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Abstract.    Real-Time Hybrid Simulation (RTHS) is a novel approach conceived to evaluate dynamic 
responses of structures with parts of a structure physically tested and the remainder parts numerically 
modelled. In RTHS, delay estimation is often a precondition of compensation; nonetheless, system delay 
may vary during testing. Consequently, it is sometimes necessary to measure delay online. Along these lines, 
this paper proposes an online delay estimation method using least-squares algorithm based on a simplified 
physical system model, i.e., a pure delay multiplied by a gain reflecting amplitude errors of physical system 
control. Advantages and disadvantages of different delay estimation methods based on this simplified model 
are firstly discussed. Subsequently, it introduces the least-squares algorithm in order to render the estimator 
based on Taylor series more practical yet effective. As a result, relevant parameter choice results to be quite 
easy. Finally in order to verify performance of the proposed method, numerical simulations and RTHS with 
a buckling-restrained brace specimen are carried out. Relevant results show that the proposed technique is 
endowed with good convergence speed and accuracy, even when measurement noises and amplitude errors 
of actuator control are present. 
 

Keywords:  real-time hybrid simulation; delay compensation; online delay estimation; least-squares 
algorithm 

 
 
1. Introduction 
 

Recently due to cost-effectiveness and uniqueness, much worldwide attention has been paid to 
Real-Time Hybrid Simulations (RTHS) for the evaluation of dynamic performance of structures 
with complicated and/or rate-dependent components or substructures (Nakashima et al. 1992, 
Blakeborough et al. 2001, Jung and Shing 2006, Bursi and Wagg 2008, Carrion et al. 2008, Wu et 
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al. 2009, Bursi et al. 2010, Wu et al. 2011). This method consists of physical simulations of 
complicated and/or rate-dependent parts of structures and numerical simulations of the 
well-understood remainder parts. In order to obtain reliable test results, high performance of 
integration schemes and loading control are required; hence, these subjects represent hot research 
topics. Accurate loading control, as one challenge of RTHS, allows two substructures to be 
compatible, requiring proper delay treatment and transfer system control. Since first identified in 
1999 (Horiuchi et al. 1999), delay estimation and compensation have been research focuses in this 
field owing to negative influence of system delay on test results. Delay herein is defined as the 
time needed from displacement command being sent to actuator and for actuator reaching required 
position (after Darby et al. 2002). It is resulted from actuator dynamics and hence inherently 
inevitable. Horiuchi et al. (1999) investigated the effect of delay in RTHS and showed that delay 
equivalently adds negative damping to a structure, when a stiffness-based specimen is taken as the 
physical substructure. If negative damping exceeds the actual damping of a structure, experimental 
results will be affected by loss of stability. Delay differential equations were also used to study the 
influence of delay based on a continuous system model; moreover, critical delay above which the 
system becomes unstable was identified (Wallace et al. 2005a).In addition, spectral analysis 
techniques were also applied to study delay influence on stability of time-stepping algorithms for 
RTHS (Wu et al. 2013). 

Delay compensation for RTHS was widely investigated in literature, and numerous 
compensation schemes were proposed and proved effective. Horiuchi et al. (1999) proposed a 
polynomial extrapolation approach based on delay information and desired displacements in 
previous steps; it is extensively applied owing to its simplicity. In order to smooth actuator 
movement, interpolation was introduced to the compensation by Nakashima and Masaoka (1999) 
and Darby et al. (2001), respectively. Wallace et al. (2005b) used polynomial fitting incorporated 
in a least-squares algorithm, to filter out the displacement measurement noise as well as to 
compensate for delay. Different from methods based on mathematical fitting of a polynomial, 
another type of methods based on kinematics assumptions was proven more favourable. These 
methods include that based on linearly predicted acceleration (Horiuchi and Konno 2001) and 
onthe explicit Newmark method (Ahmadizadeh et al. 2008), respectively. Delay actually implies 
phase lag between desired and measured displacements, so many control strategies, such as 
phase-lead network (Zhao et al. 2003), feedforward control (Jung et al. 2006), inverse control 
(Chen et al. 2009) and outer loop control (Bonnet et al. 2007b) were employed to reduce or 
compensate for this lag, and hence, to partially achieve objective of delay compensation. A phase 
lag compensation method based on an ARMAX model and Pseudo Linear Regression with 
forgetting factor was conceived and validated by Nguyen and Dorka (2008). Also adaptive delay 
compensation techniques based on varying system delay was deeply investigated by Wallace et al. 
(2005b), Nguyen et al. (2011), Chen et al. (2012) and Chae et al. (2013), among others. 

