on the accuracy of data acquisition, time synchronization of measurement 

data and other capabilities of the wireless sensor units validated that the designed wireless sensor 

network possesses favorable performances of data collection, transmission and distributed 

computation (Lei et al. 2011). 

In this paper, based on the experimental test of the proposed algorithm on the multi-story shear 

frame under unknown excitation in Sect. 4.2, a lab experimental test is conducted to demonstrate 

the structural identification and damage detection implemented by the smart sensor network 

embedded with the proposed algorithm. As shown in Fig. 13, six sensor nodes connected with 

PCB accelerometers are installed at the 2nd, 3rd, 4th, 5th 6th and 8th floors to collect acceleration 

responses, respectively. It is assumed that the two flexible columns in the 5th story were replaced 

by thinner ones to simulate structural damage. To further reduce the compotation effort and storage 

requirement, substructural identification approach is adapted (Lei et al. 2013). The frame model is 

divided into two substructures with floors 1-4 being the 1st substructure and floors 5-8 being the 

second one. The upper substructure is subject to the measured acceleration 4 (t)x  while the lower 
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substructure is excited by both the interface force and the unknown excitation. In each substructure, 

the deployed sensor nodes are grouped into a cluster. Each cluster is assigned with a cluster head 

(ch) to collect data from the sensor nodes during vibration. Final identification results of story 

stiffness parameters and the unknown external excitation are sent to the central server (PC). Figs. 

14(a) and (b) show the identified story stiffness parameters of the undamaged and damaged frame 

models on the screen of the PC server, in which Fig. 14(a) shows the two set of identification 

results on the screen of the PC server and Fig. 14(b) shows the zoom-in identification results on 

the screen of the PC server. To clearly illustrate the results, the identification results are 

summarized and compared in Table 6. By comparing these two set of identification results and the 

stiffness degradation values in the 4th column in the table, it is demonstrated that the proposed 

technique can autonomously detect and localize the structural damage by the large stiffness 

degradation value of the identified story stiffness k5. 

 

 

 

Fig. 13 Lab demonstration of intelligent damage detection based on WSN embedded with the proposed 

algorithm 

 

 

 

  
(a) Two set of identification results shown the 

screen of the PC server 

(b) Zoom-in identification results on the screen of 

the PC server 

Fig. 14 Identification of story stiffness of the experimental frame model shown on PC screen 
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Table 6 Intelligent structural identification/damage detection results 

Story 

Stiffness 

Stiffness [kN/m] 
Stiffness Degradation  

Undamaged Damaged 

k1 130.14 133.51 2.58% 

k 2 129.76 126.93 -2.18% 

k 3 122.19 125.70 2.87% 

k 4 124.37 122.06 -2.86% 

k 5 127.28 105.47 -17.14% 

k 6 128.71 128.93 0.17% 

k 7 127.35 128.68 1.04% 

k 8 129.97 128.10 -0.38% 

 

 

5. Conclusions 
 

In this paper, an algorithm of a two stage and two-step approach is proposed for the 

identification of structural damage as well as unknown external excitations with partial 

measurements of structural acceleration responses. In stage-one, structural state vector and 

unknown structural parameters are recursively estimated by a two-step Kalman estimator approach, 

so the number of unknown variables to be estimated in each step is reduced. Then, the unknown 

excitations are recursively estimated sequentially by least-squares estimation in stage-two. Thus, 

structural identification and unknown excitation estimation are conducted sequentially. The 

proposed algorithm not only removes the drawbacks of the conventional EKF approach but also 

simplifies the identification problem and reduces computational efforts and storage requirements 

compared with other previous work. These superiorities are useful for intelligent structural damage 

detection due to the limited computational power and storage capacities of the micro-processors in 

smart sensors. 

Several numerical simulation examples and lab experimental tests validate the effectiveness of 

the proposed algorithm for the identification of various structural damage patterns as well as 

unknown excitations. Also, a lab experimental test on a multi-story frame model demonstrates that 

the proposed algorithm can be embedded into the smart sensor network for intelligent structural 

damage detection. 

The identification accuracies are influenced by the level of measurements noise; therefore, it is 

still necessary to improve the robustness of the proposed algorithm against high level 

measurement noises. Also, more numerical and experimental tests on complex structural 

configurations are needed to further validate the performances of the proposed algorithm, 

especially more experimental studies are required for the intelligent structural damage detection of 

complex structural systems.  
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