
 

 

 

 

 

 

 

Smart Structures and Systems, Vol. 14, No. 6 (2014) 1221-1245 

DOI: http://dx.doi.org/10.12989/sss.2014.14.6.1221                                              1221 

Copyright ©  2014 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sss&subpage=8         ISSN: 1738-1584 (Print), 1738-1991 (Online) 
 
 

 

 
 
 
 

Establishing a stability switch criterion for effective 
implementation of real-time hybrid simulation 

 

Amin Maghareh
1, Shirley J. Dyke2, Arun Prakash1 and Jeffrey F. Rhoads2  

 
1
School of Civil Engineering, Purdue University, West Lafayette, IN 47906, USA 

2
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA 

 
(Received March 9, 2014, Revised August 25, 2014, Accepted August 30, 2014) 

 
Abstract.  Real-time hybrid simulation (RTHS) is a promising cyber-physical technique used in the 
experimental evaluation of civil infrastructure systems subject to dynamic loading. In RTHS, the response of 
a structural system is simulated by partitioning it into physical and numerical substructures, and coupling at 
the interface is achieved by enforcing equilibrium and compatibility in real-time. The choice of partitioning 
parameters will influence the overall success of the experiment. In addition, due to the dynamics of the 
transfer system, communication and computation delays, the feedback force signals are dependent on the 
system state subject to delay. Thus, the transfer system dynamics must be accommodated by appropriate 
actuator controllers. In light of this, guidelines should be established to facilitate successful RTHS and 
clearly specify: (i) the minimum requirements of the transfer system control, (ii) the minimum required 
sampling frequency, and (iii) the most effective ways to stabilize an unstable simulation due to the 
limitations of the available transfer system. The objective of this paper is to establish a stability switch 
criterion due to systematic experimental errors. The RTHS stability switch criterion will provide a basis for 
the partitioning and design of successful RTHS. 
 

Keywords:  real-time hybrid simulation; RTHS; RTHS stability criterion; stability switch criterion 

 
 
1. Introduction 
 

As civil structures evolve to meet the needs of future generations, there is an increasing demand 

to demonstrate the effectiveness of performance-based design, utilize new materials capable of 

reducing earthquake impact, and improve retrofitting strategies (Dyke et al. 2010). These 

challenges justify the need for more comprehensive experimental capabilities in evaluating 

structural response and performance in a suitable and cost-effective manner. Currently, three main 

experimental methods exist to evaluate structural behavior in the presence of dynamic loads: (1) 

shake table testing, (2) quasi-static testing, and (3) hybrid simulation (Mosqueda et al. 2005). 

Shake table testing enables researchers to produce realistic test conditions and evaluate critical 

issues such as collapse mechanisms, component failures, acceleration amplifications, residual 

displacements and post-earthquake capacities independently (Schellenberg and Mahin 2006). In 

the seismic evaluation of civil structures using shake table testing, a researcher needs to know the 

required actuator's peak velocity (directly related to the oil flow rate provided by the pumping 
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system and servo-valve), the rated capacity of the actuator, the maximum stroke, and the actuator's 

frequency bandwidth (Dihoru and Bonzi 2010). Considering these well-defined parameters, there 

is usually no stability concern, and the results are reliable. However, very few shake tables in the 

world are capable of testing full-scale large civil structures; thus, shake table testing is often 

limited to prototypes, limited in payload, and prohibitively expensive (Shing et al. 1996). 

Quasi-static testing is another experimental technique in which the structure (or component) 

under investigation is subject to a predefined displacement history at a slow rate. Usually, this 

technique is applied to study the hysteretic and cyclic behavior of structural components subject to 

seismic loading (Carrion and Spencer 2007). While quasi-static testing can be implemented on 

large civil structures, it has two major drawbacks: it requires a predefined displacement history 

(Shing and Mahin 1984); and it does not preserve rate-dependence while evaluating the dynamic 

performance of structures.  

Hybrid simulation (HS) is a cost-effective experimental technique used to evaluate the dynamic 

performance of large civil structures. In hybrid simulation, the structure under investigation (i.e., 

the reference structure) is partitioned into two substructures: (i) a physical (or experimental) 

substructure, which usually includes the structure's more complex components; and (ii) a 

numerical (or analytical) substructure, which usually includes well-understood components. 

Coupling between the two substructures is achieved by enforcing equilibrium and compatibility at 

the interface (Chen et al. 2012). 

Real-time hybrid simulation is a powerful experimental technique used to evaluate the 

performance of civil systems when rate-dependence plays a role. In RTHS, the interface 

interaction between the substructures is enforced by a transfer system which includes 

servo-hydraulic actuator(s) and/or a shake table (Wallace et al. 2005). The transfer system should 

be designed and controlled to ensure that all the interface boundary conditions are satisfied in 

real-time (Wagg and Stoten 2001). Fig. 1 depicts a typical real-time hybrid simulation of a 

four-story structure where hydraulic actuators are used to satisfy the interface boundary conditions.  

A number of researchers have used this cyber-physical technique to successfully evaluate the 

seismic performance of structures, examine different structural control algorithms and techniques, 

and develop guidelines for the implementation of damping systems in civil infrastructures. Many 

examples of this can be found in the project repository of the George E. Brown Network for 

Earthquake Engineering Simulation (http://www.nees.org/). To name a few, Mosqueda et al. 

increased the complexity of the structural models employed in RTHS using 

geographically-distributed substructures and investigated the procedures for evaluating the 

reliability of the results in real-time (Gilberto et al. 2007a, Gilberto et al. 2007b, Mosqueda et al. 

2005). Christenson et al. implemented RTHS to evaluate the relative efficacy of smart damping 

control devices (Christenson et al. 2008) and Shao et al. conducted force-based substructuring in 

RTHS (Shao et al. 2011). Gao and Castaneda implemented and validated some small-scale frame 

structural configurations equipped with damper devices to develop a robust framework for RTHS 

(Gao 2012, Castaneda et al. 2012). Later, some researchers developed and validated 

performance-based design guidelines for the implementation of advanced damping systems in civil 

infrastructure using RTHS (Friedman et al. 2010, Jiang and Christenson 2011, Phillips and 

Spencer 2013). 

RTHS is a complex cyber-physical technique, and progress in this cutting-edge research area 

necessitates expertise from highly-interdisciplinary research teams. Clearly, the test set-up will 

affect the stability and performance of the system. Stability and performance of RTHS are mainly 

functions of four entities: (1) the overall dynamics of the reference structure, (2) the fidelity of the 
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numerical substructure, (3) how the reference structure is partitioned into the numerical and 

physical substructures, and (4) how well the interface boundary conditions are achieved by the 

transfer system. Several researchers have investigated the impact of these entities on stability and 

reliability of simulations (Darby et al. 2002, Gilberto et al. 2007a, Mosqueda et al. 2007, Chen and 

Ricles 2009, Gao 2012, Chen et al. 2013, Maghareh et al. 2012). In addition, Maghareh et al. have 

proposed two pre-experiment metrics for RTHS, predictive stability indicator (PSI) and predictive 

performance indicator (PPI) ( Maghareh and Dyke 2013, Maghareh et al. 2013). 

