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Abstract.    Shape memory alloys (SMA) can dissipate energy through hysteresis cycles without significant 
residual deformation. This paper describes the fabrication and testing of copper-based SMA 
hourglass-shaped plates for use in energy dissipation devices and the development of a numerical model to 
reproduce the experiments. The plates were tested under cyclic flexural deformations, showing stable 
hysteresis cycles without strength degradation. A detailed nonlinear numerical model was developed and 
validated with the experimental data, using as input the constitutive relationship for the material determined 
from cyclic tests of material coupons under tension loading. The model adequately reproduces the 
experimental results. The study is focused on the exploitation of SMA in the martensite phase. 
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1. Introduction 
 

The use of supplemental energy dissipation for seismic protection or performance enhancement 
of civil structures has become increasingly popular over the last years. Different types of energy 
dissipation systems have been developed by a number of researchers and implementations of some 
of these systems in real structures have rapidly increased around the world. An effective 
mechanism of energy dissipation consists of inducing inelastic deformations to a metallic element 
(Symans et al. 2008). Among the devices that use this mechanism, there is one type designed to 
induce bending on hourglass-shaped plates in order to spread the yielding almost uniformly 
throughout the material, often mild steel. Over the last 20 years this type of plates have been 
widely investigated and implemented in buildings on seismic areas (Alonso 1989, Tena-Colunga 
1997, De la Llera et al. 2004). An important issue of this type of devices is that after an earthquake 
they usually have sustained large inelastic deformations and present significant residual 
deformations, which leads to the need of replacement.  

On the other hand, Shape Memory Alloys (SMAs) are a class of materials which can dissipate 
energy through hysteresis cycles without significant residual deformation. This is the result of 
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reversible phase transformations of the material between Austenite and Martensite, under 
temperature or stress changes. Four temperatures define the phase transformation limits at the 
unstressed state: start martensite (MS) and finish martensite (Mf), when the material is cooled from 
Austenite phase, and start austenite (AS), and finish austenite (Af), when the material is heated from 
Martensite phase. The behavior under load depends on the initial phase of the material: if the 
initial phase is Austenite, the alloy may present the Superelastic Effect (SE), which exhibits a 
characteristic flag-shaped hysteretic cycle, recovering its original shape after removal of the load 
while dissipating energy; if the initial phase is Martensite, the alloy shows the Shape Memory 
Effect (SME), where the hysteretic cycle ends with residual deformations which can be recovered 
after heating the material above Af and letting it cool below Mf. McCormick (2006) describes the 
characteristic hysteresis loops for both phenomena. These self-centering and energy dissipating 
characteristics make SMAs a promising material for seismic protection. 

An extensively used SMA is Nitinol, made of Ni and Ti, which has found application in 
medicine and aeronautics. The use of this alloy in a wide range of seismic applications has also 
been investigated: Nitinol devices have been included as braces in steel frames (Asgarian and 
Moradi 2011, Miller et al. 2012), as connectors in beam-column joints of steel frames (Speicher et 
al. 2011) or as reinforcement in beam-column joints of reinforced concrete frames (Youseff et al. 
2007, Alam et al. 2012, Abdulridha et al. 2013). Recently, the inclusion of SMA devices in bridges 
has been reported by several authors (Johnson et al. 2008, Dong et al. 2011, Torra et al. 2013, 
Bhuiyan and Alam 2013, Dieng et al. 2013). 

Some copper based SMAs have also been developed, but commercial fabrication has been 
restricted to small diameter wires and bars. The most available alloy is CuAlBe. Research on 
copper based SMAs has been mainly focused on the characterization of thermo-mechanical 
properties. It has been found that thermal treatment, aging process, grain size and sample size are 
key parameters that determine the SMA behavior (Casciati and Van der Eijk 2008, Montecinos et 
al. 2008). Tension tests of copper based SMA samples (Sutou et al. 2005, Somerday et al. 1997) 
show that the grain size significantly affects the post “yielding” (start of phase transformation or 
detwinning process) slope of the stress-strain curve, whereby increasing the grain size decreases 
this slope. However, the elastic modulus of the material does not change significantly with a 
change in the grain size. On the other hand, the duration of the thermal treatment affects the 
fracture life of the SMAs. Excessive grain growth, generated by a longer thermal treatment, 
produces a more brittle material, resulting in an earlier failure. Carreras et al. (2011) and Casciati 
and Marzi (2010) studied the fatigue life of austenitic NiTinol and CuAlBe SMA bars and 
concluded that both materials can withstand over a 1000 cycles of deformation, which they 
established as a reasonable number of cycles to represent a seismic input. 

Several analytical models with varied degrees of complexity have been developed to capture 
the constitutive law of SMAs. Motahari and Ghassemieh (2007) proposed a multilinear curve to 
represent the stress-strain relationship, which simulates various complex behaviors of SMAs, such 
as superelastic effect, partial superelastic effect, detwinning, and high rate loading (under adiabatic 
conditions). This model stands out because of its simplicity and versatility. 

