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Abstract.  Instrumentation on structural health monitoring system imposes critical issues for applying the 
structural monitoring system to real world structures, for which not only on the configuration and geometry, 
but also aesthetics on the system to be monitored should be considered. To illustrate this point, two real 
world structural health monitoring systems, the structural health monitoring system of Shenzhen Vanke 
Center and the structural health monitoring system of Shenzhen Bay Stadium in China, are presented in the 
paper. The instrumentation on structural health monitoring systems of real world structures is addressed by 
providing the description of the structure, the purpose of the structural health monitoring system 
implementation, as well as details of the system integration including the installations on the sensors and 
acquisition equipment and so on. In addition, an intelligent algorithm on stress identification using 
measurements from multi-region is presented in the paper. The stress identification method is deployed 
using the fuzzy pattern recognition and Dempster-Shafer evidence theory, where the measurements of 
limited strain sensors arranged on structure are the input data of the method. As results, at the critical parts of 
the structure, the stress distribution evaluated from the measurements has shown close correlation to the 
numerical simulation results on the steel roof of the Beijing National Aquatics Center in China. The research 
work in this paper can provide a reference for the design and implementation of both real world structural 
health monitoring systems and intelligent algorithm to identify stress distribution effectively. 
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1. Introduction 
 

Structural health monitoring system is often related to safety (Farrar 2007). Since the structures 

in civil engineering are subjected to adverse operational and environmental conditions, their 

concern on safety then has increased dramatically (Zhu 2010). In this regard, the adaption of 

structural instrumentation and monitoring in various fields has been mature and extensive, such as 

the oil industry, large dams and highways (Brownjohn 2007). However, there are still many critical 

issues in related studies, such as logistically complication, labor-intensiveness, time-consuming, 

and cost consideration for civil infrastructure applications (Farhey 2006). Meanwhile, the 
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structural health monitoring can significantly improve the safety, reliability, and ownership costs 

of engineering systems by autonomously monitoring the conditions of structures and detecting 

damage before it reaches a critical state (Park 2008). It has been known that, with the result of 

destructive effects, the effective durability and life span of the structure is continuously decreasing. 

Take the bridge as an example, while the official service life of a public facility is expected to 

attain 75 years with only routine maintenance, many bridges that are only 10-20 years old require 

extensive and expensive rehabilitation (Farhey 2006). According to the survey in 2003, federal 

spending in the US for the replacement of structurally obsolete bridges is approximately $10billion 

per year (Chang 2003).Furthermore, researchers are attempting to find a more comprehensive 

interdisciplinary method and solution in providing understanding, simulation, laboratory testing 

and development of an intelligent infrastructure system to make cost-effective decisions about 

infrastructure maintenance, repair, and rehabilitation (Sinha 2004). Thus, it is understandable that, 

the structural health monitoring is developed not only on the purpose to deploy the applications, 

but also to improve the structural health monitoring methods. However, it is still a concerned 

question on defining an intelligent system. An intelligent system can be defined as any system that 

could receive sensory information and has the ability to process this information with a 

computationally efficient and effective software, combined with one or more smart or intelligent 

algorithms for performing functions, such as control, managing resources, diagnostic and 

decision-making, to achieve multiple or single task (Ng 2003).  

Structural health monitoring is a method which can collect the structural responses and estimate 

the working status of the structure, despite different types of sensors are arranged on the structure. 

When the number of sensors located in the real world monitored structure is limited, the normal 

method cannot be used to determine the safety of the structures by monitoring the response of the 

most favorable components directly (Liu et al. 2008). Recently, several researchers (Catbas et al. 