Those compensation schemes developed by Horiuchi et al. (1999, 2001), Wallace et al. (2005b) 
and Ahmadizadeh et al. (2008), among others, require explicit delay information. Further studies 
showed that system delay varies according to specimen stiffness (Darby et al. 2001) and to other 
possible causes, such as command frequencies and amplitude and adaptive controllers. Therefore 
in order to obtain reliable experimental results, online delay estimation is deemed to be essential 
for complicated and large scale problems. Some methods to measure delay online were developed 
by Darby et al. (2002), Ahmadizadeh et al. (2008) and other researchers. Unfortunately, owing to 
some limitations as demonstrated in numerical simulations and actual tests later in this paper, these 
methods seem not to be adequate for wide applications to RTHS. In this paper, delay estimation 
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methods based on a simplified physical system model, i.e., a pure delay model multiplied by a gain 
reflecting control amplitude errors, are investigated; and in particular, in order to improve its 
performance, the least-squares method is introduced to a Taylor series based law. As a result, any 
compensation method based on displacement prediction can be applied together with the proposed 
estimator.  

The remainder of the paper is organized as follows. Section 2 briefly introduces the framework 
of RTHS with online delay estimation. Section 3 presents and comments on delay estimation 
methods based on a simplified physical system model according to both Newton’s method and 
Taylor series. Along that line, a new method based on Taylor series together with the least-squares 
algorithm is proposed in Section 4. Successively, numerical simulations on the ability of the 
proposed method to estimate time-invariant and time-varying delays are presented in Section 5;in 
addition, numerical comparisons of three delay estimation schemes for RTHS with a second order 
actuator model are shown. Section 6 describes RTHS with a buckling-restrained brace as physical 
substructure that be haves both in the linear and in the nonlinear range. Finally, brief conclusions 
are drawn in Section 7. 

 
 
2. Framework of RTHS with online delay estimation 
 

In RTHS, delay can be measured with commanded and measured displacements, or with 
desired and measured displacements; hence as shown in Fig. 1, two different frameworks can be 
conceived for RTHS. Clearly in both cases, the same response prediction for delay compensation 
can be evaluated; the actual difference is related to the delay estimators, which determine how to 
obtain the system delay according to displacement time histories. In the first framework, the 
measured delay is the actual system delay between commanded and measured displacements; in 
the second framework, delay between desired and measured signals is measured, which is what we 
try to minimize via a delay compensation scheme. Therefore in the second case, the measured 
delay depends on delay compensation; this implies that the resulting estimated delay is dependent 
both on the physical system and on the compensation scheme. Conversely in the first case, both 
delay estimation and compensation are uncoupled; consequently, it is easier to measure system 
delay. In summary, in order to propose a practical and effective method, this paper relies on the 
first framework.  

 
 

(b) Based on estimator with desired
and measured displacements

Delay compensation

Delay estimator

Delay compensation Actuator & Specimen
yd cy ym

(a) Based on estimator with commanded
and measured displacements

Delay estimator

yd cy ym
Actuator & Specimen

Fig. 1 Framework of RTHS with online delay estimators 
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3. Delay estimators based on simplified physical system model 
 