This paper reports the findings of research on copper based SMA hourglass-shaped plates for 
use in energy dissipation devices. These plates were fabricated and tested under cyclic flexural 
deformations with different amplitudes. In addition, material coupons were tested under tension 
loading to obtain the constitutive law of the material. The experimental data was then used to 
calibrate an analytical stress-strain relationship model. Finally, a detailed non-linear numerical 
model of an hourglass-shaped plate, suitable for use in complex structural models, was developed 
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and validated against experimental data. The study is focused on the exploitation of SMA in the 
martensite phase under a low number of cycles. 

 
 

2. Experimental study 
 
2.1 Preparation of samples 
 
Two 50 kg heats of a CuZnAl alloy (called Heat A and Heat B) were prepared based on the 

following nominal composition: Cu - 16.90%wt. Zn - 7.71%wt. Al. – 0.04%wt. B. However, the 
actual compositions of each heat, obtained using optical spectroscopy, are presented in Table 1. 
The large variation in the Zn proportion is consequence of the use of an open furnace to fabricate 
the alloy. This makes it difficult to control the amount of Zn lost by evaporation to the atmosphere 
during the process. The small percentage of B could not be detected in these analyses. The heats 
were cast in cylindrical molds and each cast was forged to obtain a total of 8 rectangular plates of 
150 mm x 300 mm x 15 mm, plates 1 through 3 from Heat A and plates 4 through 8 from Heat B. 

A thermo-mechanical treatment was applied to all the plates in order to reduce their thickness 
approximately to the nominal value for the specimens (8 or 10 mm). Plate-4 was hot-rolled at 
700°C, but because of the rapid cooling of the plate, it ended up with a permanent curvature that 
could not be completely removed. In consideration of this result, the procedure was changed and 
the rest of the plates were heated up to 850ºC, press-formed to reduce the thickness, and finally 
quenched with iced water. During this process, Plate-2 fractured in such a way that a specimen 
could not be extracted from it. A second thermo-mechanical treatment consisted in heating the 
elements up to 850ºC for 15 minutes, and water quenching them at room temperature. Before 
applying this second treatment, each remaining plate was machined to obtain a final thickness 
between 8 and 10.6 mm and an hourglass-shape, as shown in Fig. 1(a). From each plate, a coupon 
(Fig. 1(b)) to test in tension was also obtained. Then, the thermal treatment was applied to the 
hourglass-shaped plates and the coupons. Differential Scanning Calorimeter (DSC) analysis and 
optical metallographies were performed to samples of the plates to establish the phase 
transformation temperatures MS, Mf, AS and Af, to measure average grain sizes, and to verify the 
initial phase. 

DSC and metallographies showed Martensite phase at room temperature in all the samples, 
with an average grain size around 0.4 [mm], as shown in Fig. 2. Transformation temperatures of 
each heat are shown in Table 1. The final sizes of specimens and coupons, as well as the nominal 
dimensions, are described and listed in Fig. 1 and Tables 2 and 3, respectively. 

 
 

Table 1 Nominal and actual heat compositions and phase transformation temperatures 

Heat Cu Zn Al Mf Ms As Af 

 %wt %wt %wt [ºC] [ºC] [ºC] [ºC] 
Nominal 75.35 16.90 7.71 - - - - 

A 75.09 17.43 7.48 275 350 280 393 
B 78.23 15.40 6.37 278 331 258 384 
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(a) Plate (b) Coupon 

Fig. 1 Specimen dimensions in mm 
 

 
Table 2 Dimensions of hourglass-shaped plates 

Plate B1 
[mm] 

B2 
[mm] 

b1 
[mm] 

b2 
[mm]

G 
[mm] 

t1* 
[mm] 

t2* 
[mm] 

tg 
[mm] 

h 
[mm] 

H 
[mm]

Nominal 120.0 120.0 75.0 75.0 23.0 8 / 10 8 / 10 8 / 10 150.0 270.0

Plate-1 120.5 120.5 76.0 76.0 23.3 8.2 8.0 8.0 149.7 270.0

Plate-2 - - - - - - - - - - 

Plate-3 120.1 120.0 76.1 76.0 23.2 10.1 10.1 10.1 150.0 270.0

Plate-4 108.7 108.7 75.7 75.7 23.1 10.6 10.6 10.6 149.7 271.0

Plate-5 120.0 120.3 75.7 75.7 23.1 8.1 8.0 8.0 149.7 271.0

Plate-6 120.2 119.8 76.3 76.6 23.2 10.2 10.1 10.1 149.8 271.0

Plate-7 119.8 120.0 76.7 76.3 23.2 10.1 10.1 10.1 150.1 270.0

Plate-8 120.1 119.9 76.1 76.1 23.1 8.2 8.2 8.2 150.0 270.0

* t1 and t2 are the thicknesses measured at the ends of the plate (where b1 and b2 are measured), and tg is 
the thickness measured at the center of the plate 
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3. Numerical study 
 

3.1 Constitutive law model 
 
The multilinear constitutive model for SMA proposed by Motahari and Ghassemieh (2007), 

shown in Fig. 13, was calibrated using the experimental data from the tensile coupon tests. The 
parameters of the model (σs

cr, σf
cr, Em, and εL) were computed using the following procedure:  

1. A linear regression was carried out to the initial points to determine the elastic properties, 
and the value of Em was taken as the slope of the resulting line. 

