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Abstract.    This paper proposes an analytical mode decomposition (AMD) and Hilbert transform method 
for structural nonlinearity quantification and damage detection under earthquake loads. The measured 
structural response is first decomposed into several intrinsic mode functions (IMF) using the proposed AMD 
method. Each IMF is an amplitude modulated-frequency modulated signal with narrow frequency 
bandwidth. Then, the instantaneous frequencies of the decomposed IMF can be defined with Hilbert 
transform. However, for a nonlinear structure, the defined instantaneous frequencies from the decomposed 
IMF are not equal to the instantaneous frequencies of the structure itself. The theoretical derivation in this 
paper indicates that the instantaneous frequency of the decomposed measured response includes a 
slowly-varying part which represents the instantaneous frequency of the structure and rapidly-varying part 
for a nonlinear structure subjected to earthquake excitations. To eliminate the rapidly-varying part effects, 
the instantaneous frequency is integrated over time duration. Then the degree of nonlinearity index, which 
represents the damage severity of structure, is defined based on the integrated instantaneous frequency in 
this paper. A one-story hysteretic nonlinear structure with various earthquake excitations are simulated as 
numerical examples and the degree of nonlinearity index is obtained. Finally, the degree of nonlinearity 
index is estimated from the experimental data of a seven-story building under four earthquake excitations. 
The index values for the building subjected to a low intensity earthquake excitation, two medium intensity 
earthquake excitations, and a large intensity earthquake excitation are calculated as 12.8%, 23.0%, 23.2%, 
and 39.5%, respectively. 
 

Keywords:    degree of nonlinearity; damage detection; analytical mode decomposition; Hilbert transform; 
earthquake excitations 
 
 
1. Introduction 
 

Vibration-based methods for system identification and damage detection have been widely 
studies as summarized in a comprehensive review by Doebling et al. (1996, 1998) and Sohn et al. 
(2004). The basic idea is that the modal parameters are functions of the physical properties of the 
structure, and changes in physical property will cause changes in the modal properties. Therefore, 
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over the past decades, many structural modal parameter identification methods in both frequency 
and time domain were developed by different investigators such as: peak-picking method from 
power spectral densities (Bendat and Piersol 1993), natural excitation technique (NExT) method 
(James et al. 1995), and stochastic subspace identification method (Van et al. 1996). However, 
their research work was paid attention to positive and negative problem of linear system. For 
time-varying or nonlinear structures, the structural nonlinearities such as stiffness and damping 
force nonlinearities can introduce dynamic phenomena and behaviors that are dramatically 
different from those predicted by the linear theory. Brandon (1997, 1999) stated that the nonlinear 
response of a mechanical system was often overlooked and valuable information was lost when 
one discarded the time series data and focused on the spectral data. Therefore, the author 
advocated the use of time-domain system identification techniques such as ARMA model and 
autocorrelation function to retain the important nonlinear information. Although attempts were 
made to take advantage of nonlinear behaviours (Vakakis et al. 2004, Kerschen et al. 2006), it is 
still a challenge to identify a nonlinear system due to its highly individualistic nature. 

Nonlinearities of structures under extreme loads, such as earthquakes, hurricanes, and tornados, 
are mainly due to the stiffness and boundary conditions vary rapidly or slowly over excitation 
duration, and the characteristic properties of structures often change over time. Therefore, 
structural identification for time-varying properties such as instantaneous natural frequency can be 
used for structural nonlinearity characterization. In recent years, various time-frequency analysis 
methods for time-varying and nonlinear structures identification were proposed, such as: 
Wigner-Ville distribution (WVD) (Qian and Chen 1994), Hilbert transform based methods (Huang 
et al. 1998, 1999), and wavelet transform theory (Mallat 1998, Lilly and Olhede 2010, Ghanem 
and Romeo 2000, Li et al. 2009, Yi et al. 2012, 2013). Based on the time-frequency analysis 
methods, the nonlinearities of structures can be further identified. Kerschen et al. (2006) and Pai 
and Hu (2006) used a popular empirical mode decomposition of vibration signal for nonlinear 
identification. Ta and Lardies (2006) proposed the continuous wavelet transform for identifying 
and quantifying nonlinearities of each vibration mode. More preferable nonlinear system 
identification methods without known the prior nonlinear models were also investigated by a few 
researchers. For example, Feldman (2007) proposed a Hilbert transform vibration decomposition 
together with the modal-spatial coordinate transform method for initial nonlinear characteristics 
identification; Chanpheng et al. (2012) proposed the degree of nonlinearity as a feature for damage 
detection on large civil structures with Hilbert transform method; Wang et al. (2003) and Feldman 
(2012) mapped a class of nonlinear system to a skeleton linear model and extracted the skeleton 
from the response data using the quadratic time-frequency distribution and the wavelet transform 
method. 

