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Abstract.    The unscented Kalman filter (UKF) has been developed for nonlinear model parametric 
identification, and it assumes that the model parameters are symmetrically distributed about their mean 
values without any constrains. However, the parameters in many applications are confined within certain 
ranges to make sense physically. In this paper, a constrained unscented Kalman filter (CUKF) algorithm is 
proposed to improve accuracy of numerical substructure modeling in hybrid testing. During hybrid testing, 
the numerical models of numerical substructures which are assumed identical to the physical substructures 
are updated online with the CUKF approach based on the measurement data from physical substructures. 
The CUKF method adopts sigma points (i.e., sample points) projecting strategy, with which the positions 
and weights of sigma points violating constraints are modified. The effectiveness of the proposed hybrid 
testing method is verified by pure numerical simulation and real-time as well as slower hybrid tests with 
nonlinear specimens. The results show that the new method has better accuracy compared to conventional 
hybrid testing with fixed numerical model and hybrid testing based on model updating with UKF. 
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1. Introduction 
 

Real-time hybrid testing is a combination of numerical simulation and physical testing in 
real-time, which is increasingly being recognized as a powerful emerging technique that offers the 
opportunity for evaluation of large scale civil structures subjected to dynamic loading. In recent 
decades, a great deal of progress has been made in real-time hybrid testing such as numerical 
integration algorithms, loading control methods, actuator delay compensation and testing error 
analysis (Nakashima et al. 1992, Dorka 2002, Bayer et al. 2005, Jung and Shing 2006, Wu et al. 
2007, Bursi et al. 2008, Ahmadizadeh et al. 2008, Mercan et al. 2008, Carrion et al. 2008, 
Mosqueda et al. 2007). However, researchers generally might still encounter a number of 
difficulties when conducting hybrid testing for complex structures like high-rise buildings or 
large-scale bridges. One of the challenging issues is how to model the numerical substructure, 
when the whole structure exhibit strong nonlinearity subjected to extreme loading like strong 
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earthquake and it is not economically realistic to physically test all the critical parts of the structure. 
Even sophisticated finite element modeling is available, people still often argue that there is little 
sense to do physical tests if the finite element approach is reliable. 

A convenient way to improve the reliability of numerical modeling in hybrid testing is online 
model updating based on test data from experimental substructures. Yang and Nakano (2005) 
developed a neural network algorithm to predict online the restoring force of numerical 
substructures using experimental data in a hybrid test. But the neural network method has a 
number of difficulties to be overcome when it is to be used for large scale structures; these 
difficulties include lack of physical meaning and adaptability of the network trained based on a 
selected set of data. Wang et al. (2011) used least square method to update the elasto-plastic model, 
and its effectiveness was verified by actual tests with steel buckling-restrained braces as physical 
substructures. For the sake of computational efficiency, the parameters of the bilinear model were 
actually estimated using linear regression with least square criterion. But the bilinear model is 
somewhat oversimplified for civil engineering structures, and direct use of least square method for 
nonlinear parameter identification will face the challenge of computational efficiency. 

Kalman filter provides a general framework for recursive estimation of system states or 
parameters for linear systems. It may be extended to be applied to nonlinear systems through so 
called extended Kalman filter (EKF) based on linearization. The deficiency for highly nonlinear 
systems of EKF can be relieved by unscented Kalman filter (UKF) (Julier et al. 2000). The core 
idea of UKF is to adopt unscented transform technique to propagate mean and covariance. 
Through unscented transform, which is a type of deterministic sampling approach, the mean and 
covariance of nonlinear transformation of a random variable have up to third-order accuracy 
(Julier et al. 2000, Simon 2006). The other advantage of UKF is its high computational efficiency, 
as it does not need to calculate Jacobian and Hessian matrices of a nonlinear model which is 
necessary in EKF. The UKF has been applied in civil engineering to update Bouc-Wen hysteresis 
model in real-time (Song and Dyke 2013a,b). For hybrid simulation, Zhang (2010) used UKF to 
update numerical model and its effectiveness was confirmed by numerical simulation as well as an 
actual test with a steel spring as the experimental substructure (Wang and Wu 2012). The UKF was 
also validated by Hashemi et al. (2014) in a hybrid test with a rotational spring as the nonlinear 
part of the physical substructure. 

But the standard UKF does not take into account any constraint on state variables or parameters. 
The constraint can be viewed as a remediation for inaccurate system modeling which is often the 
case in practice. Many approaches have been developed for UKF of constrained problems or called 
constrained UKF (CUKF) in recent years (Vachhani et al. 2006, Kandepu et al. 2008, Kolas et al. 
2009, Chatzi et al. 2010, Mandela et al. 2012). In this paper, an improved CUKF is proposed 
based on sample point replacement method, and is used for model updating in hybrid testing. 