Transfer system control plays a critical role in RTHS. Effective transfer system control leads to 

an accurate tracking of the desired boundary condition between the substructures. Because 

servo-hydraulic actuators (or shake tables) are dynamic systems, time lags may be present due to 

the physical limitations/dynamics of the transfer system. Time lags, undesirable dynamics of the 

transfer system, and measurement noise in the feedback force signal(s) can destabilize the 

simulation (Horiuchi et al. 1999, Gao 2012) and/or excite spurious lightly-damped modes of the 

system (Maghareh et al. 2013). To realize the desired boundary conditions between the 

substructures in real-time, Horiuchi et al. proposed the polynomial extrapolation delay 

compensation method (Horiuchi et al. 1996). Later, other researchers developed more 

sophisticated controllers/compensators, see for example (Chen et al. 2012, Gao 2012, Phillips and 

Spencer 2013, Ou et al. 2013). With recently conducted research on transfer system 

control/compensation, undesirable dynamics of the transfer system can be diminished, but cannot 

be completely eliminated, even with the most sophisticated techniques (Chen et al. 2013). 

Errors in RTHS stem from three different sources: model idealization, numerical integration, 

and experimental errors. Modeling error arises from any discrepancies between the response of the 

actual (or real) portion modeled as a numerical substructure and the response acquired from its 

model. In addition, in RTHS, explicit or implicit integration schemes are utilized to solve the 

idealized numerical substructure. Depending upon which integration scheme is adopted, stability 

and accuracy issues may be limiting factors (Mosqueda et al. 2005). Finally, in RTHS, there are a 

number of experimental sources of error which can be divided into two subcategories: epistemic 

and aleatoric errors. Sources of epistemic errors are systematic, such as transfer system dynamics, 

computational delays, communication delays, and sensor miscalibration. However, sources of 

aleatoric errors are random, such as measurement noise and random truncations in the 

analog-to-digital (AD) conversions of signals. 

 

 

 

Fig. 1 A typical real-time hybrid simulation of a four-story structure 
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In the current approach, prior to conducting an RTHS, a specific sampling frequency and a 

transfer system controller/compensator are adopted. To choose a suitable sampling frequency, 

usually equal to or larger than 1024 Hz, the user determines the minimum time required to solve 

the discretized governing equation of the numerical substructure and the largest natural frequency 

of the numerical model assuming linear dynamics. A control/compensation technique is then 

adopted and its parameters are tuned accordingly. Finally, to avoid instability, the stability of the 

whole system is examined using a simulation of the RTHS which includes the numerical 

substructure, a model of the transfer system, and a model of the physical substructure. While this 

approach is conceptually attractive, to make RTHS more accessible to structural engineers, 

guidelines need to be established to clearly specify: (a) the minimum requirements of the transfer 

system control, (b) the minimum required sampling frequency, and (c) the most effective ways to 

stabilize an unstable RTHS due to the limitations of the available transfer system. 

To conduct a successful RTHS, global stability and performance are the major issues. In this 

study, we focus on the stability aspect of RTHS systems and the issue of performance is being 

addressed in a related study (Maghareh et al. 2013). The objective of this paper is twofold: (i) to 

establish an RTHS stability switch criterion that can be used as a predictive stability indicator, and 

(ii) to develop an RTHS design guideline associated with the minimum requirements for the 

transfer system control and sampling frequency. Herein, RTHS is modeled by a set of delay 

differential equations (DDE’s). The main parameters investigated in this study are: (1) the 

structural characteristics of the reference structure (e.g., natural frequency, damping ratio, and 

structural nonlinearity), (2) the partitioning parameters, and (3) systematic experimental errors in 

RTHS, such as transfer system dynamics, computational/communication delays. Finally, an 

illustrative experiment is conducted to delineate the RTHS stability switch criterion, demonstrate 

an application of the RTHS design guidelines, and show the feasible/infeasible regions associated 

with the transfer system's performance. The corresponding data is provided in (Maghareh et al. 

2014). 

 

 

2. Modeling of RTHS systems 

 
The governing equation of a general reference structure can be expressed as 

,M-Ẍ(t) + ,C-Ẋ(t) + R(X) = −,M-Γ𝑥̈𝑔                (1) 

where ,M-, ,C-, R(X) , Γ, X(t) , and 𝑥̈𝑔  are the structure's mass matrix, damping matrix, 

restoring force vector, influence vector, displacement vector, and ground acceleration, respectively. 

In RTHS, the reference structure is partitioned into numerical and physical substructures 

*,M-, ,C-, R(X)+ = {[M𝑝], [C𝑝], R𝑝(X)} + *,M𝑛-, ,C𝑛-, R𝑛(X)+   (2) 

where 𝑝 and 𝑛 indices refer to the physical and numerical substructures. The governing equation 

of the numerical substructure can be expressed as 

,M𝑛-Ẍ(t) + ,C𝑛-Ẋ(t) + R𝑛(X) = −,M-Γ𝑥̈𝑔 − 𝐹𝑓𝑏(𝑡)        (3) 

where 𝐹𝑓𝑏(𝑡) is the interaction force vector measured in the physical substructure and used as a 
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feedback signal into the numerical substructure. In an ideal case, 𝐹𝑓𝑏(𝑡) can be defined as 

𝐹𝑓𝑏(𝑡) =  [M𝑝]Ẍ(t) + [C𝑝]Ẋ(t) + R𝑝(X)               (4) 

Combining equations Eqs. (3) and (4) yields the governing equation of the reference structure 

in Eq. (1). However, the ideal case requires perfect control over the transfer system, no 

measurements noise, no time delay, and that all of the boundary conditions are satisfied perfectly. 

Due to transfer system control limitations and the time delay in the feedback signal, the governing 

equation of an RTHS system becomes 

,M𝑛-Ẍ(t) + ,C𝑛-Ẋ(t) + R𝑛(X) = −,M-Γ𝑥̈𝑔 − 𝑇{∑𝑎𝑖𝐹𝑓𝑏(𝑡 − 𝜏𝑖) , ∑ 𝑏𝑖𝐹̇𝑓𝑏(𝑡 − 𝜏𝑖) , … }       (5) 

where 𝑇* … +  is an operator representing the effect of the transfer system dynamics and 

𝐹𝑓𝑏(𝑡 − 𝜏) indicates time delay in the feedback force signal. In RTHS, time lags and time delays 

can be classified into three major categories: (1) communication delays, (2) computational delays, 

and (3) transfer system dynamics. Fig. 2 demonstrates a general, distributed RTHS architecture 

with multiple physical substructures and a numerical substructure. In addition, the presence of the 

communication and computational delays and transfer system dynamics are shown. 

 

2.1 Communication delay 
 
To implement RTHS, there is a continuous exchange of information between the cyber and 

physical components. In RTHS, communication delays vary from almost negligible for an RTHS 

using a single processor (no network) to more than a hundred milliseconds for 

geographically-distributed testing. Geographically-distributed RTHS presents a challenge in which 

the required communication over the Internet results in random delays (Mosqueda et al. 2005). 

Thus, communication delays become significant source of instability when conducting 

geographically-distributed RTHS (Carrion and Spencer 2007). 

 

 

 

Fig. 2 General distributed RTHS architecture 
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Fig. 3 ZOH digital-to-analog conversion 

 

 

 

Fig. 4 Servo-hydraulic actuator as a common transfer system 

 

 

2.2 Computational delay 
 
In RTHS, integration schemes are implemented to solve the discretized governing equation of 

the numerical substructure. Stability and performance issues are limiting factors which determine 

the maximum permissible computational time and the largest natural frequency of the numerical 

model in a linear case. In RTHS, all computations are executed on processors and then the 

command signal is implemented using a digital-to-analog convertor (DAC). One of the most 

common methods is the zero-order hold method (ZOH) shown in Fig. 3. It has been shown that the 

effect of the ZOH conversion on the signal is approximately equal to that of a time delay of 

0.5Δ𝑇 = (2𝑓𝑠)
−1where 𝑓𝑠 and Δ𝑇 are the sampling frequency and time interval, respectively, 

see (Maghareh and Dyke 2013). 