2008, Chan et al. 2006, Farrar et al. 2001,Barret al. 2006) put emphasis on realizing objectives and 

functions of structural health monitoring system using limited measurements of sensors. For 

example, Liu et al. (2009) assessed the reliability of bridge through the long-term monitoring 

measurements of strain sensors under traffic loads and researched the security limit using the 

actual traffic conditions and measurements of strain sensors on the Wisconsin Rive Bridge in the 

United States. Abazarsa et al. (2013) proposed a method which using a limited number of sensors 

from recorded free/ambient vibration data to identify the structural modal characteristics. In the 

structural health monitoring system of the Shenzhen Civic Center in China, the stress fields of 

brace steel brackets are identified by the limited measurements of strain sensors located on the key 

points (Wang et al. 2007). Teng and Lu proposed the effective stress identification method by 

using limited measurements and structural similarity (Teng and Lu 2010). 

On this ground, this paper presents the structural health monitoring systems applications to real 

world steel structures, while the implementations and integrals of intelligent structural health 

monitoring system are also introduced. Furthermore, the intelligent identification method on stress 

distribution is introduced and proofed by numerical simulations on real world structures. 

Considering the intelligent structural health monitoring method, especially the identification on 

stress distribution, the structure is divided into several regions according to the distribution of 

plastic hinges using elastic-plastic dynamic analysis (Fu et al. 2007).The most critical region is 

selected to be the key region for stress identification, while different numbers of strain sensors are 

located on both key region and normal regions. As following, the fuzzy pattern recognition is used 

to identify the stress distributions based on measurements from different regions. At last, the 

numerical study on Beijing National Aquatics Center is carried out to validate the reliability of the 
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proposed stress identification method. 

 

 
2. Instrumentation on SHM of real World Structures 

 
2.1 SHM of Shenzhen Vanke Center 

 
Shenzhen Vanke Center is located at the Shenzhen Dameisha Sea Beach with a total land area 

61730 m
2
 and total construction area 137116 m

2
. The upper four and five floors of the structure are 

supported by giant tubes, solid web thick walls and columns, by which the large open space for the 

garden can be provided. The upper main structure is consisted with the mixed architecture 

framework and cable system.  

Two main purposes of the structural health monitoring on this structure are firstly to guide the 

construction process, and secondly to evaluate the safety of structure in its working status. In its 

construction stage, the measurands are the stresses for the main elements and the deformation of 

the structure. During its usage stage, the measurands are the stresses of main elements and the 

vibration of the structure. The overview of sensors on structural health monitoring system of 

Shenzhen Vanke Center is shown in Fig. 1, and the sensor details are listed in Table 1. 

There are three kinds of sensors installed in this project, which are those on surface, embedded 

and non-contact. Monitoring the stresses of the steel beams, columns, the optic fiber strain sensors 

were installed in the project, which are all located on surface of the elements such as steel beams 

and steel columns. The installation pictures of the fiber optic strain sensors are shown in Fig. 2. As 

the environment in field is harsh, the protection method for the sensors and wires, which is shown 

in Fig. 3, is to install a steel case for the sensors and to weld steel circuit for the wires. 

 

 

Fig.1 Overview of sensors on SHM of Shenzhen Vanke Center 
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Table 1 Sensor details for Shenzhen Vanke Center 

Monitoring Type of sensor Number Position 

Stress FBG strain sensor 30 Steel beam 

Stress FBG strain sensor 28 Concrete-steel tube column 

Stress FBG strain sensor 6 Steel bar 

Stress FBG strain sensor 6 Steel thimble 

Cable force Intelligent cable 26 Cable 

Temperature FBG temperature sensor 35 Strain sensor 

Deformation Prism and total station 102 The end of long cable 

Comfort level Accelerometer 14 Floor 

 

  
Fig. 2 The fiber optic strain sensors Fig. 3 Steel case and protector for wires 

 
 
To monitor the force of the cables, the intelligent cables were used in the project. The 

intelligent cables belonged to the fiber optic strain sensors, the intelligent cables should be 

embedded in the cables when the cables are manufactured in the factory. Fig. 4 shows the cable 

with the intelligent cable embedded. The intelligent cable with the fiber optic strain sensor was 

embedded and manufactured with the other steel bars. Further, the wires for transmitting signals 

were connected with the intelligent cables in the factory. At last, the cables with the intelligent 

cables were installed on site (Fig. 5) and therefore the forces of the cables can be detected. 