Since the time-frequency analysis based method for structural nonlinearity identification need 
to characterize the responses’ time-varying features, therefore, high quality signal processing 
techniques are quite necessary. However, only in recently years, a few new time-frequency 
analysis methods for non-stationary signal analysis such as ensemble empirical mode 
decomposition (Wu and Huang 2009), synchrosqueezing wavelet transform (Daubechies et al.  
2011, Thakur and Wu 2011, Montejo and Vidot 2012, Wang et al. 2013b) were developed and 
proposed in literature. However, up to date, it is still a quite challenge to find a universal fully 
automatic decomposition in spite of signal adaptive properties (Braun and Feldman 2011).  

In this paper, the recently developed AMD method (Chen and Wang 2012, Wang et al. 2013a) 
is applied to decompose the measured signal into several IMFs. Then, the instantaneous frequency 
of the decomposed IMF, which includes a slowly-varying part that represents the instantaneous 
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frequency of the structure and a zero mean rapidly-varying part for a nonlinear structure, can be 
defined with Hilbert transform. To eliminate the rapidly-varying part effect, the instantaneous 
frequency is integrated over time duration, and the degree of nonlinearity index, which represents 
the damage severity of structure, is defined based on the integrated instantaneous frequency. The 
degree of nonlinearity indices are obtained based on the one-story hysteretic structure subjected to 
low, medium, and larger intensity earthquakes. Final, the proposed method is validated by the 
shake table test data of a seven-story building subjected to a low, two medium, and a large 
intensity earthquake excitations. 

 
 

2. Degree of nonlinearity index with AMD and Hilbert transform 
 

For a SDOF nonlinear system with mass m and excitation )(tf , the equation of motion can be 
described as  

)()( tfxx,Ftxm ( )                               (1) 

For a nonlinear structure, the nonlinear restoring force )( xx,F   as function of time can be 

transformed into a multiplication form )()( txtmω2
0 with a new fast time-varying natural frequency 

)(tω2
0  and a system displacement solution )(tx  with an overlapping spectra (Feldman 1997). 

Similarly, the nonlinear damping force can also be transformed into a function of time as a 
multiplication: )()( txtmh 02  between the fast time-varying instantaneous damping coefficient 
)(th0  and the velocity. Thus the equation of motion of a nonlinear system can be written as 

           /mtftxtωtxthtx )()()()()()(  2
002                         (2) 

When the instantaneous damping coefficient )(th0  and instantaneous natural frequency )(t2
0  

vary slowly compared to the oscillatory of the displacement, which is satisfied in most engineering 

applications. Then, the instantaneous damping coefficient )(th0  and natural frequency )(t2
0  of 

the structural system can be solved as 
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in which, )(tω  is the instantaneous frequency of the measured response )(tx , H[] represents the 

Hilbert transform of the function inside the square bracket,   22 ))(()()( txHtxtA   is the 

instantaneous amplitude of the measured response )(tx .  
In reality, the damping coefficients and derivatives of the envelope of the analytical signal are 

much less than the natural frequency, so their influence can be ignored )( 0
A

A

A

A 
. As a result, 
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the instantaneous frequency of the signal leads to 
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If the earthquake excitation f  has zero mean value, the second term of Eq. (5) can be also 
approximately considered as the zero mean fast time-varying function. As one can see from Eq. (5) 
the instantaneous frequency )(tω  of the decomposed measured response includes a 
slowly-varying part )(tω0  which represents the instantaneous frequency of the structure and a 

zero mean rapidly-varying part for a nonlinear structure under an earthquake excitation )(tf . 
Similarly, an n DOF nonlinear system can be transferred as a time-varying linear system, the 

equation of motion can be written as 

  )()()()(()( tttttt fxKxCxM   )                         (6) 

where M , )(tC , and )(tK  are constant mass, time-varying damping and stiffness matrices, 

respectively; )(tf  is the external load vector. The Eq. (6) can be transformed into modal spatial 
coordinate 
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in which, i
T
ii MM   is the ith modal mass, i  is the ith mode shape vector and )(tω i0  is the 

natural frequency of the ith modal response. Since the external load is assumed zero mean value, 

the instantaneous frequency of the modal response )(tωi
2  can be expressed as similar as Eq. (3), 

which yields 
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Again, for vibration with zero mean earthquake excitation, the second term of Eq. (8) is the 
zero mean fast time-varying function.  