 

 

2.3 Transfer system dynamics 
 
Experimental studies have shown that no matter which control strategy is adopted, there is 

always a time lag between the command input and the realization of the command by the transfer 

system which is often frequency dependent. Dyke et al. analyzed the effects of control-structure 

interaction (CSI) and demonstrated that the dynamics of a hydraulic actuator, a common type of 

transfer system in RTHS, and the plant are coupled through a natural velocity feedback. So, the 

time lag is caused by both actuator dynamics and the attached specimen (Dyke et al. 1995) and is 
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not a pure time delay. However, the contribution of the actuator dynamics is dominant (Zhao et al. 

2003) and within a typical seismic frequency bandwidth, experimental studies have demonstrated 

that a linearized actuator model can capture the essential dynamics of the actuator (Gao 2012). 

Typically, the natural frequency of the attached specimen in RTHS is large compared to the 

seismic frequency bandwidth. Therefore, under certain conditions, the phase of the actuator 

frequency response function can be approximated as linear and modeled as a pure time delay 

(Carrion and Spencer 2007). Typical values for actuator time lags reported in the literature range 

from 8 to 30 msec. (Horiuchi et al. 1999, Darby et al. 2002, Shing et al. 2004). 

 

2.4 Time delay and system dynamics (or Time Lag) 
 
Time delay and system dynamics are two different concepts which are sometimes used 

interchangeably. To delineate the difference, this work compares the dynamics of a servo-hydraulic 

actuator model with a time delay system in the frequency domain. A time delay system and a linear 

system dynamics can be mathematically expressed as 

𝑥(𝑡) = 𝑢(𝑡 − 𝜏)                       (6a) 

𝑥(𝑛)(𝑡) + ⋯+ 𝑎0𝑥(𝑡) = 𝑏𝑚𝑢
(𝑚)(𝑡) + ⋯+ 𝑏0         (6b) 

where 𝑢(𝑡), 𝑥(𝑡) and 𝜏 are the system input, system output and time delay value, respectively.  

A very common type of transfer system in RTHS is a servo-hydraulic actuator. For a more 

realistic comparison, the servo-hydraulic actuator shown in Fig. 4 was identified at the Intelligent 

Infrastructure System Lab at Purdue University. The identified dynamics of the servo-hydraulic 

actuator, which corresponds to measured displacement to command displacement, is given by 

    (𝑠)

    (𝑠)
=

2.3 2 10 

𝑠  4 5.5𝑠  1.31  10 𝑠  3.1 2 10 𝑠 2.3 2 10 
        (7) 

where s ∈  ℂ  is the Laplace variable. Fig. 5 provides the frequency responses of the 

servo-hydraulic actuator and a pure time delay system. 

,𝑀𝑛-𝑥̈(𝑡) + ,𝐶𝑛-𝑥̇(𝑡) + 𝑅𝑛(𝑥) = −,𝑀-Γ𝑥̈𝑔(𝑡) − 𝐹𝑓𝑏(𝑡 − 𝜏)      (8a) 

𝐹𝑓𝑏(𝑡) = [𝑀𝑝]𝑥̈(𝑡) + [𝐶𝑝]𝑥̇(𝑡) + 𝑅𝑝(𝑥)         (8b) 

Clearly, over a relatively low frequency bandwidth, the responses of the pure time delay and 

transfer system dynamics are quite similar. In RTHS, the frequency bandwidth of interest is the 

seismic frequency bandwidth and it is restricted to a low frequency bandwidth. Therefore, over a 

relatively low frequency bandwidth, we can model the dynamic interaction of a transfer system 

and the physical substructure with a constant time delay (Christenson et al. 2008, Maghareh et al. 

2012). Thus, in this study, Eq. (5) is replaced by Eqs. (8(a)) and (8(b)) in which the 

communication delay, computational delay, and transfer system dynamics are all lumped into a 

single time delay (𝜏) which acts upon the feedback restoring force signal. 
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Fig. 5 Frequency responses of the servo-hydraulic actuator model and a pure time delay system 

 

 

3. An RTHS stability switch criterion 
 

To conduct a stability analysis of linear RTHS systems, a general geometric stability switch 

criterion in delay differential systems can be implemented to establish an RTHS stability switch 

criterion. A more detailed discussion on the general geometric stability switch criterion is provided 

in (Wallace et al. 2005, Beretta and Kuang 2002). Consider a linear single-degree-of-freedom 

(SDOF) reference structure with a seismic excitation, as follows 

𝑀𝑥̈(𝑡) + 𝐶𝑥̇(𝑡) + 𝐾𝑥 = −𝑀𝑥̈𝑔(𝑡)                  (9) 

where 𝑀, 𝐶,and 𝐾 are the reference structure's mass, damping, and stiffness, respectively. For 

SDOF RTHS, the reference structure is partitioned into numerical and physical substructures, as 

shown in Fig. 6. The governing equation of the SDOF RTHS shown in Fig. 6 is 

𝑀𝑛𝑥̈(𝑡) + 𝐶𝑛𝑥̇(𝑡) + 𝐾𝑛𝑥 = −𝑀𝑥̈𝑔(𝑡) − 𝐹𝑓𝑏(𝑡 − 𝜏)       (10a) 

𝐹𝑓𝑏(𝑡) = 𝑀𝑝𝑥̈(𝑡) + 𝐶𝑝𝑥̇(𝑡) + 𝐾𝑝𝑥              (10b) 

To study the response of this RTHS system, we use the Laplace transform in which 

ℒ,… -(𝑠) = ∫ …𝑒−𝑠𝑡
∞

−∞
𝑑𝑡                (11) 

In the Laplace domain, the response of the reference structure, Eq. (9), is given by 

𝑥𝑅𝐸𝐹(𝑠) =
−𝑀

𝑀𝑠  𝐶𝑠 𝐾
𝑥̈𝑔(𝑠)              (12) 

In the absence of a feedback time delay (𝜏 = 0), the response of the RTHS system, Eq. (10(a)), can 

be expressed as 

𝑥𝑅𝑇𝐻𝑆(𝑠) =
−𝑀

𝑀𝑛𝑠  𝐶𝑛𝑠 𝐾𝑛
𝑥̈𝑔(𝑠) −

𝑀𝑝𝑠
  𝐶𝑝𝑠 𝐾𝑝

𝑀𝑛𝑠  𝐶𝑛𝑠 𝐾𝑛
𝑥𝑅𝑇𝐻𝑆(𝑠)          (13) 

therefore 

𝑀𝑠  𝐶𝑠 𝐾

𝑀𝑛𝑠  𝐶𝑛𝑠 𝐾𝑛
𝑥𝑅𝑇𝐻𝑆(𝑠) =

−𝑀

𝑀𝑛𝑠  𝐶𝑛𝑠 𝐾𝑛
𝑥̈𝑔(𝑠)         (14) 

and 
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𝑥𝑅𝑇𝐻𝑆(𝑠) = 𝑥𝑅𝐸𝐹(𝑠) =
−𝑀

𝑀𝑠  𝐶𝑠 𝐾
𝑥̈𝑔(𝑠)             (15) 

Thus, in the absence of feedback time delay, the response of an RTHS system, Eq. (10(a)) is 

identical to the response of the reference structure, Eq. (9). However, in the presence of feedback 

time delay, the response of the RTHS system in Eq. (10(a)) takes the Laplace transform of 