 The remainder of this paper is organized as follows. The improved CUKF is proposed in 
Section2. Then the effectiveness of CUKF itself as a parameter estimation method (without 
application to hybrid simulation) is revealed through numerical simulation in Section 3, and the 
effect of CUKF applied to hybrid simulation is investigated numerically in Section 4. Finally, the 
effect of CUKF is validated with slower hybrid test in Section 5.1 and with real-time hybrid test in 
Section 5.2. 
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2. Improved constrained UKF 
 

Compared to existing CUKF, the approach proposed in this paper features the following two 
aspects: (i) in prediction step, sigma points (i.e., sample point) violating bound constraints are 
moved onto the bounds, and the relevant sigma points within the boundary are moved 
correspondingly to retains the symmetry of the new set of sigma points; (ii) in correction step, the 
state updating equation is used to generate transformed sigma points, and those transformed sigma 
points that violate bound constraints are projected to constraints boundary only when the updated 
state estimate exceeds the boundary. The details of above proposals are described as follows. 

Consider a nonlinear dynamic system described by following discrete state-space equation and 
measurement equation as 

 1 ,k k k kf  x x u v                           (1) 

 1 1 1 1,k k k kh    y x u w                        (2) 

where x ∈ Rn is the n-dimensional vector of system state, uk is the known input, y ∈ Rm is the 
m-dimensional vector of measurement, v and w are Gaussian white noises with zero mean and 
covariance matrices Q and R, respectively, and k represents the k-th time step. The major task we 
want to accomplish is to estimate the system state, i.e., calculate the mean as well as covariance of 
system state at the (k+1)-th step, based on the state estimation at the k-th step, measurements at the 
current (k+1)-th step, and the information on state constraints. Just like standard UKF method, 
improved constrained UKF also includes the prediction and correction steps. 

 
2.1 Prediction step 
 
Assume |ˆ k kx  is the state estimate, i.e., the estimate of mean of state, and |k kP  the 

corresponding covariance matrix at the k-th step. According to the standard UKF, a set of 2n+1 
sigma points | ,k k iX  are chosen symmetrically about |ˆ k kx  as  

      | , |ˆk k i k kX x ， 0i                            (3) 

| , | , ,ˆk k i k k k i k i X x s ， 1,2, ,2i n                    (4) 

where 

, ( )k i n   ， 1,2, ,2i n                      (5) 

     , |k i k k
i

s P ， 1,2, ,i n                       (6) 

 , |k i k k
i n

 s P ， 1, 2, ,2i n n n                    (7) 

where  |k k
i

P represents the i-th column vector of the matrix square root of |k kP , and ,k i  is a 

algorithmic parameter denoting the sampling step size. Associated weights of sigma points are 
computed with 
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        ,0kW
n







                                 (8) 

,

1

2( )k iW
n 




 ， ni 2 ,,2 ,1                          (9) 

κ is a scaling parameter which can be any number providing that (n + κ) ≠ 0. If κ is a negative 
value, the covariance matrices may become indefinite in some cases (Julier et al. 2000).  

In many applications of UKF as well as Kalman filter, the state estimates or sigma points 
exceed certain range and become physically meaningless as they evolve with time. The reason for 
this may be attributed to modeling errors or high noises. There are already a number of proposals 
to handle this issue. Mandela et al. (2012) describes several CUKF approaches, all of them 
except one are asymmetric replacement of sigma points. Asymmetric placement of sigma points 
may result in biased estimates. Unbiasedness can be retained if the symmetric scaled unscented 
transformation (Julier et al. 2002) is employed. However, when the distance between the sigma 
points and mean value is scaled by a factor  so that all the points are constrained within the state 
boundary, the weights are divided by 2 correspondingly. Then weights may grow too large and 
cause numerical difficulty if the mean approaches the state boundary.    

To avoid the numerical difficulty of scaled unscented transformation and retain the symmetry 
of sigma points, we propose a simple approach in which the sigma points violating bound 
constraints are placed back onto the bounds along the direction to the central sigma point, and at 
the same time the sigma points that are symmetry to those out of boundary are moved 
correspondingly so that the symmetry remains for the new set of sigma points. This is illustrated 
in Fig. 1(a) for two-dimension case. The proposed replacement of sigma points is different from 
the symmetric placement described by Mandela et al. (2012), where all the replaced sigma points 
have the same sampling step size  relative to the central sigma point, which means that many 
pairs of replaced sigma points may fall into the boundary, contrasting that at least one point of 
each of these pairs falls on the boundary as proposed herein. The symmetric approach of Mandela 
et al. (2012) may lead to too large weight value when the mean value is very close to the 
boundary, which is similar to the scaled UKF. 