To monitor the deformation of the structure floors, the total station and prisms were used. In 

this project, the deformation monitoring was only explored during the construction period, which 

can supply the deformation of the structure under different construction loads and guide the 

construction. The total station and the prisms installed on the surface of the structure are shown in 

Figs. 6 and 7. In order to monitor the structural vibration, the accelerometers were used as well. 

The structural vibration considered in this project was the vibration of the floor. So the 

accelerometers were installed on the second floor, the installation of the accelerometer is shown in 

Fig. 8.  
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Fig. 4 Intelligent cables in the factory Fig. 5 Intelligent cables on site 

 
 

  

Fig. 6 The prisms installed in the project Fig. 7 Measuring by total station 

 
 

  

Fig. 8 The accelerometer placed on the floor Fig. 9 The temporary monitoring center 
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2.2 SHM of Shenzhen Bay Stadium 

 
Shenzhen Bay Stadium is open space and bordering along the coastline, which is all located in 

an intensive typhoon affected area. The main purposes of the structural health monitoring on this 

structure are firstly to provide the temperatures in different parts of structure, and secondly to 

choose a properly time to gather up the substructure. Due to its structural complexity and wind 

sensitive characteristic, the vibration of the structure induced by wind load was concerned in this 

structural health monitoring system. In addition, the stress of the important elements and the 

deformation of the important structural part should be concerned in order to give the estimation on 

the safety of the structure and guide the construction. The overview of sensors on the Shenzhen 

Bay Stadium is shown in Fig. 10 and the details for the structural health monitoring system of this 

project are listed in Table 2. 

 

 

Fig. 10 Overview of sensors on SHM of Shenzhen Bay Stadium 

 
 
Table 2 Sensor details for Shenzhen Bay Stadium 

Monitoring Type of sensor Number Position 

Temperature Digital thermal sensor 102 Closing seam 

Stress Vibrating wire extensometer 12 Ring members 

Stress Vibrating wire extensometer 48 Tree-type column 

Stress Vibrating wire extensometer 48 The support of the roof 

Deformation Prism and total station 12 The front part of the steel roof 

Vibration Accelerometers 8 Steel roof and viewing bridge 

Wind speed Anemometer 2 The open fields of structure 
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Fig. 11 Installation of sensors Fig. 12 Sensors implementation 

 
 

  
Fig. 13 Accelerometers with steel case Fig. 14 Temporary acquisition equipment 

 
 

The installation pictures of the fiber optic strain sensors are shown in Figs. 11 and 12. In the 

Fig. 11, it shows a technician who was installing the vibrating wire extensometer. The exactly 

monitoring point was firstly pointed out, and then the vibrating wire extensometer was wired to the 

steel element by two steel pieces. Monitoring the vibration of the structure, the accelerometers 

were used in this project. The installed accelerometers protected with steel case are shown in Fig. 

13. Furthermore, in order to obtain the data from the sensors, the temporary acquisition equipment 

was placed as that shown in Fig. 14. 

 

 

3. Intelligent structural health monitoring methods on stress identification  

 
The method is divided into early-stage preparation part and real-time monitoring part, which is 

shown in Fig. 15. In the early-stage preparation part, firstly, the key region identification and the 

normal region identification are obtained using fuzzy pattern recognition. Secondly, the selected 

normal region identification results are decided using the D-S evidence theory. Thirdly, the 

different fusion coefficients for the key region identification and the selected normal identification 

are assigned using the weighted fusion algorithm. Finally, all the results are saved in the fusion 

center for obtaining the synthesized stress distribution of the key region in real time. In the 

real-time monitoring part, firstly, the key region identification and the normal region identification 
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are acquired using fuzzy pattern recognition. Secondly, the synthesized stress distribution of the 

key region can be obtained with different fusion coefficients. 

The detailed algorithm regarding this method can be found in another journal paper (Teng et al. 

2012). In this paper, the method is proofed by simulating on a real world large steel structure, 

Beijing National Aquatics Center in China. 