𝑥𝑅𝑇𝐻𝑆(𝑠) =
−𝑀

(𝑀𝑛𝑠  𝐶𝑛𝑠 𝐾𝑛) (𝑀𝑝𝑠  𝐶𝑝𝑠 𝐾𝑝)𝑒
−𝜏 𝑥̈𝑔(𝑠)     (16) 

and the resulting characteristic equation is written as 

Γ(𝜆, 𝜏) = (𝑀𝑛𝜆
2 + 𝐶𝑛𝜆 + 𝐾𝑛) + (𝑀𝑝𝜆

2 + 𝐶𝑝𝜆 + 𝐾𝑝)𝑒
−𝜏𝜆     (17) 

where Γ ∈  ℂ. Eq. (17) can be expressed as 

Γ(𝜆, 𝜏) = Γ𝑛(𝜆) + Γ𝑝(𝜆)𝑒
−𝜏𝜆                  (18) 

For a dynamic system to be asymptotically stable about its fixed points, all eigenvalues, which 

are the roots of the corresponding characteristic equation, must lie in the left half of the complex 

plane. Therefore, stability switching occurs when a root of the characteristic equation crosses the 

imaginary axis (i.e., Re(λi) = 0) as some parameters vary in the characteristic equation. If the 

partitioning parameters of the RTHS are chosen such that any root of the characteristic equation is 

in the right half of the complex plane, then that test configuration will be unstable. 

Without loss of generality, it is assumed that the reference structure (𝜏 = 0) is stable (i.e., the 

roots of Γ(𝜆, 0) in Eq. (18) lie in the left half of the complex plane). Next, we introduce two new 

terms which are crucial in the theory of delay differential equations: (1) critical frequency 

(𝜔𝑐𝑟 = |𝜆𝑐𝑟|) which is the frequency at which a stability switch occurs, and (2) critical time delay 

(𝜏𝑐𝑟) which is the time delay associated with the occurrence of a stability switch. To obtain the 

critical frequency and critical time delay associated with Eq. (18), one can simply replace 𝜆, 𝜏 
with 𝑗𝜔𝑐𝑟, 𝜏𝑐𝑟  in Eq. (18), and express the characteristic equation as 

−
Γ𝑛(𝑗𝜔 𝑟)

Γ𝑝(𝑗𝜔 𝑟)
= 𝑒−𝑗𝜏 𝑟𝜔 𝑟 = 𝑒−𝑗Ω 𝑟              (19) 

 

 

Fig. 6 Schematic diagram of a SDOF RTHS 
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where 𝑗 is the imaginary unit number and 𝜔𝑐𝑟 is the product of the critical frequency and its 

corresponding critical time delay Ω𝑐𝑟 = 𝜏𝑐𝑟𝜔𝑐𝑟. Eq. (19) can be solved using the geometric 

construction presented in (MacDonald 1989). As Ω𝑐𝑟 increases from 0 to 2𝜋, 𝑒−𝑗Ω 𝑟 traces out a 

unit circle in the complex plane and the left hand side of the equation, which is called the ratio 

curve, traces out another curve. A stability switch occurs in the system when the unit circle 

intersects the ratio curve. The intersection can occur multiple times, meaning that the system is 

stable within a particular range of time delay, then it will be unstable for a specific range of time 

delay, and then the system may gain its stability back as the time delay increases, see Fig. 7. For 

RTHS, the first occurrence of the instability condition is the most meaningful. Using Eqs. (17)-(19) 

the characteristic equation of a SDOF RTHS can be expressed as 

−
−𝑀𝑛𝜔 𝑟

  𝐶𝑛𝜔 𝑟𝑗 𝐾𝑛

−𝑀𝑝𝜔 𝑟  𝐶𝑝𝜔 𝑟𝑗 𝐾𝑝
= 𝑒−𝑗𝜏 𝑟𝜔 𝑟                  (20) 

Using Euler's formula (i.e., e…𝑗 = cos…+ 𝑗 sin…), Eq. (20) can be written as 

,−𝑀𝑛𝜔𝑐𝑟
2 + 𝐶𝑛𝜔𝑐𝑟𝑗 + 𝐾𝑛-

+[−𝑀𝑝𝜔𝑐𝑟
2 + 𝐶𝑝𝜔𝑐𝑟𝑗 + 𝐾𝑝],𝑐𝑜𝑠(𝜏𝑐𝑟𝜔𝑐𝑟) − 𝑗𝑠𝑖𝑛(𝜏𝑐𝑟𝜔𝑐𝑟)- = 0

        (21) 

Separating the real and imaginary parts of Eq. (21) yields the following system of equations, 

[𝐾𝑝 −𝑀𝑝𝜔𝑐𝑟
2 ]𝑐𝑜𝑠(𝜏𝑐𝑟𝜔𝑐𝑟) + 𝐶𝑝𝜔𝑐𝑟𝑠𝑖𝑛(𝜏𝑐𝑟𝜔𝑐𝑟) = 𝑀𝑛𝜔𝑐𝑟

2 −𝐾𝑛    (22a) 

𝐶𝑝𝜔𝑐𝑟𝑐𝑜𝑠(𝜏𝑐𝑟𝜔𝑐𝑟) − [𝐾𝑝 −𝑀𝑝𝜔𝑐𝑟
2 ]𝑠𝑖𝑛(𝜏𝑐𝑟𝜔𝑐𝑟) = −𝐶𝑛𝜔𝑐𝑟      (22b) 

Dividing both sides of Eqs. (22(a)) and (22(b)) by 𝑀 yields 

{
,(1 − 𝛾)𝜔𝑛

2 − (1 − 𝛼)𝜔𝑐𝑟
2 -𝑐𝑜𝑠(𝜏𝑐𝑟𝜔𝑐𝑟) + ,2(1 − 𝛽)𝜔𝑐𝑟𝜁𝜔𝑛-𝑠𝑖𝑛(𝜏𝑐𝑟𝜔𝑐𝑟)

= 𝛼𝜔𝑐𝑟
2 − 𝛾𝜔𝑛

2    (23a) 

{
,2(1 − 𝛽)𝜔𝑐𝑟𝜁𝜔𝑛-𝑐𝑜𝑠(𝜏𝑐𝑟𝜔𝑐𝑟) − ,(1 − 𝛾)𝜔𝑛

2 − (1 − 𝛼)𝜔𝑐𝑟
2 -𝑠𝑖𝑛(𝜏𝑐𝑟𝜔𝑐𝑟)

= −2𝜔𝑛𝜁𝜔𝑐𝑟𝛽
   (23b) 

where *𝛼, 𝛽, 𝛾+ = *𝑀𝑛𝑀
−1, 𝐶𝑛𝐶

−1, 𝐾𝑛𝐾
−1+ are the partitioning parameters and 𝜁  is damping 

ratio. Eqs. (23(a)) and (23(b)) are squared and added together to obtain a 4
th

order equation 

governing how the partitioning factors and the structural characteristics of the reference structure 

determine the critical frequency of the RTHS system (𝜔𝑐𝑟) 

(1 − 2𝛼)𝜔𝑐𝑟
4 +𝜔𝑛

2,4(1 − 2𝛽)𝜁2 − 2(1 − 𝛼 − 𝛾)-𝜔𝑐𝑟
2 + (1 − 2𝛾)𝜔𝑛

4 = 0    (24) 

Furthermore, Eq. (24) is normalized with respect to 𝜔𝑛 yielding 

(1 − 2𝛼)𝜙𝑐𝑟
4 + ,4(1 − 2𝛽)𝜁2 − 2(1 − 𝛼 − 𝛾)-𝜙𝑐𝑟

2 + (1 − 2𝛾) = 0       (25) 

where 𝜙𝑐𝑟 = 𝜔𝑐𝑟𝜔𝑛
−1 is the critical frequency ratio. Eq. (25) may lead to 0, 1, or 2 meaningful 

critical frequencies (i.e., positive real values). The lowest of the three is associated with the limit 

of an unconditionally stable RTHS system. After obtaining 𝜙𝑐𝑟 from Eq. (25), one can solve for 

the corresponding critical time delays using Eqs. (23(a)) and (23(b)) 

𝜏𝑐𝑟 = 𝜔𝑐𝑟
−1 0𝑁𝜋 + 𝑡𝑎𝑛−1 .