2. The post yielding stiffness was computed as the line that passes through the maximum 
tension point of the test and equates the areas under the envelopes of the test data and the 
model.  

3. For each heat, a value εL was selected iteratively in such a way that the unloading curve 
passes through that point, and the maximum strain attained in tests should be below the point 
where hardening could occur (σf

cr). 
4. The intersection of the post yielding stiffness with the initial line gives σs

cr and with the 
unloading curve gives σf

cr. 
 
The resulting parameters are summarized in Table 4. Heat B presents larger average elastic 

module Em and transformation stress σs
cr than Heat A, and all the parameters have a high 

variability. This means that at this stage of the research, tensile tests must be performed in order to 
obtain the proper constitutive law model. Fig. 14 shows the experimental and numerical results. 
The numerical model presents an adequate correlation with the experimental results, although 
slightly underpredicting the maximum stress at each intermediate cycle. One of the limitations of 
the model is the constant slope of the unloading path, which does not represent the actual 
unloading path of the material. This affects the energy loss (Ed), because the model dissipates more 
energy (more area in the cycle) than the experiment. 
 
 

Fig. 13 Model proposed by Motahari and Ghassemieh (2007) 
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Effective normalized stiffness and energy loss were computed for each cycle, as it was done for 
experimental data. These results are included in Figs. 9 and 10. The model can predict the effective 
stiffness and energy loss with mean differences of 3.4% and 54.4%, respectively. While stiffness is 
properly predicted by the model, the significant difference for the energy loss is mainly due to the 
unloading slope limitation of the constitutive law model, as stated in section 3.1. The equivalent 
damping ratio was not computed for the model, as it does not affect the design of these devices, 
and it is only used to compare the efficiency of different energy dissipation systems. 

Theoretical expressions for the yielding point and elastic stiffness can be obtained from an 
elastic analysis of the hourglass-shaped plates (Eqs. (3) and (4)). 

3

3

775.0
h

tBE
K m

el              (3) 

h

tB
F

cr
s

y 3

2
        (4) 

Where B, h, and t are the geometric properties of the hourglass-shaped plate (width at the ends, 
length, and thickness respectively). In addition, Kel and Fy were computed for both the 
experimental and numerical curves using a bi-linearization of the envelope curve. The results are 
shown in Figs. 17 and 18. Mean differences of 2.7% and 5.0% where found between the finite 
element model and experimental Kel and Fy, respectively. The theoretical equations predictions for 
these parameters, shown above, had mean differences of 3.6% and 13.9% with the experimental 
values. In general, Heat A plates (Plate-1 and Plate-3) have a lower elastic stiffness and yielding 
force than Heat B plates of similar thickness, which is consistent with the tension tests results. 

 
 

 
Fig. 17 Elastic stiffness of each specimen 
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Fig. 18 Yielding force of each specimen 
 
 

4. Conclusions 

 
Hourglass-shaped plates were fabricated using two CuZnAl alloys and tested under cyclic 

transverse flexure to study their potential as a seismic energy dissipation device. In addition, cyclic 
tension tests on material coupons were conducted to capture the material’s constitutive law. A 
numerical study was conducted to predict the behaviour of the plates. The following major 
conclusions can be drawn: 

 
 Heat A is slightly less ductile than Heat B and both are in martensite phase at room 
temperature. 
 No dependency on the excitation frequency (between 0.025 and 1 [Hz]) was observed on 
tensile tests. 
 Plates dissipate energy through repeatable stable hysteresis cycles without strength 
degradation. The behaviour is nonlinear and depends on the displacement amplitude: effective 
stiffness decreases with increasing amplitudes and tends to stabilize at around 40-50% of the 
original value, while energy loss and equivalent damping ratio increase with increasing 
amplitudes. The equivalent damping ratio reaches values of up to 13%, comparable with other 
energy dissipation devices. 
 The model used for the constitutive law of the material adequately captures the experimental 
strain-stress behaviour, even though the detwinning process was not completed. 
 Generic values of each parameter of the constitutive law model could not be obtained. 
Tensile tests must be conducted in order to use proper parameters in the plate model.  
 The proposed nonlinear plate model can be used to predict the plate global behaviour and 
properties (maximum force, effective stiffness, energy loss, yielding point).  
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 A comparison between theoretical expressions and experimental results for yielding point 
and elastic stiffness shows mean differences of 3.6% and 13.9%, respectively. This validates 
the use of simple analytical expressions as first approximation in design of these types of 
seismic dissipation devices. 

 
The alloy used in this research it is not yet in a stage where fabrication can warrant 

reproducible properties, therefore further work is required in this area. Furthermore, the effect of 
aging and training of the material on its superelastic and/or shape memory characteristics, as well 
as its fatigue life, need also be studied.  
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