A delay-compensated system is schematically depicted in Fig. 2(a). Firstly, the command cy  

is generated by applying a compensation scheme to the desired (analysed) displacement dy . In 
order to smoothly drive the physical system, interpolation is frequently carried out but not 
included in the figure. Then at the specified instant, the achieved displacement my  of the 
physical system is measured. For simplicity, it is assumed that both the actuator and the specimen 
share the same displacement response, i.e., my . As shown in Fig. 2(b), the delay compensation 
process and the physical system are modelled by a pure delay multiplied by a gain reflecting 
amplitude errors of actuator control; this model was justified after Bonnet (2006). In Fig. 2(b), c
denotes the estimated delay while a  the actual delay of the actuator. Therefore, we can 
formulate relationships between various displacements as followsEquation Chapter 1 Section 1(1) 

c c c d( ) ( )i iy t k y t 
                           (1) 

m a c a( ) ( )i iy t k y t  
                          (2) 

where gains ak and ck are referred to as amplitude factors, i  indicates the i -th sampling. Eq. (2) 
shows that the measured displacement m ( )iy t  is dependent on time and system delay. Inserting 
(1) into (2) yields  

m a c d c a( ) ( )i iy t k k y t    
                      (3) 

Evidently, if c a   and c a1/k k , perfect compensation is achieved, which entails neither 
phase lag nor phase lead between desired and measured displacements. 

 
3.1 Use of Newton's method 
 
3.1.1 Delay estimation between commanded and measured displacements 
Eq. (2) can be regarded as a nonlinear equation with unknown a and constant m ( )iy t . 

Therefore, Newton’s method (Isaacson and Keller 1994) can be applied to obtain the unknown 
delay, i.e. 

 
 

(a) Schematic

ka e-s acseck

myycdy ActuatorDelay compensation
eF

Specimen

Physical system

e
2m s +c s+ke e

dy yc my eF

(b) Analysis model
 

Fig. 2 Schematic and analysis model of a delay-compensated system 
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( )
( 1) ( ) m a c a ,
a , a , ( )

a c a ,

( ) ( )

( )

j
j j i i i
i i j

i i

y t k y t

k y t


 


  

 


                      

(4) 

where ( )
c a,( )j

i iy t  and ( )
c a,( )j

i iy t  denote commanded displacement and velocity at the instant 
( )
a,( )j

i it  . They are available since ( )
a ,

j
i  is theoretically greater than zero. In this formula, i and j 

indicate the i-th sampling and j-th iteration, respectively. 
For a common nonlinear equation, Eq. (4) can be applied until convergence is achieved. 

However, in real-time tests, the iteration may be not convergent because of the limited time range 
before the estimated delay is required for compensation in the subsequent step. Taking into 
account of these, real-time iteration, which conducts single iteration at one time step instead of 
many iterations until convergence is achieved, is a more realistic solution. This method was 
utilized for nonlinear optimization in optimal feedback control (Diehl et al. 2005). It is expressed 
as 

m a c a,
a , 1 a ,

a c a ,

( ) ( )

( )
i i i

i i
i i

y t k y t

k y t


 



 
 


                    

(5) 

Wang (2012) provided a sufficient condition for convergence of this iteration. Although 
convergence might be guaranteed, problems in Section 3.3 require careful treatment prior to its 
application in RTHS.  

 
3.1.2 Delay estimation between desired and measured displacements 
The purpose of delay estimation is to compensate for system delay. So the delay can be used as 

an intermediate variable in a closed-loop delay compensation scheme. Apparently, the delay 
should be adapted in order to match measured and desired displacement as close as possible. In 
order to investigate the theoretic foundation of the estimator for system delay, one can consider the 
system delay a  as an parameter herein rather than a variable determined by iteration in the last 
subsection. Note that a  is not explicitly required to estimate c  in the actual test; in fact a is 
inherently included in the actual actuator system and the adaptation of c  is needed to match the 
measured track with the desired one. If the dynamics can be represented by pure delay, then for a 
perfect compensation, c must be equal to the system delay a . Hence, the estimated delay c  
should be chosen to match the realized or measured displacement with the desired or calculated 
one; therefore, c  should satisfy  

m a c d c a d( ) ( ) ( )i i iy t k k y t y t                       (6) 

Like Eq. (5), c  could be obtained through real-time iteration as 

d m
c, 1 c,

m

( ) ( )

( )
i i

i i
i

y t y t

y t
 


 


                        (7) 

Since a is not known, for an implementation my  cannot be replaced with a c dk k y .  