 

 

4. Stress Identification to Beijing National Aquatics Center using Fuzzy Sets and 
D-S Theory 

 
4.1 Project description 

 
Beijing National Aquatics Center is known as Water Cube, which is located in the west side of 

landscape avenue of Beijing Olympic park, covers an area of 6.295 hectares. The accurate size of 

the outside of structure is 176.5389 m in length, 176.5389 m in width and 29.2789 m in height. 

Asan extremely important structure, a lot of new technology and new material were adopted for 

Beijing National Aquatics Center, which was one of the stadiums for the 2008 Olympic Games 

held in Beijing. Meanwhile, it is significant to install the structural health monitoring system, 

where the loads, environment and its responses were monitored, as well as the health condition of 

the structure were evaluated. Because of the large roof span and complex forces, the sensors of the 

health monitoring system are mainly arranged on the roof (Fu et al. 2007). 

 

 

 

 

Fig. 15 The framework of the stress identification method 
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4.2 Finite element model and division on key region and normal regions 
 
4.2.1 Finite element model of Beijing National Aquatics Center 
The steel structure of Beijing National Aquatics Center is a new polyhedron space steel 

structure, which has the simple composition accompanied withhigh repeatability. There are only 4 

kinds of length of member bars and 3 kinds of different nodes in the polyhedron structure unit, 

while each node has four concurrent member bars. The node and support are rigid connection, and 

the bar is simulated as space beam element. The stress state of components is between the 

concurrent force system of hinged frame and rigid connection of straight diagonal vierendeel truss, 

where the bending, shearing, tension (or compression) and twist are existed at the same time (Fu et 

al. 2007). SAP2000 is used to carry out structure finite element analysis in this paper, where the 

finite element model is shown in Fig. 16. 

 

4.2.2 Division on key region and normal regions 
The division on key region and normal regions is based on the distribution of plastic hinges on 

the super steel roof structure, while an elastic-plastic dynamic analysis was carried out using 

MIDAS/Gen software by Fu et al. (2007). The steel structural members were simulated as 

nonlinear beam-column elements, while a bilinear stress-strain relationship was used for the steel 

material, where the second stage elastic modulus was taken as 3% of initial elastic modulus. The 

elastic-plastic characteristics of the beam-column element were simulated by concentrated 

non-elastic hinges. It was assumed that the non-elastic hinges only occurred at the member ends 

while the part of the member between two hinges always stayed in an elastic stage (Fu et al. 2007). 

The distribution of plastic hinges at the termination of the elastic-plastic dynamic time history 

analysis of the structure subjected to three direction site time histories is shown in Fig. 17 (Fu et al. 

2007), where the larger dots represent the position of plastic hinges. It can be seen from Fig. 17 

that there are more plastic hinges in placement R3 of the roof. The discussion of the stress 

identification using the proposed algorithm is given around the placement R3 of the roof. 

 

 

 

 

Fig. 16 FEM of Beijing National Aquatics Center 

 

 

 

 

图错误!文档中没有指定样式的文字。-1 “水立方”的有限元模型 
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Fig. 17 Plastic hinge distribution of the roof 

 

 
According to structural similarity and the structural unit, the upper chord members in five 

regions are selected and shown in Fig. 18. Region 1 is considered as key region, and the other four 

regions are considered as normal regions. Regarding the placements selection for the strain sensors, 

two reasons are considered. One is the stress value when the structure is subjected to live load, 

which leads to that the member with the maximum stress value is recommended to place the sensor. 

The other one is the influence of the stress value of a member, which leads to that the member 

influencing the variations on stress values of surrounding members is recommended to place the 

sensor. There are 210 strain sensors placed on the steel structure of Beijing National Aquatics 

Center, where 65 strain sensors are placed on the upper chord members (shown in Fig. 18). As the 

sensors shown in Fig. 18, there are 13 strain sensors in the key region and 8 strain sensors in the 

other 4 normal regions respectively. 