The expressions of the proposed sigma point replacement are derived as follows. The sigma 
points are determined still using Eq. (4), but the sampling step size k,i  for those exceeding 
constrained bounds as well as their symmetric counterparts is calculated with following equation. 

C C
, , , ,min( , )k i k n i k i k n i      ， 1,2, ,i n                    (10) 

where 

C U L
, , ,min( , )k i k i k i   ， 1,2, ,2i n                      (11) 

              
,

L
, L | ,

   1:
( ) 0

ˆmin ( ), ( ) ( ) ( )
k i j

k i j k k j k i j
j n

n 




    
s

x x s
， 1,2, ,2i n          (12) 

 
,

U
, U | ,

   1:
( ) 0

ˆmin ( ), ( ) ( ) ( )
k i j

k i j k k j k i j
j n

n 




    
s

x x s
， 1,2, ,2i n             (13) 

xU and xL represent the upper and lower bound of constrained vectors, and the subscript j represents 
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the j-th element of corresponding vector. 
The weights of all of sigma points are adjusted by using a linear weighting method with respect 

to corresponding sampling step θk,i proposed by Vachhani et al. (2006) and re-written in notations 
of this paper as 

,0 ,0k kW a b b   ， 0i                           (14) 

, ,k i k iW a b  ， 1,2, ,2i n                          (15) 

where 

2 1

2( )[ (2 1) ]k

a
n S n n


 




   
                      (16) 

1 2 1

2( ) 2 ( )[(2 1) ]k

b
n n n n S


  


 

    
                 (17) 

 
2

,
1

n

k k i
i

S 


                               (18) 

It can be shown that the proposed replacement of sigma points results in a first-order accuracy 
for the unscented transformation of mean value if  = 0.5; the proof is given in Appendix A. 
Therefore, we set κ = 0.5 in this paper. 

Each sigma point | ,k k iX  is transformed through the state-space equation to yield sigma point 

of state prediction 1| ,k k iX  as 

 C
1| , | ,k k i k k if X X ， 0,1,i n ,2 .                    (19) 

Then the mean 1|ˆ k kx  and its error covariance matrix 1|k kP  of the predicted state estimate are 

calculated according to the standard UKF method as 

2

1| , 1| ,
0

ˆ
n

k k k i k k i
i

W 


x X                            (20) 

  
2 T

1| , 1| , 1| 1| , 1|
0

ˆ ˆ + 
n

k k k i k k i k k k k i k k k
i

W    


  P X x X x Q                (21) 

 
2.2 Correction step 
 
In order to obtain the updated estimate 1| 1ˆ k k x and its covariance matrix 1| 1k k P  given new 

measurement 1ky , we first need to calculate the predicted measurement sigma points 1| ,k k iY , the 

mean 1|ˆ k ky and covariance matrix yy, 1|k kP of predicted measurement and the cross covariance 

matrix xy, 1|k kP  according to the standard UKF method as  

1| , 1| ,( )k k i k k ih Y X ， ni 2,,1,0                       (22) 
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U 1( )x| 1ˆ( )k kxL 1( )x

L 2( )x

| 2ˆ( )k kx

| ,1 k kX

1( )x

2( )x

| ,2 k kX

| ,3k kX

C
| ,2k kX

| ,4k kX

U 2( )x

C
| ,1k kX

| ,0

C
| ,0( )

k k

k k

X

X

C
| ,3k kX C

| ,4k kX

U 1( )xL 1( )x 1( )x

2( )x

U 2( )x

L 2( )x

C
1| 1,2k k X

1| 1,0k k X

C
1| 1,0k k X

1| 1,2 k k X

C
1| 1,1k k X

C
1| 1,4k k X

1| 1,4k k X

C
1| 1,3k k X

1| 1,3k k X

1| 1ˆ k k x

1| 1 1ˆ( )k k x

1| 1 2ˆ( )k k x

1| 1,1 k k X

2

1| , 1| ,
0

ˆ
n

k k k i k k i
i

W 


y Y                             (23) 

  
2 T

yy, 1| , 1| , 1| 1| , 1| 1
0

ˆ ˆ
n

k k k i k k i k k k k i k k k
i

W     


   P Y y Y y R               (24) 