Since the instantaneous frequency of the modal responses is time-varying function, therefore, 
an adaptive or time-varying bandpass filter is needed to extract the modal responses from the 
measured response. In this paper, the recently developed AMD method (Chen and Wang 2012) is 
extended to extract the modal responses from the measured signals of nonlinear structures with 
time-varying frequencies. The goal is to extract each individual component (IMF) with 
time-varying frequency from a general measured response by properly selecting two time-varying 
bisecting frequencies that cover the component frequency at any time instant. As mentioned in the 
reference (Wang 2011), the time-varying bisecting frequency can be preliminary selected from the 
wavelet scalogram.  

For a measured response x(t) with n individual modal responses with frequencies:
)()()( ttt n ,...,, 21 , By selecting n-1 time-varying bisecting frequencies: 
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)))(()((）( 1211   ,...,n,it,ωtωtω iibi  each individual signal can be determined by 
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in which,  )d()( τ 


t

bibi tθ  is the phase angle of the ith bisecting frequency. 

As observed from Eqs. (9) and (10), AMD functions like a suite of bandpass filters. Since the 
bisecting frequency varies with time, reflecting the time-frequency analysis of a data series, the 
related filter with a time-varying bisecting frequency (t)ωbi  is referred to as an adaptive lowpass 

filter, which is schematically illustrated in Fig. 1. 

For the measured response of the thl degree )(txl  can be expressed as 

 
n
i ilil qtx 1)(                             (11) 

in which, li  is the lth element of the thi  mode shape vector. Therefore, the decomposed ith 

modal response )(tx i
l

)(  using Eq. (10) from thl  degree measured response )(txl  can be written 

as 
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For an n DOF nonlinear system,  li  is slow time-varying function, therefore, the analytical 

signal )(i
lZ  of the ith decomposed response )()( tx i

l  can be further expressed as 
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Fig. 1 Block diagram of an adaptive bandpass filter with two bisecting frequencies: )()1( tib   and )(tbi
 
 

5



 
 
 
 
 
 

Zuo-Cai Wang, Dong Geng, Wei-Xin Ren, Gen-Da Chen and Guang-Feng Zhang 

 

Eq. (13) clearly demonstrates that the instantaneous frequency of the decomposed signal is 
equal to the instantaneous frequency of the response )(tqi . 

Again, the instantaneous frequency of the decomposed response includes a slowly-varying part 
and a rapidly-varying part. The rapidly-varying part can be filtered out by AMD with a suitable 
bisecting frequency. Another way to eliminate the rapidly-varying part is to integrate the 
instantaneous frequency over time duration. Therefore, the phase of the decomposed response can 
describe the structural nonlinearity during the vibration. The nonlinearity index E  can be defined 
as 

   
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In which, )(nω  is the time-varying frequency of the modal response of structure performed 

nonlinear phenomena, while lω  is the constant natural frequency of the structure performed 

linear behavior. The nonlinearity index E  also represents the damage severity of the structure 
during vibration, therefore, E  is also called as a damage index. 

  
 

3. Numerical simulations 
 

A one-story shear building with hysteretic behavior is considered as a numerical example. It 
has mass of m=100 kg, elastic stiffness of k=12.5 kN/m, and damping coefficient c=299.3 N-sec/m. 
The hysteretic behavior of the building is represented by a Bouc-Wen model (Wen 1976). The 
equation of motion of the shear building can be described as 

 fkzααkxxcxm  )(1                      (15) 

 
η

zzxγzxβvxA
z

nn
)(
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in which α  is the rigidity ratio, A , β , γ , n  are the hysteresis shape parameters (if n , 
the elastoplastic hysteresis case is obtained). In this paper, a concrete structural system is 
considered and the corresponding hysteresis shape parameters are selected based on the research 
done by Kunnath et al. (1997). The hysteresis shape parameters are set as: 10.α  , 1A , 

050.β  , 950.γ  , 2n . v  and η  are degrading parameters, which can be described as [35] 

εs.v v 01                             (17) 

εs.η η 01                            (18) 

xα)kz(ε  1                           (19) 

in which, vS  controls the amount of strength deterioration, and ηS  controls the rate of stiffness 
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decay. In this paper, vS  and ηS  are set to 0.025 and 0.25, respectively.  
To verify the effective of the proposed method, four earthquake excitations including a low 

intensity earthquake EQ1, two medium intensity earthquakes EQ2 and EQ3, and a large intensity 
earthquake EQ4, are used to generate the responses of the nonlinear system by using the fourth 
order Runge-Kutta method. The low intensity earthquake record EQ1 was the VNUY longitudinal 
component from the 1971 San Fernando earthquake. The two medium intensity records EQ2 and 
EQ3 were the VNUY transverse component record from 1971 San Fernando earthquake and the 
WHOX longitudinal component from the Northridge 1994 earthquake. The large intensity record 
EQ4 is the Sylmar Olive View Med 360o component record from the 1994 Northridge earthquake. 
The ground time histories of the four earthquakes with sampling frequency of 240 Hz are 
presented in Fig. 2. The acceleration response spectra of the input ground motions as well as the 
design spectrum for 5% damping are presented in Fig. 3. The Bouc-Wen nonlinear 
force-displacement hysteretic loops with various excitations are presented in Fig. 4.  