 
 

 

 

Fig. 18 The division of the identification region 

The element with sensors 
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Table 3 Establish the standard pattern library and training pattern library 

Library Extracted stress response Number of stress patterns 

Standard pattern Stresses at 0.02s, 0.04s, … , 600s 15000 

Training pattern Stresses at 0.12s, 0.36s, … , 599.88s 2500 

 
 
4.3 Data preparation 

 
4.3.1 The establishment of the sample library 
4.3.1.1 The establishment of the standard pattern library and training pattern library 
The stress values from the sensors located on the members in key region and the members in 

other four normal regions are extracted from the transient time history analysis, where the structure 

is subjected to ground pulsation. The ground pulsation is simulated by white noise in three 

directions, in which the amplitude of white noise are 0.15 g, 0.12 g, and 0.9 g in direction x,y,z, 

respectively, and frequency is ranging from 0.5 Hz to 20 Hz, time duration is 10min, time interval 

is 0.02s. The standard pattern library and the training pattern library are selected and shown in 

Table 3. 

 
4.3.1.2 The establishment of the testing pattern library 
The stress values from the sensors located on the members in key region and the members in 

other four normal regions are extracted from the transient time history analysis, where the structure 

is subjected to seismic force. The testing pattern library is established by the stresses at 0.04s, 

1.24s, … ,598.84s . The number of stress patterns in the testing pattern library is 500. 

The El Centro wave is selected to carry out the transient time history analysis by finite element 

analysis software SAP2000, and the elastic-plastic model of material is bilinear. The acceleration 

time histories in three directions are shown in Figs. 19-21, where the time durations are all 10s, 

time interval is 0.02s. 

 

 

 

Fig. 19 The acceleration time history in X-direction 
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Fig. 20 The acceleration time history in Y-direction 

 
 

 

Fig. 21 The acceleration time history of Z-direction 

 

 

4.4 Stress identification using fuzzy pattern recognition 

 
The modified fuzzy pattern recognition method was proposed (Teng et al. 2012), in which the 

number of the pattern is not only one pattern when the stress identification is processed. There are 

77000 patterns which are used to evaluate the proposed method, because there are 500 patterns in 

testing pattern library and the number of members in key region is 154. In order to verify the 

validity of proposed stress identification using modified fuzzy pattern recognition, the errors on 

these 77000 patterns are compared and discussed. 

The noises are added to the simulated stress time histories in order to compare the stress 

identification errors produced by two different methods, the one uses non-improved fuzzy pattern 

recognition method which is based on one best pattern and the other uses improved fuzzy pattern 

recognition method which is based on multi patterns. In addition, the stress identification is only 

given in key region, in other words, the identified stresses and the known stresses are both from 

the stress of the members in key region.  

The noise levels were 0.05, 0.10, 0.15, and 0.20, which are defined as the ratio of the root mean 

square (RMS) of the noise to the RMS of the stress time series (Chen et al. 2008). 

 

 

Fig. 18 The acceleration time history in Y-direction 
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Fig. 18 The acceleration time history in Y-direction 

 

 
Fig. 19 The acceleration time history of Z-direction 
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Table 4Theproportion of the number of scenarios in identified stresses with less than 10% error 

Noise level 
Non-improved fuzzy pattern 

recognition method 

Improved fuzzy pattern 

recognition method 

0 100.000% 100.000% 

5% 99.330% 99.551% 

10% 95.386% 95.595% 

15% 83.070% 85.071% 

20% 68.325% 66.757% 

 

 

 

  (1) 

The noise is simulated by white noise with mean one, which standard deviation is calculated by 

given noise level and the root mean square of stress time series. The noise levels are from 0 to 

20%, the comparison is proportion, which is the division between the number of scenarios in the 

identified stresses with less than 10% error and the number of scenarios in all the identified 

stresses. The error comparison between non-improved fuzzy pattern recognition method and 

improved fuzzy pattern recognition method is shown in Table 4. It can be seen from Table 4 that 

the recognition errors using improved fuzzy pattern recognition method is only better than the 

recognition errors using non-improved fuzzy pattern recognition method in a small range, 

especially when the noise level is 15%. That is to say, in the case of the low level of noise, using 

improved fuzzy pattern recognition method can effectively identify the stress in key region, but 

when the level of noise is high, the reliability of identification result can withstand certain 

questioning. 