       
2 T

xy, 1| , 1| , 1| 1| , 1|
0

ˆ ˆ
n

k k k i k k i k k k k i k k
i

W    


  P X x Y y                 (25) 

The Kalman filter gain can then be obtained through 

1
1 xy, 1| yy, 1|k k k k k


  K P P                         (26) 

For unconstrained system states, the UKF method adopts state correction equation of the 
standard Kalman filter to calculate the mean and covariance of the corrected state. For the 
constrained state estimate, Vachhani et al. (2006) employs the sophisticated constrained nonlinear 
optimization method to calculate the mean and covariance at correction step. A more 
straight-forward way to deal with the constraining issue is to simply project the transformed sigma 
points onto the boundary if the updated estimate exceeds the constraint. In more details, the 
transformed sigma points are produced with Kalman updating equation as  

      1| 1, 1| , 1 1 1| ,k k i k k i k k k k i       X X K y Y ， 0,1, ,2i n              (27) 

 
 
 
 

 

(a) Prediction step                         (b) Correction step 

Fig. 1 Sigma points replacement with state constraints in CUKF 
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Note that the sigma points in Kolas et al. (2009) are augmented with process errors and 
measurement errors, although the expression of transformed sigma points therein is similar to Eq. 
(27). With 1| 1,k k i X  calculated by Eq. (27), the state update 1| 1ˆ k k x and its covariance 1| 1k k P  

can be calculated using following equations. 

2

1| 1 , 1| 1,
0

ˆ
n

k k k i k k i
i

W   


x X                             (28) 

    
2 T T

1| 1 , 1| 1, 1| 1 1| 1, 1| 1 1 1 1
0

ˆ ˆ
n

k k k i k k i k k k k i k k k k k k
i

W            


    P X x X x Q K R K        (29) 

It can be proved that the above equations give exactly the same result of updated mean and 
covariance with the standard UKF. The proof for the covariance expression is given in Appendix B 
of this paper, while that for the mean is the same as in Kolas et al. (2009).  

If the state mean estimate violates the bound constraints, the sigma points outside boundary are 
projected to the boundary, as shown in Fig. 1(b). Let C

1| 1,k k i X denote the replaced sigma point, 

then its substituting 1| 1,k k i X in Eqs. (28) and (29) gives the corrected state update and its 

covariance. 
 

 
3. Numerical example of model parametric estimation 

 
Consider the Bouc-Wen hysteretic model described by (Wen 1976) 

(1 )r kd kz                                  (30) 

1
-

n n
z v v z z v z                               (31) 

where r is restoring force; d, v, z are displacement, velocity and hysteretic displacement, 
respectively; k, α, β, γ and n are parameters controlling the size and shape of hysteretic loop; k and 
α can be interpreted as initial stiffness and second stiffness coefficient, respectively, for n= .  

The parameters to be estimated are k, β, γ, n and α. With z as an intermediate variable, the 
system state vector is defined as x = [x1, x2, x3, x4, x5, x6]

T = [z, k, β, γ, n, α]T, the system 
measurement is restoring force, i.e., y = r, and the input is displacement d and velocity v. Then 
continuous state equation is expressed as 

5 51
1 3 1 1 4 1

2

3

4

5

6

                     0

                     0
( , )

                     0

                     0

      

x xx z v x v x x x v x
x k

x
g v

x

x n

x






     
   
   
   

       
   
   
   

     

x x v

 



 



 

                0

 
 
 
 

 
 
 
 
  

v               (32) 

By applying a numerical integration method to the above equation, the discrete state 
equation can be expressed as 
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 
( 1)

1 , g( ( ), )d
k t

k k k k k k kk t
f v 

 

 
    x x u v x x v                (33) 

and the measurement equation is expressed as  

 1 1 1 1 1 6, 1 2, 1 1 6, 1 2, 1 1, 1 1, (1 )k k k k k k k k k k k ky r h w x x d x x x w                 x u      (34) 

Ikhouane et al. (2007) have given parameter constraints of the classic Bouc-Wen model in 
terms of the bounded input-bounded output (BIBO) stability requirements. The model output can 
be unstable, for β + γ < 0, β < 0 or n < 1. Meanwhile, the hysteretic model will lose the actual 
physical meaning if the initial stiffness k < 0 and the second stiffness coefficient α > 1 for 
structural materials typical of softening behavior. So, the bound constraints of the parameters for 
CUKF are k ≥ 0, β ≥ 0, γ ≥ - β, n ≥ 1, and 0 ≤ α≤ 1. 