𝐴

𝐵
/1                 (26a) 
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𝐴 = ,2(1 − 𝛽)𝜔𝑐𝑟𝜁𝜔𝑛-,𝛼𝜔𝑐𝑟
2 − 𝛾𝜔𝑛

2-

+,(1 − 𝛾)𝜔𝑛
2 − (1 − 𝛼)𝜔𝑐𝑟

2 -2𝜔𝑛𝜁𝜔𝑐𝑟𝛽
            (26b) 

𝐵 = ,(1 − 𝛾)𝜔𝑛
2 − (1 − 𝛼)𝜔𝑐𝑟

2 -,𝛼𝜔𝑐𝑟
2 − 𝛾𝜔𝑛

2-

−,2(1 − 𝛽)𝜔𝑐𝑟𝜁𝜔𝑛-2𝜔𝑛𝜁𝜔𝑐𝑟𝛽
        (26c) 

where 𝑁 = 0, 1, 2, … and making sure that Eqs. (23(a)) and (23(b)) are both achieved. 

Furthermore, Eq. (26) is normalized with respect to 𝜔𝑛 and it becomes 

Ω𝑐𝑟 = 𝜏𝑐𝑟𝜔𝑛 = 𝜙𝑐𝑟
−1 0𝑁𝜋 + 𝑡𝑎𝑛−1 .

𝐴

𝐵
/1              (27a) 

𝐴𝜔𝑛
−4 = ,2(1 − 𝛽)𝜙𝑐𝑟𝜁-,𝛼𝜙𝑐𝑟

2 − 𝛾- + ,(1 − 𝛾)𝜔𝑛
2 − (1 − 𝛼)𝜙𝑐𝑟

2 -2𝜁𝜙𝑐𝑟𝛽     (27b) 

𝐵𝜔𝑛
−4 = ,(1 − 𝛾) − (1 − 𝛼)𝜙𝑐𝑟

2 -,𝛼𝜙𝑐𝑟
2 − 𝛾- − ,2(1 − 𝛽)𝜙𝑐𝑟𝜁-2𝜙𝑐𝑟𝜁𝛽    (27c) 

Thus, Eqs. (25) and (27(a)) can be used to find the stability characteristics of an RTHS system as a 

function of the partitioning parameters and the structural characteristics of the reference structure. 

However, it is recommended to first plot the RTHS stability diagram using Eqs. (25) and (27a), 

and then determine the stability characteristics of the RTHS system. 

 

3.1 Stability diagrams for a linear SDOF RTHS 
 
This section examines how the values of the partitioning parameters and the structural 

characteristics of the reference structure affect the stability of a linear RTHS system through the 

use of RTHS stability diagrams. Four sample partitioning cases will be considered, see Table 1. In 

Fig. 7, the stability diagrams associated with these sample cases, for 5 different reference damping 

ratios (a total of 4 × 5 = 20 systems) are examined. 

Practically speaking, a more realistic partitioning configuration is one where a majority of the 

mass is modeled in the numerical substructure (i.e., α ≈ 1) and a majority of the stiffness is placed 

in the physical substructure (i.e., γ ≈ 0). Therefore, the bottom portion of Fig. 7(b) and the top 

portion of Fig. 7(c) represent more realistic scenarios. As shown in Fig. 7, the more realistic cases 

where α ≈ 1 and 𝛾 ≈ 0 are quite challenging configurations in terms of leading to small values of 

Ω𝑐𝑟. Some important observations can be made from Fig. 7. 

 For a specific 𝜁, the area to the left of the first curve is considered a stable region in RTHS 

(i.e., Ω  Ω𝑐𝑟).  

 The critical time delay is inversely proportional to the natural frequency of the reference 

structure. Thus, higher modes of the reference structure are highly sensitive to time delays. 

Often for multi-degree-of-freedom (MDOF) systems, higher modes are suppressed with 

artificial damping in the numerical substructure (Shing and Mahin 1984). 

 
Table 1 The four partitioning cases examined 

 𝛼 factor 𝛽 factor 𝛾 factor 

Case I ∈ ,0, 1- 0.4 0.9 

Case II 0.9 0.6 ∈ ,0, 1- 

Case III ∈ ,0, 1- 0.6 0.1 

Case IV 0.1 0.4 ∈ ,0, 1- 
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Fig. 7 Normalized stability diagrams showing Ω𝑐𝑟 (a) Case I (b) Case II (c) Case III (d) Case IV 

 

 

 In selecting the partitioning parameters, 𝛼 ≈ 0.5 is not a good choice from stability and 

performance perspectives, see Figs. 7(a) and 7(c). 

 For a particular RTHS configuration, multiple Ω𝑐𝑟(s) exist. Clearly, a stability switch occurs 

in the system when the unit circle in Eq. (19) intersects the ratio curve, and this can occur 

multiple times. Thus, the system is stable within a particular range of Ω, then it will be unstable 

for a specific range of Ω, and then the system will again be stable as Ω increases. Although the 

system may be stable at higher Ω, performance is likely to suffer (Maghareh et al. 2013) 

 As a rule of thumb, the value of critical time delay is related to |γ− α|. Thus, larger value of 

|γ− α| usually leads to a relatively small critical time delay value.  

 Critical time delay usually increases as the reference structure becomes more damped. 

 Finally, if stability concerns lead to some changes in a partitioning setup, reducing |γ −
α| and 𝜔𝑛 and/or increasing 𝜁 are effective options.  

 

3.2 Unconditionally stable region 
 

As noted earlier, Eq. (25) may lead to 0, 1, or 2 meaningful critical frequency ratios. For case II 

and 𝜁 = 5 , these three regions are shown in Fig. 8. Using Eq. (25), the condition to have an 

unconditionally stable region is 

(𝛾 − 𝛼)  4𝜁2(1 − 2𝛽),(1 − 𝛼 − 𝛾) − (1 − 2𝛽)𝜁2-    (28) 
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Fig. 8 Case II with 𝜁 = 5  (a) Normalized RTHS stability diagram showing Ω𝑐𝑟  against 𝛾 (b) Plot of 

              𝛾 against Φ𝑐𝑟  showing the three stability regions 

 

 

 

Fig. 9 Unconditionally stable range associated with case II for different damping ratios 

 

 

Moreover, in terms of 𝛼 and 𝛾, the range of the unconditionally stable region, which occurs 

about |γ − α| = 0, can be found as 

(𝛾 − 𝛼)2 + 𝐵(𝛾 − 𝛼) + 𝐶 = 0            (29) 

where  𝐵 = 4(1 − 2𝛽)𝜁2 and 𝐶 = −4𝜁2(1 − 2𝛽),1 − 2𝛼 − (1 − 2𝛽)𝜁2-.  Fig. 9 shows the 

resulting unconditionally stable range associated with Case II about |γ − α| = 0 using Eq. (29). 