 

4.5 Stress identification using D-S evidence Theory 

 
The identification result using measurements from key region is very ideal under the case with 

no noise from the above analysis, however, the reliability of the identification results reduced 

rapidly by increasing in the noise level. Though the errors are decreased when the improved fuzzy 

pattern recognition method is used, the errors of the identification results with high noise level are 

still not ideal. The D-S evidence theory is used to improve the reliability of recognition results 

under high noise level. 

 

4.5.1 Discussion on the identification results influenced by noise 
The noises are added to the simulated stress time histories in order to compare the stress 

identification errors using strain measurements from key region and the stress identification errors 

using strain measurements from not only key region but also other four normal regions. In addition, 

the stress identification in key region is still the error comparison content. The noise levels are 

from 0 to 20%, the comparison is proportion, which is the division between the number of 

scenarios in the identified stresses with less than 10% error and the number of scenarios in all the 

RMS(noise)
Noise level= 100%

RMS(time series)

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identified stresses. The error comparison between those from the key region and the others from 

key and normal regions is shown in Table 5. 

It can be seen from Table 5 that the identification result with fusion is better than that with no 

fusion. The identification result is much better with increasing in noise level. When the noise level 

is 15%, the proportion of the result which the identification error is less than 10% using the 

method with fusion is 94.14%.Itis explainable that the reliability of identification result can still 

meet the requirement of the engineering practice under the high noise level when adopting the 

method of information fusion. 

 

4.5.2 Discussion on the identification results influenced by sensor in fault 
Considering the instrumentation of the structural health monitoring system and installation of 

sensors, the identification results influenced by sensor in fault are discussed here. In the real 

project application, where the sensor in fault may occur, the robustness of the proposed method 

should be known clearly, while the practicability of the proposed method can be proofed.  

 

 

 
Table 5 The proportion of the number of scenarios in identified stresses with less than 10% error 

Noise level Identification result with no fusion Identification result with fusion 

0 100.000% 100.000% 

5% 99.551% 99.699% 

10% 95.595% 98.208% 

15% 85.071% 94.139% 

20% 66.757% 84.177% 

 

 

 

Fig. 22 The distribution of identification error with only one sensor out of work 
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Fig. 23 The distribution of identification error with three sensors out of work 

 
The error distribution of identification result, which is shown in Fig. 22, is under the condition 

that only one sensor is out of work in key region and the other sensors are disturbed by noise in 

10% noise level. The error distribution of identification result, which is shown in Fig. 23, is under 

the condition that three sensors are out of work in key region and the other sensors are disturbed 

by noise in 10% noise level.  
It can be seen from these two figures, when there is sensor in fault, the proportion of the result, 

which the identification error is less than 5%, using the method with fusion is greater than that 

using the method with no fusion. To sum up, when the sensor cannot measure because of its fault, 

the reliability of identification can be improved by adopting the method with information fusion. 

The advantage of information fusion method is gradually obvious in increasing number of the fault 

sensors. 

 

 

5. Conclusions 

 
This paper has presented the applications to two real world large space structures, such as the 

structural health monitoring system of Shenzhen Vanke Center and the structural health monitoring 

system of Shenzhen Bay Stadium. For each structural health monitoring system application, the 

descriptions of the structure, the purpose of structural health monitoring system, the measurement 

equipment and the benefits of using structural health monitoring system technologies in the project 

are listed and discussed in details. The presented real world structural health monitoring systems 

can offer the references to design structural health monitoring system for a project. As following, 

one intelligent structural health monitoring method is presented, including the intelligent methods 

to stress identification on the locations free of strain sensors. With the simulation on Beijing 

National Aquatics Center in China, the feasibility of the method when applying to complex 

large-span space structure is proofed.  
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