It is worth while to point out that Eq. (7) is similar to those proposed by Ahmadizadeh et al. 
(2008), which read 
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a a
d, m,

c, c, 1
m, m, 2

2 i i
i i

i i

y y
G t

y y
  




  


                       (8) 

a d, d, 1 d, 2
d, 3

i i i
i

y y y
y   

    a m, m, 1 m, 2
m, 3

i i i
i

y y y
y   

              (9) 

where G is a learning gain and the superscript a denotes the average of displacements in the last 
three steps. Rearranging Eq. (8) yields  

a a
, m,

c, c, 1 a
m, 1

d i i
i i

i

y y
G

v
  




                         (10) 

with the average velocity  

a m, m, 2
m, 2

i i
i

y y
v

t





                          (11) 

Eq. (7) will be reduced to Eq. (10) if a learning gain is introduced and Eq. (11) is applied to 

evaluate the velocity m ( )iy t . 

 
3.2 Use of Taylor series 
 

If c a( )iy t   in Eq. (2) is expanded with Taylor series, we obtain 

2c
m a c a c a a a

( )
( ) ( ) ( )

2!
i

i i i

y t
y t k y t k y t k     


 3c

a a

( )

3!
iy t

k   


…        (12) 

Thus, m ( )iy t  can be approximated by the first two terms on the right-hand side of Eq. (12), i.e. 

m a c a c a( ) ( ) ( )i i iy t k y t k y t                       (13) 

Rearranging Eq. (13) gives 

a c m
a

a c

( ) ( )

( )
i i

i

k y t y t

k y t
 



                        (14) 

which indicates that the delay can be approximately evaluated once measured displacement, 

commanded displacement and velocity, and amplitude gain ak of the physical system are 

available.  
As a by-product, Eq. (13) indicates the effect of delay in RTHS. If the physical substructure is a 

stiffness-based specimen, the restoring force is 

e m e a c e a c a( ) ( ) ( ) ( )i i i iF t k y t k k y t k k y t                     (15) 

where ek is the stiffness of the specimen. If a 1k  , Eq. (15) means that the physical substructure 
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constitutes of a spring and a viscous damper with a negative damping coefficient e ak  . This 

conclusion is in agreement with Horiuchi et al. (1999) and Wallace et al. (2005a). 
 
3.3 Pros and cons of analysed estimators 
 
Newton’s method is second-order convergent when the derivative of the function with respect 

to the variable is not equal to zero. Hence, delay estimators based on Newton’s method are 
favourable for its rapid convergence. The estimator based on Taylor series is attractive for its 
simplicity of understanding and implementation. However, there are some problems to be resolved 
prior to their applications to RTHS. Pros and cons of these schemes are summarized as follows: 

 Eqs. (5) and (14) are favourable when amplitude errors owing to control are negligible, 
namely, a 1k  . Otherwise, though it is difficult, ak should be firstly estimated; 

 Eq. (6) will not be satisfied for the case a c 1k k  ; then, this condition limits application of 

Eq. (7); 
 Velocity values are required in Eqs. (7) and (14). Hence they should be either numerically 

evaluated or physically measured during testing; thus, noise effects should be reduced for velocity 
estimates; 

 In order to avoid sharp increments of estimated delay, velocity values close or equal to zero 
at the denominator of previous formulae should be cautiously considered. Any minor error, e.g., 
measurement noise, could cause larger estimation errors or even instability in these cases. 

 The relationship proposed in Eq.(14) is first-order accurate, and this represents a 
shortcoming. However, it may be acceptable, since actual delay in RTHS is of the order of 0.01s, 
meaning that estimated errors are of the order of 0.0001s; 

In order to improve the accuracy of Eq. (14), Padè approximation (Chi et al. 2010) rather than 
Taylor series suggested in this paper might be a good choice to expand pure delay. This 
approximation reads 

2

2
s s

e
s

 


 


                                
(16) 

in which s is the Laplace variable. Combining Eqs. (2) and (16) results in the following formula, 

a a
m m a c a c( ) ( ) ( ) ( )

2 2i i i iy t y t k y t k y t
 

                        (17) 

which entails that the achieved velocity is required. Therefore, if velocity of the physical 
substructure is available, the proposal of this paper can be employed with this approximation. 

From these comments, one can see that these estimators perform well in RTHS when special 
treatments are considered. Therefore, we propose to apply the least-squares algorithm for the 
estimator based on Taylor series in the following sections (Wang et al. 2009). 