The true values of the parameters are k = 135 kN/mm, β = 0.2, γ = 0.2, n = 1 and α = 0.02, but 
their initial guess are k = 115 kN/mm, β = 0.5, γ = 0.5, n = 2 and α = 0.1. The initial value of z is 
zero. The measurement noise wk+1 is the discrete Gaussian white noise whose standard deviation is 
2% of that of true restoring force, which is equal to 0.84% of the peak restoring force. The 
observation noise covariance Rk+1 is assumed 1.5 kN2, and the process noise covariance Qk = 10-6 
I6, and the initial state estimate error covariance P0 = diag (10-6, 10, 10, 10, 10-2, 10-2). The 
displacement input is taken from data of a previous hybrid test with BRB (Wang et al. 2011), and 
the velocity input is calculated with forward difference method. The time histories of the inputs are 
shown in Fig. 2. 

The parameters as well as intermediate variable z with CUKF and UKF are shown in Fig. 3. It 
is seen that all the parameter estimates approach true values at the end of time. Compared with the 
UKF method, the fluctuation of all the parameters except n is significantly reduced at the early 
stage and the speed of convergence of parameters n and  are increased when the CUKF is 
employed. 
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Fig. 2 Displacement and velocity inputs of Bouc-Wen model 
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Fig. 3 Estimated parameters of Bouc-Wen model 
 
 

The restoring force r, elastic force er kd , and hysteretic force h (1 )r kz   with CUKF 
and UKF are compared with corresponding measurement and exact value, as shown in Figs. 4-6. 
The responses with initial guess values of the model parameters are also listed and denoted by 
“Initial” in these figures. For quantitative evaluation of the model updated errors, the Root Mean 
Square Deviation (RMSD) and the Normalized Relative Errors (NRE) are defined respectively as 

   2 2true true

1 1

RMSD
k k

k i i i
i i

F F F
 

                      (35) 

 true true

1,...,
NRE = max ( )k k k i

i N
F F r


                         (36) 

RMSDk can be interpreted as average relative error up to the k-th step while NREk can be 
thought of as the instantaneous relative error at the k-th step. The RMSDs of the restoring force, 
elastic force and hysteretic force are shown in Figs. 4(b), 5(b) and 6(b), respectively. The NREs are 
shown in Figs. 4(c), 5(c) and 6(c).  

Fig. 4 shows that the restoring force can be well approximated by both UKF and CUKF. 
However, the errors of components of the restoring force, i.e., the elastic force and hysteretic force, 
are significantly reduced by CUKF compared to UKF, which is seen from Figs. 5 and 6. The 
RMSDs and NREs of both CUKF and UKF are much smaller than those of measurement as shown 
in Figs. 4(b) and 4(c), indicating a good noise filtering effects of the two methods. 
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Fig. 4 Restoring forces and error responses 
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Fig. 5 Elastic forces and errors responses 
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Fig. 6 Hysteretic forces and errors responses 
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4. Numerical simulation of hybrid testing with model updating 
 

Consider a structure of two-degree-of-freedom as shown in Fig. 7. For hybrid testing, the 
restoring force of the first degree of freedom is selected as physical substructure, and the 
remainder of the system is numerical substructure. With the inter-story responses as unknowns, the 
equation of motion is established as 

E E E E
1 2 2 1 1 2 21 1 1 1

g, 1N N N N
2 2 2 2 21 1 1 1

0 1( )

0 0( )
k k k k

k

k k k k

m m m c m m ma v r d
a

m m c m ma v r d
   


   

                                 
                 

      (37) 

or in a more compact form as 

+1 +1 +1 +1k k k k  Ma Cv r F                            (38) 

where a, v and d are inter-story acceleration, velocity and displacement, respectively; ag is the 
acceleration of ground motion; r is the restoring force with Bouc-Wen model; the superscript E 
represents the physical substructure, and N represents the numerical substructure. We assume the 
numerical substructure has the same model of restoring force as experimental substructure. In 
hybrid testing, the parameters of the experimental substructure are estimated at each time step of 
numerical integration using test data and UKF or CUKF methods described in last two sections, 
and then the numerical substructure is updated at the same step with these parameter estimates. 

The masses at the two degrees of freedom are m1 = m2 = 0.2×106 kg, the elastic stiffness of the 
structure are k1 = k2 =135 kN/mm, and the viscous damping coefficients are c1 = c2 = 0.3 
kN/(mm/s). The resulting structural periods are T1 = 0.3913 s and T2 =0.1495 s, and damping ratios 
are ζ1 = 0.0178 and ζ2 = 0.0467. 