Thus, in certain RTHS configurations, there is a range about |γ − α| = 0 in which the system is 

unconditionally stable, and within that range, the critical time delay approaches infinity. Knowing 

the unconditionally stable region associated with a partitioning set-up can be significant, especially 

when conducting geographically-distributed RTHS where data loss and unpredictable time delays 

are major challenges.  

 

3.3 Minimum requirements of the transfer system and sampling frequency 
 

After obtaining the critical time delay using the RTHS stability diagrams or Eqs. (25) and (27(a)), 

one can identify the maximum permissible delay in an RTHS system as the critical time delay. 

Therefore, if the feedback force signal has a time delay equal to or greater than the critical time delay, 

the system will go unstable. Generally speaking, the time delay associated with the feedback force 

signal is 

𝜏𝐹𝑓𝑏 = 𝜏𝐶𝑂𝑀𝑃 + 𝜏𝐶𝑂𝑀𝑀 + 𝜏𝑇𝑆           (30) 

where 𝜏𝐶𝑂𝑀𝑃 , 𝜏𝐶𝑂𝑀𝑀 , and 𝜏𝑇𝑆 are computational delay, communication delay, transfer system 
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delay, respectively. Furthermore, if a ZOH digital-to-analog convertor is used, 𝜏𝐶𝑂𝑀𝑃  can be 

approximated by (2𝑓𝑠)
−1 where 𝑓𝑠  is the sampling frequency in Hz. Assuming that in a local 

RTHS, 𝜏𝐶𝑂𝑀𝑀 is a known deterministic value. Then, Eq. (30) becomes 

𝜏𝐹𝑓𝑏 − 𝜏𝐶𝑂𝑀𝑀 − (2𝑓𝑠)
−1 = 𝜏𝑇𝑆             (31) 

therefore, with a given sampling frequency, the stability phase envelope which determines the 

minimum control requirements for the transfer system can be expressed as 

𝑒−𝑗𝜔(𝜏 𝑟−𝜏𝐶𝑂𝑀𝑀−(2𝑓 )
−1) = 𝑒−𝑗𝜔𝜏          (32) 

where 𝜏𝑚 = 𝜏𝑐𝑟 − 𝜏𝐶𝑂𝑀𝑀 − (2𝑓𝑠)
−1. As shown in Fig. 10, for a stable RTHS, the phase plot of the 

transfer system control must lie above the stability phase envelope shown for a given value of 𝜏𝑐𝑟. 

 

 

4. Weakly-nonlinear SDOF RTHS systems 
 

This section considers a physical substructure that is composed of weakly-nonlinear materials 

(wherein there is a nonlinearity between the materials' restoring forces and displacements) or 

composed of linear materials but loaded beyond the proportional limit. Let's examine how 

nonlinearity affects the overall stability of a SDOF RTHS system in the presence of feedback time 

delay. Consider a lightly-damped reference structure with the following governing equation 

𝑀𝑥̈(𝑡) + 𝐶𝑥̇(𝑡) + 𝐾𝑥(𝑡) + 𝜖𝑅(𝑥) = 0            (33) 

which is equivalent to 

𝑥̈(𝑡) + 2𝜁𝜔𝑛𝑥̇(𝑡) + 𝜔𝑛
2𝑥(𝑡) + 𝜖𝑀−1𝑅(𝑥) = 0         (34) 

 

 

 

Fig. 10 Stability phase envelope to determine the minimum transfer system control requirement 
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where 𝜖𝑅(𝑥) represents the weakly-nonlinear component of the restoring force and 𝜖 is a small 

positive constant (𝜖 and 𝜁are in the same order of magnitude). Weakly-nonlinear systems can be 

divided into two categories: (1) strain-hardening systems and (2) strain-softening systems. Fig. 11 

shows the qualitative behaviors of linear, strain-softening, and strain-hardening systems. In this 

work, we assume that these nonlinearities can be captured with cubic terms. Thus, Eq. (34) becomes 

𝑥̈(𝑡) + 2𝜁𝜔𝑛𝑥̇(𝑡) + 𝜔𝑛
2𝑥(𝑡) + 𝜖𝑀−1ℎ𝑥3(𝑡) = 0         (35) 

where *    0, ℎ =  0, ℎ   0+ corresponds to {strain-softening, linear, strain-hardening} systems. 

Eq. (35) can be partitioned into numerical and physical substructures using the partitioning 

parameters, *𝛼, 𝛽, 𝛾+ = *𝑀𝑛𝑀
−1, 𝐶𝑛𝐶

−1, 𝐾𝑛𝐾
−1+, yielding 

 *𝛼𝑥̈(𝑡) + 2𝜁𝛽𝜔𝑛𝑥̇(𝑡) + 𝛾𝜔𝑛
2𝑥(𝑡)+

+*(1 − 𝛼)𝑥̈(𝑡) + 2𝜁(1 − 𝛽)𝜔𝑛𝑥̇(𝑡) + (1 − 𝛾)𝜔𝑛
2𝑥(𝑡) + 𝜖𝑀−1ℎ𝑥3(𝑡)+ = 0

    (36) 

where in the presence of feedback delay, Eq. (36) becomes 

*𝛼𝑥̈(𝑡) + 2𝜁𝛽𝜔𝑛𝑥̇(𝑡) + 𝛾𝜔𝑛
2𝑥(𝑡)+

+*(1 − 𝛼)𝑥̈(𝑡 − 𝜏) + 2𝜁(1 − 𝛽)𝜔𝑛𝑥̇(𝑡 − 𝜏) + (1 − 𝛾)𝜔𝑛
2𝑥(𝑡 − 𝜏)+

+*𝜖𝑀−1ℎ𝑥3(𝑡 − 𝜏)+ = 0.

     (37) 

For a SDOF RTHS system, it has been shown that the presence of a feedback time delay 

effectively adds energy into the system (Ahmadizadeh 2007, Mosqueda et al. 2005, Carrion and 

Spencer 2007). Fig. 12 shows desired displacement against the restoring forces of linear and 

weakly-nonlinear systems associated with different time delays, where 𝜏1  𝜏2  𝜏3. In each case, 

the additional energy added to the system is the enclosed area. Clearly, as the time delay becomes 

larger, the effective amount of added energy increases. 

 

 

 

 

Fig. 11 Qualitative behavior of linear, strain-softening, and strain-hardening materials 
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Fig. 12 Additional energy due to time delay in strain-softening, linear and strain-hardening systems 

(𝜏1  𝜏2  𝜏3) 

 

 

For RTHS, instability occurs when the additional energy becomes greater than the energy 

dissipation in the nominal system (and hysteretic energy if any) (Ahmadizadeh 2007). Using the 

stability switch criterion, we can obtain the critical time delay associated with the linear system, and 

the qualitative effects of weak nonlinearity on the stability of the system can be understood by 

computing and comparing the enclosed areas shown in Fig. 12. 