 
 

4. Delay estimation based on Taylor series and least-squares algorithm 
 
Eq. (14) implies that the nonlinear relationship between commanded and measured 

displacements is linearized at it . Therefore, this relationship can be represented by a series of this 
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kind of linearized equation at different time instants, though both the delay and the amplitude error 
may vary with time in RTHS. If system parameters change slowly, in order to estimate system 
delay, online estimation approaches for lineartime-invariant systems can be applied. In Eq. (2),

c ( )iy t can be approximately expressed by a backward difference, i.e., 

c c 1
c

( ) ( )
( ) i i

i

y t y t
y t

t





                          (18) 

Note that c ( )iy t can also be replaced with predicted velocities obtained via extrapolation 

polynomials on desired velocities. Substituting Eq. (18) into Eq. (13), one attains 

m( ) T
i iy t Ψ θ


                             (19) 

with 

 c c 1( ) ( )T
i i iy t y t Ψ     a a a a

1 2 a
T k k

k
t t

         
θ


           (20) 

If there are two groups of data, the gain ak  and the delay a  can be solved from the above 
linear equations, namely 

a 1 2k      
2

a
1 2

t
 





                          (21) 

In view of displacement measurement errors in RTHS, it is advisable to apply the least-squares 
algorithm to estimate these parameters. In essence, the gain ak  and the delay a  in RTHS are 
time-varyingas aforementioned; as a result, the recursive least-squares algorithm with a forgetting 
factor (Söderström and Stoica 1989) is a favourable candidate. Different from the standard 
recursive least-squares algorithm which is equivalent to Kalman filter, this method is performed 
with weighted data and requires an initial guess to start up the process. It is suitable to online 
estimation for time-varying parameters because of its small storage size and low calculation efforts 
as well as its weighted data. The recursive formulae of the method are 

T1
1 m 1T

1

[ ( ) ]i i
i i i i i

i i i

y t



 



  


P Ψ
θ θ Ψ θ

Ψ P Ψ

  
                 (22) 

T
1 1

1 T
1

1
[ ]i i i i

i i
i i i 
 




 


P Ψ Ψ P
P P

Ψ P Ψ
                     (23) 

where ρ is the forgetting factor, 0<ρ≤1. The greater the forgetting factor ρ is, the greater effect on 
the current estimated delay the previous data have. When ρ=1, the algorithm degenerates to the 
recursive least-squares algorithm. In applications, the value of ρ is usually set as 0.95<ρ≤1. As to 
the initial values for the recursive procedure, the standard least-squares algorithm is recommended, 
which provides 

T 1( )p
P Φ Φ     1T T

p


θ Φ Φ Φ Y


                   (24) 
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with 
T

1 2 p   Φ Ψ Ψ Ψ…     
T

m 1 m 2 m( ) ( ) ( )py t y t y t   Y …        (25) 

where p>2 means the group number of data that are employed for the standard least-squares 
method, to provide an initial guess for the recursive least-squares method with forgetting factor. 
The value of p is dependent on the signal-noise-ratio of measured displacement. A smaller p can be 
used for less contaminated measured displacements, while a larger p is required for more noisy 
data. Before the p-th step, the system delay estimated prior to tests has to be applied to delay 
compensation, in that the online estimated one is not available. Since the standard least-squares 
algorithm is utilized to estimate the initial value for the recursive procedure, the first estimation 
obtains the current delay. Even though the desired displacement is small and the measured 
displacement is contaminated by measurement noises in real tests, the method can rapidly and 
accurately converge since the estimated value is originated from over-determined systems. If the 
matrix form is expanded, it needs not to calculate the inverse matrix and the calculation efforts are 
limited. In this sense, the proposed method is expected to be favorable. Note that the estimated 
value converges to a first-order approximation of the actual delay. 

 
 

5. Numerical simulations 
 
This section presents two types of numerical simulations: i) estimation of time-invariant and 

time-varying delays with the delay estimator proposed in the previous section; ii)simulations of 
RTHS based on a second-order actuator model in conjunction with three estimators (Wang et al. 
2009). 