The seismic input is El Centro (NS 1940) earthquake record which peak acceleration scaled to 
1000 mm/s2. The fourth-order Runge-Kutta method is used for numerical integration with time 
interval of 0.01s. The standard deviation of measurement noise wk+1 is 2.4% of that of true 
restoring force, which is equal to 0.8% of the peak restoring force. The parameters for UKF and 
CUKF are the same as the numerical example in last section. To avoid large errors or even possible 
divergent responses with UKF, the estimated parameters exceeding constraints take boundary 
values for numerical substructure updating in this and next sections.   

 
 

 

Fig. 7 Schematic of two-degree-of-freedom nonlinear system 
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The parameter identification results are shown in Fig. 8; the restoring force and its components 
of the experimental substructure are as shown in Fig. 9. Here again we see the advantage of CUKF 
over UKF in terms of parameter fluctuation and convergence speed; the CUKF has less error of 
elastic and hysteretic forces than UKF. 

The restoring force and inter-story displacement of the numerical substructure are shown in 
Figs. 10 and 11. The RMSDs of the restoring force and inter-storey displacement of the numerical 
substructure are shown in Fig. 12. It is clearly seen from Figs. 10-12 that the responses have large 
errors without model updating; CUKF have fewer errors of displacement and restoring force than 
UKF. Comparison of Figs. 9(a) and 10 shows that the CUKF exhibits more significant effect on 
numerical substructure response than experimental substructure response. This may be attributed 
to parameter fluctuations at the early stage of the time history. The parameter fluctuations do not 
affect experimental substructure much because the optimal nature of UKF and CUKF drives the 
restoring force calculated with estimated parameters to track test data of experimental substructure 
as close as possible. But this is not the case for numerical substructure. 

The numerical simulations are carried out on a laptop with CPU of 2.2GHz. The total 
computation time is about 2s for various cases with input of 20s in last section, and 3s for input of 
30s in this section. 
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Fig. 8 Estimated parameters of hysteretic model 
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Fig. 9 Restoring force and its components of the experimental substructure 
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Fig. 10 Hysteretic loops of the numerical substructure 
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Fig. 11 Inter-story displacement of the numerical substructure 
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Fig. 12 RMSD of restoring force and inter-storey displacement of the numerical substructure 
 

 
5. Experimental verification 
 

A series of hybrid tests in increased time scale and in real time are conducted at Structural and 
Seismic Testing Center of Harbin Institute of Technology (Wang and Wu 2014). Presented below 
are the test of a two-degree-of-freedom structure in slowed down time scale and that of a 
single-degree-of- freedom structure in real time. In both cases, the experimental substructure is a 
buckling restrained brace. 

 
5.1 Hybrid test in increased time scale 
 
The test structure is a two-story frame structure incorporating two all-steel buckling-restrained 

braces (BRBs) as shown in Fig. 13. The BRB on the first floor is selected as physical substructure 
and taken out into the test rig with a MTS actuator as shown in Fig. 14; the remainder of the 
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structure is numerically modeled in the CPU of dSPACE real-time simulation system. The BRB 
specimen has a steel core plate with the length of 1080 mm and cross section of 72×12 mm. The 
outer restraining part is a square steel tube with a cross section of 70×70×4.8 mm. The steel of the 
core plate and restraining tube is Grade Q235 by Chinese design code for steel structures, and its 
nominal Young’s modulus and yield strength are 2×105 MPa and 235 MPa, respectively. 

The numerical integration of equation of motion and numerical model updating are also carried 
out in the dSPACE. Firstly, the displacement of experimental substructure is calculated in dSPACE 
and sent to the MTS testing system. The MTS controller receives it as a measurement signal and 
instantly sends it to the actuator to load the specimen to the target displacement. Then the 
measurements of reaction force and displacement are sent by the MTS back to dSPACE. With the 
experimental data, the parameters of hysteretic model are estimated and used to update the 
numerical substructure in dSPACE. This completes one time step of numerical integration, 
physical loading and model updating, and these will be repeated until the end of the test.   
 