To estimate the nonlinearity indices, the generated accelerations with 5% noise-signal-ratio 
white noise are assumed as measured responses. The modal response of a generated acceleration 
can be extracted by using the proposed AMD method with bisecting frequency of 1.8 Hz. The 
instantaneous frequency of the modal response can then be estimated from the defined analytical 
signal. The instantaneous frequencies of the nonlinear system subjected the above four earthquakes 
are presented in Fig. 5. The corresponding nonlinearity indices are presented in Table 1. As one 
can see from Fig. 5, the instantaneous frequency of the measured acceleration indeed includes a 
slowly-varying part and a rapidly-varying part for the nonlinear structure subjected to an 
earthquake excitation. The nonlinearity indices for the building subjected to a low intensity 
earthquake excitation, two medium intensity earthquake excitations, and a large intensity 
earthquake excitation are equal to 10.2%, 21.3%, 22.9%, and 42%, respectively. The structure 
subjected to low, medium, and large intensity earthquake excitations represents it is minor, 
medium, and severe damaged, therefore, the nonlinearity index also represents the damage severity 
of the structure during vibration. 
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Fig. 3 Acceleration response spectra of the ground motions 
 
 

 

Fig. 4 Bouc-Wen nonlinear force-displacement hysteretic loops with various earthquake excitations 
 
 

 
Table 1 Nonlinearity index of the system subjected to various earthquake excitations 

Excitation EQ1 EQ2 EQ3 EQ4 

Nonlinearity index E (%) 10.2 21.3 22.9 42.0 
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Fig. 5 Instantaneous frequencies of the measured accelerations generated with various earthquake excitations
 
 

Fig. 6 Test specimen 
 
 

4. Shake table test validation 
 

To validate the proposed method for structural nonlinearity quantification, a full-scale 7-story 
reinforced concrete residential building is considered. The shake table test was conducted by   
Panagiotou et al. (2011) and the specimen is illustrated in Fig. 6. The same earthquake excitations 
including a low intensity earthquake EQ1, two medium intensity earthquakes EQ2 and EQ3, and a 
large intensity earthquake EQ4 were considered. More details of the shake table test can be found 
in Panagiotou et al. (2011). In this paper, only the acceleration of the top floor is used to estimate 
the instantaneous frequency and the nonlinearity index. The acceleration responses and their 
Fourier spectra of the top floor with various earthquake excitations are presented in Figs. 7 and 8, 
respectively. The instantaneous frequencies of the measured responses are further obtained based 
on the proposed method and presented in Fig. 9. Again, the instantaneous frequency of the 
measured acceleration indeed includes a slowly-varying part and a rapidly-varying part for the 
nonlinear structure subjected to an earthquake excitation. The corresponding nonlinearity indices 
are presented in Table 2. From the observation, the building subjected to low, medium, and large 
intensity earthquake excitations represents it is minor, medium, and severe damaged. It can be seen 
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from Table 2, the nonlinearity indices for the building subjected to a low intensity earthquake 
excitation, two medium intensity earthquake excitations, and a large intensity earthquake 
excitation are equal to 12.8%, 23.0%, 23.2%, and 39.5%, respectively. 
 
 
 

  

  

Fig. 7 Acceleration responses on the top floor with various earthquake excitations 

 

 

 

  

  

Fig. 8 Fourier spectra of acceleration responses on the top floor with various earthquake excitations 
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Fig. 9 Instantaneous frequencies of the measured accelerations with various earthquake excitations 
 
 
Table 2 Nonlinearity index of the building subjected to various earthquake excitations 

Excitation EQ1 EQ2 EQ3 EQ4 

Nonlinearity index E (%) 12.8 23.0 23.2 39.5 

 
 
 
5. Conclusions 

 
This paper proposes an analytical mode decomposition (AMD) and Hilbert transform method 

for structural nonlinearity quantification and damage detection under earthquake loads. The 
instantaneous frequency of the measured response is extracted by using the proposed method. 
Then the degree of nonlinearity index, which represents the damage severity of structure, is 
defined based on the integrated instantaneous frequency. A one-story shear building with hysteretic 
behaviour subjected to low, medium, and larger intensity earthquake excitations is simulated as a 
numerical example. Final, the proposed method is validated by the shake table test data of a 
seven-story building subjected to a low, two medium, and a large intensity earthquake excitations. 
From both numerical simulations and shake table test validations, the nonlinearity indices are 
approximately equal to 12%, 23%, and 40% when a concrete building is minor, medium, and 
severe damaged. 
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