 
5.1 Delay estimation based on the proposed estimator 
 
5.1.1 Time-invariant delay 
Suppose that the physical system can be simplified to a pure delay element with the dead time 

10ms. The actuator command is a sinusoidal wave with the amplitude 1mm and the frequency 
1Hz.A white noise is taken into account and signal-to-noise ratio is 30dB.Themethod proposed 
herein was applied with the time interval 5 ms and p = 20. The estimated delay is illustrated in 
Fig.3. One can observe that the estimated delay of the standard least-squares algorithm is about 
90% of the final value. The following estimation is based on this result and therefore, the method 
exhibits wonderful convergence speed. In addition, the estimated delay varies around the actual 
delay and the oscillation is affected by the forgetting factor. A larger factor renders the oscillation 
amplitude smaller. In summary, the proposed method exhibits good convergence speed and 
accuracy for constant system delay even though the method is based on an approximate expression, 
i.e., Eq. (13) and measurement noises are considered. 

 
5.1.2 Time-varying delay 
Herein we assume that the delay can be formulated as 

a 0.015 0.008 sin(0.2 )t                          (26) 

In addition, the proportional gain ka = 1.1 is adopted to simulate amplitude errors of physical 
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system control. All other parameters and conditions not especially stated here are employed with 
the same values as those in the last subsection. The estimated delay with different parameters is 
depicted in Fig. 4. Clearly, the closer to unity the forgetting factor is, the smoother the estimated 
delay history is. As an extreme case, it approaches the constant 0.015 when the forgetting factor 
equals 1. In view of the accuracy and the oscillation, ρ= 0.98 may be a better choice. This 
simulation shows that the proposed method can trace the delay change even the noise and 
amplitude control errors exist in the system. In addition, it is easy to choose the suitable forgetting 
factor for the scheme: it is smaller than unity and suggested greater than 0.95, varying a little 
according to noise and the change speed of the delay. The ability of amplitude error estimation is 
another feature of this method. Even though it is not used in this paper, the estimated gain can be 
applied to improve control performance of the loading system. 

 
 

 

Fig. 3 Time histories of estimated delay for a time-invariant delay 
 
 
 

Fig. 4 Time histories of estimated delay for a time-varying delay  
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Fig. 5 Schematic of the emulated structure in RTHS 
 
 
5.2 Numerical simulation of RTHS with online delay estimation 
 
Numerical simulations of RTHS on a linear SDOF system as shown in Fig. 5 are carried out in 

this subsection. The structural parameters are chosen in such a way that the natural period of the 
emulated structure is 0.5s and damping ratio 5%. The Tab as earthquake recorded in Iran in 1978, 
with PGA equal to 0.852g was utilized to excite the structure (Ahmadizadeh et al. 2008). In the 
analysis, mass and damping are simulated in the numerical substructure whilst the spring is 

modelled as a specimen (in the figure 0nk  ), as schematically depicted in Fig. 5. In addition, the 

actuator is modelled by a second-order system, namely, 

2
A

A 2 2
A A A

( )
2

se
T s

s s


  




                     

(27) 

in which A  and A  denote the circular frequency and equivalent damping ratio, respectively; τ 

and s indicate the dead time of the system and the Laplace variable, respectively. In the simulation, 

A  = 100rad/s, A  = 0.80 and τ= 0 are set. According to the fact that the delay is identical to the 

ratio of phase lag with respect to the corresponding frequency, the delay corresponding to the 
structural natural frequency, about 16.01 ms, is viewed as the reference in the following simulation. 
Moreover, the Central Difference Method is used to evaluate the response of the structure with the 
time interval 10 ms. Delay of the actuator is compensated for by means of the polynomial 
extrapolation proposed by Bonnet et al. (2007a), expressed as 
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(28) 

with  

a

t





                              

(29) 

where a  means the online estimated delay. 
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Fig. 6 Time histories of the estimated delay with Darby's method (after Darby et al. 2002) 
 
 
Time histories of the estimated delay with Darby’s method (Darby et al. 2002) are shown in 