 

Linear Systems: In Eq. (37), linear systems correspond to systems with ℎ =  0. Therefore, the 

enclosed area in Fig. 12(b), can be computed as 

𝐴𝐿(𝑡) = ∫ (1 − 𝛾)𝐾,𝑥(𝑡) − 𝑥(𝑡 − 𝜏)-
 (𝑡1)

 (𝑡𝑜)
𝑑𝑥          (38a) 

= ∫ (1 − 𝛾)𝐾,𝑥(𝑡) − 𝑥(𝑡 − 𝜏)-
𝑡1
𝑡𝑜

𝑥̇(𝑡)𝑑𝑡     (38b) 

Strain-Softening Systems: In Eq. (37), strain-softening systems correspond to systems with 

ℎ  0. Therefore, the enclosed area in Fig. 12(a) can be computed as 

𝐴𝑠(𝜏) = ∫ *(1 − 𝛾)𝐾,𝑥(𝑡) − 𝑥(𝑡 − 𝜏)- + 𝜖ℎ,𝑥3(𝑡) − 𝑥3(𝑡 − 𝜏)-+
 (𝑡1)

 (𝑡𝑜)
𝑑𝑥    (39a) 

𝐴𝑠(𝜏) = ∫ ,𝑥(𝑡) − 𝑥(𝑡 − 𝜏)-*(1 − 𝛾)𝐾 +
𝑡1
𝑡𝑜

𝜖ℎ,𝑥2(𝑡) + 𝑥(𝑡)𝑥(𝑡 − 𝜏) + 𝑥2(𝑡 − 𝜏)-+𝑥̇(𝑡)𝑑𝑡
         (39b) 

by applying the Taylor expansion on , (t) −  (t −  )- and truncating o( 2), , (t) −  (t −  )- can 

be approximated as   ̇(t), yielding 

𝐴𝑠(𝜏) = ∫ (1 − 𝛾)𝐾,𝑥(𝑡) − 𝑥(𝑡 − 𝜏)-𝑥̇(𝑡)𝑑𝑡 
𝑡1
𝑡𝑜

               + ∫ 𝜖ℎ𝜏,𝑥2(𝑡) + 𝑥(𝑡)𝑥(𝑡 − 𝜏) + 𝑥2(𝑡 − 𝜏)-
𝑡1
𝑡𝑜

𝑥̇2(𝑡)𝑑𝑡
      (40a) 

𝐴𝑆(𝜏) = 𝐴𝐿(𝜏) + Δ𝐴𝑆(𝜏)           (40b) 

Knowing that  * (t),  + and     0 𝜖ℎ𝜏, 2(t) +  (t) (t −  ) +  2(t −  )- ̇2(t)  0  yields 

Δ𝐴𝑆(𝜏)  0                  (41a) 

𝐴𝑆(𝜏)  𝐴𝐿(𝜏)              (41b) 
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Thus, the enclosed area in Fig. 12(a) (i.e., the additional energy for strain-softening systems) is 

always smaller than the enclosed area in Fig. 12(b) (i.e., the additional energy for linear systems). 

 

Strain-Hardening Systems: In Eq. (37), strain-hardening systems correspond to systems with 

ℎ   0. Therefore, the enclosed area in Fig. 12(c) can be computed as 

𝐴𝐻(𝜏) = ∫ *(1 − 𝛾)𝐾,𝑥(𝑡) − 𝑥(𝑡 − 𝜏)- + 𝜖ℎ,𝑥3(𝑡) − 𝑥3(𝑡 − 𝜏)-+
 (𝑡1)

 (𝑡𝑜)
𝑑𝑥   (42a) 

𝐴𝐻(𝜏) = ∫ ,𝑥(𝑡) − 𝑥(𝑡 − 𝜏)-*(1 − 𝛾)𝐾 +
𝑡1
𝑡𝑜

𝜖ℎ,𝑥2(𝑡) + 𝑥(𝑡)𝑥(𝑡 − 𝜏) + 𝑥2(𝑡 − 𝜏)-+𝑥̇(𝑡)𝑑𝑡
          (42b) 

by applying the Taylor expansion on ,𝑥(𝑡) − 𝑥(𝑡 − 𝜏)- and truncating 𝑜(𝜏2), ,𝑥(𝑡) − 𝑥(𝑡 − 𝜏)- 
can be approximated as 𝜏𝑥̇(𝑡), yielding 

𝐴𝐻(𝜏) = ∫ (1 − 𝛾)𝐾,𝑥(𝑡) − 𝑥(𝑡 − 𝜏)-𝑥̇(𝑡)𝑑𝑡 
𝑡1
𝑡𝑜

               + ∫ 𝜖ℎ𝜏,𝑥2(𝑡) + 𝑥(𝑡)𝑥(𝑡 − 𝜏) + 𝑥2(𝑡 − 𝜏)-
𝑡1
𝑡𝑜

𝑥̇2(𝑡)𝑑𝑡
     (43a) 

𝐴𝐻(𝜏) = 𝐴𝐿(𝜏) + Δ𝐴𝐻(𝜏)     (43b) 

Knowing that  *𝑥(𝑡), 𝜏+ and 𝜖ℎ𝜏  0 𝜖ℎ𝜏,𝑥2(𝑡) + 𝑥(𝑡)𝑥(𝑡 − 𝜏) + 𝑥2(𝑡 − 𝜏)-𝑥̇2(𝑡)  0 yields 

Δ𝐴𝐻(𝜏)  0                 (44a) 

𝐴𝐻(𝜏)  𝐴𝐿(𝜏)                 (44b) 

Thus, the enclosed area in Fig. 12(c) (i.e., the additional energy for strain-hardening systems) is 

always larger than the enclosed area in Fig. 12b (i.e. the additional energy for linear systems). In Fig. 

12(b), for a given 𝜏, 𝐴𝑆(𝜏), 𝐴𝐿(𝜏), and 𝐴𝐻(𝜏) are compared, and clearly 

𝐴𝐻(𝜏)  𝐴𝐿(𝜏)  𝐴𝑆(𝜏)                    (45) 

 

 

 

Fig. 13 Comparison of additional energies added to the system due to time delay in the restoring force 
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For weakly-nonlinear systems, the system can be linearized about its fixed point and using the 

RTHS stability switch criterion, a value for critical time delay can be obtained. However, it should 

be noted that depending upon whether the system exhibits softening or hardening behavior, the 

obtained value is underestimated or overestimated, respectively. Therefore, for weakly-nonlinear 

systems with softening behavior, the obtained value is a conservative value. Furthermore, 𝐴𝐿(𝜏) −
𝐴𝑆(𝜏) and 𝐴𝐻(𝜏) − 𝐴𝐿(𝜏) are linearly proportional to 𝜖ℎ𝜏. Thus, the level of nonlinearity and 

damping of the reference structure determine the level of overestimation or underestimation of the 

critical time delay value obtained using the RTHS stability switch criterion. 

 

 
5. Illustrative case studies 
 

To illustrate the use of the RTHS stability switch criterion, we conducted experimental and 

numerical studies. In the first section, the results associated with a pure physical (shake table) testing 

of a reference structure, simulation of the reference model, and RTHS are provided. In the latter 

section, two simulations of RTHS (case a and case b) are provided.  

 
5.1 Illustrative experiment 
 
In this section, we conduct a pure physical (shake table) testing of a SDOF structure (i.e., the 

reference structure), a simulation of the reference structure (i.e., the reference model), and an RTHS 

(experimental case). The objective is to utilize the RTHS stability switch criterion and predictive 

stability/performance indicators (PSI and PPI), established in (Maghareh et al. 2013, Maghareh and 

Dyke 2013), to conduct a successful RTHS where: (1) the transfer system (i.e., a servo hydraulic 

actuator) is controlled (or compensated) relatively poorly (i.e., poor transfer system performance), 

see Fig. 16; (2) the reference structure has a relatively large natural frequency (𝜔𝑛 =  32.9  𝑎𝑑 
𝑠𝑒𝑐) and is lightly damped (𝜁 =  0.014). For RTHS, it is quite challenging to conduct a successful 

RTHS where Ω = 𝜏𝜔𝑛  is relatively large and 𝜁 is relatively small. 