 

 

Fig. 13 Schematic of the braced frame 
 

 

Fig. 14 Photograph of BRB in testing rig 
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Fig. 15 Mechanical model of the two-story braced frame 

 
The mechanical model of the braced frame can be represented by the two-degree-of-freedom 

system as shown in Fig. 15. The mass m1 = m2 = 3×106 kg; the frame is assumed elastic and story 
stiffness kf1 = kf2 = 50 kN/mm; the calculated initial stiffness of the BRB is 130 kN/mm; the 
resulting structural periods are T1 = 1.381s and T2= 0.5275s; Rayleigh damping is adopted and the 
viscous damping coefficients c1 and c2 are so determined that modal damping ratio ζ1 = ζ2 = 0.02. 
The seismic input is El Centro (NS, 1940) earthquake record whose peak acceleration is scaled to 
100 mm/s2. The fourth-order Runge-Kutta method is used for numerical integration with time 
interval of 0.01s. The loading time for one step is 0.1s, that is to say, the loading speed is scaled 
down to 1/10 of real time. 

The Bouc-Wen model is assumed for the BRBs. The bound constraints of the parameters are k 
≥ 0, β ≥ 0, γ ≥ - β, n ≥ 1, and 0 ≤ α ≤ 1. The initial values are z = 0, k = 130 kN/mm, β = 0.5, γ = 0.5, 
n = 2 and α = 0.1. The observation noise covariance Rk+1 is assumed 1.5 kN2, the process noise 
covariance Qk = 10-7 I6, and the initial state estimate error covariance P0 = diag (10-6, 100, 10, 10, 
10-1, 10-2). For parameter estimation, the measurement is axial force of the BRB, and the input is 
measured displacement and velocity calculated from the displacement data. 
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Fig. 16 Axial hysteretic loops of the physical and numerical BRBs 
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Fig. 17 Axial restoring forces of the physical and numerical BRBs 
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Fig. 18 Axial deformation of the physical and numerical BRBs 
 
 
 
Table 1 RMSD of restoring forces and displacements for the physical and numerical BRB 

Test type 
Restoring force of BRB Displacement of BRB 

Physical  Numerical Physical Numerical 

Initial 0.26 0.34 0.30 0.54 

CUKF 0.12 0.20 0.14 0.25 
UKF 0.19 0.28 0.23 0.34 
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Fig. 19 Schematic of the one-story braced frame 
 

 

Fig. 20 Mechanical model of the one-story braced frame 
 
 
Figs. 16-18 show the axial hysteretic loops, axial restoring forces, and displacements of the 

physical and numerical BRBs, respectively. The results denoted by “UKF” and “CUKF” are those 
from the model that is being updated online; those denoted by “initial” refers to the results with 
initial guess of parameters. The reference solutions are pure numerical results obtained using the 
identified parameters at the end of time histories. It is seen that the responses with fixed initial 
parameters deviate significantly from reference responses; the responses with CUKF are closer to 
the reference than those with UKF. The error indices RMSDs of the whole time histories are listed 
in Table 1. It is clearly seen that the errors of CUKF are less than UKF as well as those with initial 
parameters. 

 
5.2 Real-time hybrid test 
 
The test structure is two one-story frames connected by a rigid bar as shown in Fig. 19; its 

mechanical model is depicted in Fig. 20. The masse is m = 3×106 kg; the total lateral stiffness of 
the frame is kf = 100 kN/mm; damping ratio is ζ = 0.02; the period of the system is T = 0.6035s.  
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Fig. 21 Hysteretic loops from real-time hybrid testing 

 

 

Two BRBs are incorporated into the frames that are assumed elastic. One of the BRBs is taken 
as experimental substructure and the other as well as the frames is treated as numerical 
substructure. The experimental BRB, initial parameters of Bouc-Wen model of the BRBs, seismic 
input, and numerical integration are the same as those in last subsection. But the loading of the 
experimental substructure is in real time. Note that there is an actuator delay between displacement 
command and its realization (or measurement), and the parameters of the hysteretic model of BRB 
are estimated using measured displacement. 

The hysteretic loops of the physical BRB and their numerical counterparts with parameters 
determined by different approaches are shown in Fig. 21. In this figure, “Reference” refers to the 
cases in which the restoring force of numerical BRB directly reads the data of experimental BRB, 
as if there was no numerical BRB. In other cases, the restoring force of numerical BRB is 
calculated with computational displacement input and estimated Bouc-Wen parameters. It is seen 
again that the responses by CUKF are the closest to reference solutions, and the numerical 
hysteretic loops with the CUKF track the experimental data best. The RMSD of numerical 
restoring force with CUKF is 0.55, which is less than 0.64 with UKF, and 0.69 with fixed initial 
parameters. The large RMSD values are probably caused by the actuator delay between 
displacement command (or computational displacement) and displacement realization. The delay 
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of the actuator is around 0.06s. If the restoring forces are calculated with measured displacements, 
then the RMSD are 0.0602, 0.0657, and 0.1726 for CUKF, UKF and fixed initial parameters, 
respectively; CUKF is still the best. It is seen that time delay has significant impact on the results 
of real-time hybrid simulation, and hence hybrid tests with delay compensation techniques are 
needed in future to validate the effect of CUKF in the cases that errors from delay are minimized. 