Fig. 6.From the figure, larger parameters can cause fast convergence speeds and larger oscillations; 
this trend is in agreement with that of Ahmadizadeh et al. (2008). Nonetheless, in the first five 
seconds, the estimated values are much smaller than the reference, whatever the parameter is. This 
is due to the fact that if the relative position errors (defined as the discrepancy between the desired 
and measured displacements) are small, the method responds slowly. The estimated value may 
oscillate dramatically or even be unstable at the peak of the relative position errors if the parameter 
is too large. Therefore, the parameter value is limited by this peak. For the sake of stability, only 
smaller parameters are feasible even though it may mean slower response speeds. Meanwhile, time 
histories of the estimated delay of Ahmadizadeh’s method (Ahmadizadeh et al. 2008) are 
illustrated in Fig. 7. The estimated values are smoother when the parameter is smaller. However, 
sharp increments are observed if increasing the parameters, which can be contributed to smaller 
velocities as the denominator in the expression, see Eq. (8). 
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Fig. 9 Time histories of desired displacements in RHTS with different methods 
 
 
Time histories of estimated delay provided by the proposed estimator with forgetting factors 

0.95, 0.98 and 1.00 are plotted in Fig. 8. Obviously, smaller forgetting factors result in larger 
oscillations of estimated values. When ρ = 1.00, the method is favourable in terms of accuracy and 
response speed; this is in agreement with results in Subsection 5.1. However, RTHS combining 
online delay estimation and delay compensation are taken into account in these simulations.  

Time histories of desired displacement responses with three delay estimation methods and 
parameters Cp = 0.3, G = 0.003 and ρ = 1.00 are plotted in Fig. 9. For Darby’s method, the error in 
the first five seconds is large with respect to the exact response followed by a smaller error in the 
next 15 seconds. Ahmadizadeh’s method causes larger response amplitudes owing to smaller 
estimated delay. Conversely, the displacement responses provided by the proposed method match 
better the exact results. 

From the aforementioned simulations, we can draw the following conclusions: 

 Darby’s method converges slowly to the exact response owing to feasible but smaller 
parameters determined by the peak of relative position errors; 
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(31) 

As a result, structural responses at a larger time span were applied for displacement prediction; 
thus, the influence of higher-frequency components in structural displacement on predicted 
displacement can be suppressed. 

 
6.1 Linear case  
 
In order to ensure linear behavior of the specimen, the PGA of El Centro earthquake (NS 1940) 

was tuned to 0.0163g. RTHS with different delay estimation methods were performed. For 
Ahmadizadeh’s method (Ahmadizadeh et al. 2008), similar results to those in Section 4.2 of this 
paper were obtained. For the sake of brevity, only test results with the proposed estimator and 
Darby’s method are discussed herein.  

Fig. 11 compares estimated delays provided by Darby's method with different parameters. It 
takes around four seconds for the estimated delay to reach the final value for the first time when 
Cp=0.01 is utilized, while the rising time is about two seconds with Cp=0.04. Meanwhile, the 
oscillation amplitude of the estimated delay increases when the parameter increases. In agreement 
with those in Section 4.2, it is inconsistent for Darby’s method to increase convergence speed 
while suppressing the oscillation amplitude of the estimated delay. According to Eq. (7), the 
estimated delay should be related to the relative position error ))()(( md ii tyty  and achieved 

velocity ))(( m ity . However, the velocity information is not fully applied in Darby’s method 
(Darby et al. 2002). As a constant, the parameter Cp can be an optimal parameter only for a 
specific velocity. When it is optimal for a maximum structural velocity in a test, it results in a 
relative slow response speed for small velocity; when it is a reasonable parameter for a small 
structural velocity, it introduces estimated delay oscillation for a maximum velocity. This also 
reveals the reason why the parameters adopted in previous numerical simulations and in Darby et 
al. (2002) are different from those here. Different maximum velocity responses and different 
compromises require different parameter values. Therefore, online tuning is often necessary for 
Darby’s method. 