In this study the seismic input is chosen to be the ChiChi earthquake ground acceleration and the 

peak ground acceleration is scaled to be 0.061g, see Fig. 14. To begin, a comparison is made 

between the shake table response of the reference structure and the response of its SDOF reference 

model. This step is necessary to obtain reliable values for *𝑀, 𝐶, 𝐾+𝑅𝐸𝐹 and eventually *𝛼, 𝛽, 𝛾+. 
Fig. 15 shows the response of the reference structure and the reference model in the time and 

frequency domains. The corresponding normalized RMS error (NRMSE) using Eq. (46) is 0.8%. 
 

 

Fig. 14 ChiChi earthquake ground acceleration with PGA = 0.061g 
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𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆, ̈𝑃𝐻𝑌(𝑡)− ̈𝑆𝐼𝑀(𝑡)-

𝑚𝑎 , ̈𝑃𝐻𝑌(𝑡)-−𝑚𝑖𝑛, ̈𝑃𝐻𝑌(𝑡)-
 100           (46) 

A low NRMSE and excellent agreement in Fig. 15 show that the reference structure is accurately 

modeled. After identifying the reference structure, we are ready to partition the reference structure 

and utilize the RTHS stability switch criterion, the PSI and PPI. The structural characteristics of the 

reference structure, the physical substructure, and the numerical substructure are listed in Table 2. 

Therefore, for this RTHS system, *𝜁, 𝜔𝑛 , 𝛼, 𝛽, 𝛾+ = *1.37 , 32.9  𝑎𝑑 𝑠𝑒𝑐, 0.75, 0.82, 0.75+ are a 

good choice of parameters. 

Next, to conduct RTHS, we first evaluate the performance of the transfer system. In Fig. 16, the 

frequency responses of the hydraulic actuator identified using band-limited white noise input and a 

pure time delay system are shown. Furthermore, in the RTHS setup shown in Fig. 17, 

*𝑓𝑠 , 𝜏𝐶𝑂𝑀𝑃, 𝜏𝐶𝑂𝑀𝑀 , 𝜏𝑇𝑆+ is *4096   , 0.12  𝑠𝑒𝑐, 0.24  𝑠𝑒𝑐, 14.4  𝑠𝑒𝑐+. Thus, the feedback time 

delay can be approximated as 14.8 msec. By knowing 𝜏, 𝜔𝑛 , and the partitioning parameters, one 

can locate the corresponding RTHS case on the RTHS stability diagram. In Fig. 18, the case is 

specified with a blue cross-mark and labeled as RTHS (Experimental Case). Using the predictive 

indicators, one can predict that the partitioning choice in Table 2 and Ω =  0.49  leads to 

unconditionally stable (PSI = ∞) and accurate results (PPI = 0.205), see (Maghareh and Dyke 2013, 

Maghareh et al. 2013). 

 

 

 

 

Fig. 15 Responses of pure physical (shake table) testing and the SDOF reference model, (a) frequency 

domain, (b) time domain, (c) time domain (zoomed in), (d) time domain (zoomed in) 

 

 

 
Table 2 Reference and substructures characteristics 

 Reference Physical Numerical 

M (kg) 98.4 24.6 73.8 

C (N.s/m) 88.7 15.8 72.9 

K(N/m) 10.67e4 2.67e4 8e4 
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Fig. 16 Frequency responses of the hydraulic actuator and a pure time delay system 

 

 

 

Fig. 17 Physical substructure and transfer system used in this RTHS 

 

 

 

Fig. 18 Location of the RTHS case study and simulation cases on the RTHS stability diagram 

 

 

As shown in Fig. 18, Ω1  = 𝜏𝜔𝑛  =  0.49 divides the diagram into two sections, feasible region 

(0.69  𝛾  1) and infeasible region (0  𝛾  0.69), and the RTHS case study in Table 2 lies 

within the feasible region (𝛾 =  0.75). Fig. 19 shows the results for RTHS and the reference 
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structure in the time and frequency domains. Clearly, the RTHS system demonstrated here is stable 

and the corresponding NRMSE using Eq. (47) is 0.9%. 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆, 𝑆𝐼𝑀(𝑡)− 𝑅𝑇𝐻𝑆(𝑡)-

𝑚𝑎 , 𝑆𝐼𝑀(𝑡)-−𝑚𝑖𝑛, 𝑆𝐼𝑀(𝑡)-
 100            (47) 

Fig. 18 also shows that how a smaller Ω (e.g., Ω2  =  0.1) yields a wider range of feasible region in 

this setup (0.47  𝛾  1). 

 

5.2 Illustrative simulations 
 
Two MATLAB simulations of RTHS are also conducted using the parameters listed in Table 3 

subject to the ChiChi earthquake ground acceleration with the peak acceleration of 0.061g, see Fig. 

14. 

The stability of these two cases can be also identified using the RTHS stability diagram in Fig. 18. 

The simulation results in Figs. 20(a) and 20(b) show that case a and case b are unstable and stable, 

respectively. The simulation results are in full agreement with the results from the RTHS stability 

diagram in Fig. 18 (indicated as simulation case a and simulation case b). 

 

 

 

 

Fig. 19 Responses of RTHS and the reference model, (a) frequency domain, (b) time domain, (c) time 

domain, (d) time domain (zoomed in) 

 

 

 
Table 3 Parameters of the two MATLAB simulations of RTHS 

 𝛼 𝛽 𝛾 𝜁 𝜔𝑛( 𝑎𝑑 𝑠𝑒𝑐)   

Case a 0.75 0.82 0.6 0.014 32.9  0.49 

Case b 0.75 0.82 0.6 0.014 32.9 0.1 
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Fig. 20 Responses of simulations of RTHS (case a and case b) subject to ChiChi seismic excitation with 

PGA = 0.061g 

 

 

 
In this work, based on the performance of the transfer system and the existence of various sources 

of time delay, an RTHS case study and two simulations of RTHS have been conducted. Using the 

RTHS stability diagram, we have demonstrated: (i) how the stability of a SDOF RTHS is identified, 

(ii) the most effective ways to stabilize an unstable simulation, and (iii) how the feasible and 

infeasible regions vary as functions of the performance of the transfer system, computational delay, 

and communication delay. Moreover, the RTHS stability diagram demonstrates the fact that higher 

modes of a reference structure are highly sensitive to time delays and require special treatments to 

conduct a successful RTHS because for a given Ω𝑐𝑟   (= 𝜔𝑛𝜏𝑐𝑟), a larger value for 𝜔𝑛 leads to a 

smaller value for 𝜏𝑐𝑟 . 
 

 
6. Conclusions 

 

To advance the current knowledge of structural behavior subject to extreme dynamic loading and 

to mitigate existing threats against civil infrastructure, new technologies in experimental evaluation 

of civil structures must be embraced. RTHS represents an alternative experimental technique to 

evaluate the performance of rate-dependent behavior in civil structures in the laboratory. To fully 

leverage the capabilities of RTHS, guidelines are needed to address some key issues associated with 

its use. In this work, the major issues investigated are the minimum requirements of the transfer 

system control, the minimum required sampling frequency, the structural characteristics of the 

reference structure, the most effective changes to stabilize an unstable simulation due to the transfer 

system limitations, and nonlinearity in the physical substructure. This paper introduced the RTHS 

stability switch criterion which serves as an experimental design guideline associated with the 

minimum stability/control requirements to conduct a successful RTHS. In addition, through 

experimental and numerical simulations, the use of the RTHS stability switch criterion is 

demonstrated for planning RTHS. 
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