The time histories of the restoring force of BRBs and the displacement of structure are shown 
in Figs. 22 and 23, respectively. It is also seen that the results of CUKF match the reference 
responses best in general, although the differences between different cases are not as 
distinguishable as in the hysteretic loops. 
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Fig. 22 Axial restoring forces of the physical and numerical BRBs 
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Fig. 23 Displacement response of the structure 
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6. Conclusions 
 
A constrained UKF is proposed in order to improve parameter estimation. Compared to existing 

CUKFs, the proposed method has two improvements: (i) at prediction step, sigma points violating 
bound constraints are moved onto the bounds, and the relevant sigma points within the boundary 
are moved correspondingly to retains the symmetry for the new set of sigma points; this leads to a 
first-order accuracy of unscented transformation; (ii) at correction step, the state updating equation 
is used to generate transformed sigma points, and those transformed sigma points that violate 
bound constraints are projected to constraint boundary only when the updated state estimate 
exceeds the boundary. The effectiveness and efficiency of the proposed CUKF are validated by 
numerical simulation and actual hybrid tests with a BRB as experimental substructure. 
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Appendix A: Proof of accuracy of mean with symmetrically replaced sigma points 

 
For a n-dimensional random vector x = [x1, x2, …, xn]

T, let T
1 2[ ,  ,  ,  ]nx x xx  and P denote its 

mean and covariance, respectively. Below we will prove that CUTy , the approximation of the 
mean of another random vector y, which is nonlinearily related to x through y = f (x), has accuracy 
of first-order with the proposed constrained unscented transformation method.  

Defining ( )ix as the difference between the ith sigma point and the mean, i.e., ( ) ( )i i x x x , 
we obtain the nonlinear transformation ( )iy of the point through Taylor series expansion around x as 

( ) ( ) ( )

( ) ( ) 2 31 1
( ) ( )

2! 3!
i i i

i if f f f f     
x x x

y x x D D D
  

              (A1) 

where the operator ( )i

k f
x

D


 is defined as 

( )

( )

1

|i

k
n

k i
j

j j

f x f
x 



 
    
 x xx

D


                        (A2) 

We first consider the unconstrained case. Assuming =0.5 and with Eqs. (A1), (14)-(18), and 
(23), we have 

( ) ( ) ( )

( ) ( ) ( )

( )

2
( )

CUT
0

2
2 3

1

2
2 3

1

1 1 1 1
       ( ) ( )

2( ) 2( ) 2! 3!

2 1 1 1 1
       ( )

2( ) 2( ) 2! 3!

1 1
       ( )

2( ) 2!

i i i

i i i
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i
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n n
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f f f f

n n

f f
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
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





          
          

  

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  

  







x x x

x x x

x

y y

x x D D D

x D D D

x D ( ) ( )

2
2 3

1

1

3!
i i

n

i

f f


    
  


x x

D D

     (A3) 

Because the symmetric placement of sigma points, i.e.,  

( ) ( )i n i x x  ， 1,2, ,i n                       (A4) 

it follows, for any integer k > 0, that 

( )

2
2 1

1
1

i

n
k

n
i

f




 x
D 0


                           (A5) 

Then Eq. (A3) can be written as 

( ) ( ) ( )

2 2
2 4 6

CUT
1 1

1 1 1 1 1
( )

2( ) 2! 2( ) 4! 6!
i i i

n n

i i

f f f f
n n  

         
 x x x

y x D D D
  

      (A6) 

The second term on the right side of the above equation can be written as 
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              (A7) 

Now suppose, among first n sigma points, there are m violating bound constraints and they are 
denoted by lc (0 ≤ lc ≤ n, c = 1,2,…,m, m ≤ n). Then the second term of Eq. (A6) should be 
replaced by 
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Immediately, it follows 
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  x x x xy x P P P     (A9) 

The exact mean y  obtained directly from Taylor series expansion is 

2
4 6

, 1

1 1 1
( ) |

2 4! 6!

n

jk
j k j k

f
f E f E f

x x 


             x x x xy x P D D            (A10) 

Comparing Eqs. (A9) and (A10), we clearly see that the true mean and the mean calculated by 
the constrained unscented transformation agree each other to the first order. 
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Appendix B: Proof for updated covariance calculated with transformed sigma 

points 
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