Fig. 12 shows the desired displacements in two tests and the numerically predicted response of 
the structure. In the figure, the solid line matches the simulated response better than the dashed 
line, which indicates that the estimated delay with Cp=0.04 is more accurate. It is worth noting that 
although the oscillation does not induce instability, we are not confident that the test is stable when 
the parameter keeps increasing. An algorithm that is endowed with rapid convergence speed, 
limited oscillations of estimated delay and easy parameter choice is desired. 
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Fig. 14 Time histories of displacement responses with the proposed method in linear RTHS 
 
 
Fig. 13 presents the estimated delay (Wu and Wang 2014) of the proposed method with both the 

forgetting factor ρ=0.98 and ρ=0.99 compared with that provided by Darby’s method. Evidently, 
the two test results based on the proposed method provide similar delay histories and give 
estimated values consistent to Darby’s method after the first four seconds. In the first four seconds, 
the estimated values by the proposed method are greater than those provided by Darby’s method. 
However, as shown in Fig. 14, the measured displacement matches well the desired one after the 
first 0.5s; this implies that the delay is not over-compensated for in the beginning of the test. Note 
that in the first 0.5s, the system delay is not compensated for and hence, the displacement 
command and the desired displacement are identical to each other. Consequently, the estimated 
delay of Darby’s method is less than the actual delay. In fact, it is likely that the system delay is 
greater in this stage since the loading system has to switch from the static state to movement. In 
addition, the tested displacement provided in the simulation with ρ=0.98matches the predicted 
displacement well (Wang 2012). 

 
6.2 Nonlinear case 
 
In this section, the PGA is tuned to 0.122 g. Fig. 15 shows the estimated delay histories 

provided by Darby’s method; they exhibit oscillations. The hysteretic relationship of the specimen 
corresponding to the test with Cp = 0.01 is shown in Fig. 16; it is characterized by a maximum 
displacement of about 4 mm and a maximum restoring force of about 400 kN, respectively. 

Fig.17 plots the estimated delay histories in RTHS with the proposed estimation method. In 
order to investigate the repeatability of the testing method, each test was carried out twice. This 
figure illustrates response characteristics similar to those described above. However, the delay 
oscillation is smaller. In fact, as aforementioned, the proposed method measures the system delay 
with both the displacement command and displacement response; therefore, the delay could be 
measured offline. This is not possible with both Ahmadizadeh’s and Darby’s methods. The 
estimated delay histories with different parameters are plotted in Fig. 18. A careful reader can 
observe that the offline estimated-delay histories with ρ = 0.95 and ρ = 0.98 are almost identical to 
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the online measured result in the second test with ρ = 0.98. This indicates that the smoother 
estimated delay cannot be attributed to a larger forgetting factor, and hence the delay in the 
nonlinear tests may not change greatly. Actually, the MTS loading facility has a loading capacity 
of 2500kN, about 6.3 times the maximum restoring force, and thus in the test, the nonlinearity of 
the actuator is not apparent. In addition, the tangent stiffness of the specimen did not change too 
much during the tests; therefore, the delay did not greatly vary during simulations. Moreover, Fig. 
18 indicates that the parameter ρ = 0.98 is a good candidate for common tests; this implies that the 
parameter choice for the proposed method is easy and the overall method quite practical. 

In addition, RTHS with the proposed method exhibits better relative displacement errors in the 
first two seconds. This can be ascribed to the proper-compensated delay in this time range; in the 
subsequent time range, two test results are similar, which may result from hysteretic damping. 
More detailed results can be found in Wang (2012). 
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Fig. 18 Comparisons of online and offline estimated delays 
 
 

7. Conclusions 
 
In this paper, delay estimation methods based on a simplified physical system model, i.e. a pure 

delay model multiplied by a gain reflecting control amplitude errors, were suggested; and in order 
to improve its performance, the least-squares method was introduced with a Taylor series-based 
law. In order to verify the performance of the proposed method, both numerical simulations and 
RTHS with a buckling-restrained brace specimen were carried out. Relevant results showed that 
the proposed delay compensation technique is endowed with good convergence speed and 
accuracy, even when measurement noises and amplitude errors of actuator control are present. 
Also the choice of method parameters proves to be simple. As a result, any compensation method 
based on displacement prediction can be applied together with the proposed estimator. Conversely, 
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the parameter choice for Darby’s method is difficult and the estimated delay sometimes converges 
slowly. Ahmadizadeh’s method sometimes exhibits sharp increments of the estimated delay 
because of noises and/or very small denominator in the delay expression. 
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