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Abstract.    This paper proposed a discrete wavelet transform based method for time-varying physical 
parameter identification of shear type structures. The time-varying physical parameters are dispersed and 
expanded at multi-scale as profile and detail signal using discrete wavelet basis. To reduce the number of 
unknown quantity, the wavelet coefficients that reflect the detail signal are ignored by setting as zero value. 
Consequently, the time-varying parameter can be approximately estimated only using the scale coefficients 
that reflect the profile signal, and the identification task is transformed to an equivalent time-invariant scale 
coefficient estimation. The time-invariant scale coefficients can be simply estimated using regular 
least-squares methods, and then the original time-varying physical parameters can be reconstructed by using 
the identified time-invariant scale coefficients. To reduce the influence of the ill-posed problem of equation 
resolving caused by noise, the Tikhonov regularization method instead of regular least-squares method is 
used in the paper to estimate the scale coefficients. A two-story shear type frame structure with time-varying 
stiffness and damping are simulated to validate the effectiveness and accuracy of the proposed method. It is 
demonstrated that the identified time-varying stiffness is with a good accuracy, while the identified damping 
is sensitive to noise. 
 

Keywords:    physical parameter identification; time-varying parameter; discrete wavelet transform; shear 
type structure; multi-scale analysis 

 
 
1. Introduction 
 

The identification of structural parameters is an inverse problem in structural dynamics. 
Normally, the structural parameters to be identified are classified as two categories: modal 
parameters and physical parameters. The modal parameters such as natural frequencies, mode 
shapes and damping ratios characterize the dynamic properties of a structure, while the physical 
parameters such as stiffness and damping are the direct parameters to characterize a structure. 
Therefore, to identify the structural parameters means to know the structure. 

At present, most research work on the identification of structural parameters is focused on the 
positive and negative problem of linear time-invariant system. However, the structural parameters 
of many practical civil engineering structures often vary over time during their operational process 
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due to the environmental erosion, structural damage, material aging and load effect etc. 
Consequently, identifying these time-varying structural parameters is more beneficial to 
monitoring operational condition and diagnosing damage of the structure. The time-varying 
structural parameters cause the structure exhibit time-varying dynamic characteristics, so that the 
identification of time-varying structural parameters is more difficult than the identification of 
time-invariant structural parameters. 

Many algorithms for modal parameter identification of time-varying structures have been 
proposed. Xu et al. (2003a) proposed a time-varying modal parameter identification method 
through building time-varying autoregressive model of the structure using non-stationary time 
serial. Xu et al. (2003b) also proposed a time-frequency based analysis method to identify 
time-varying modal parameter of civil engineering structures. Liu (1997) put forward a 
subspace-based identification technique and used pseudo-modal parameters to characterize the 
dynamic properties of time-varying system. The presented algorithm was verified by setting up an 
axially moving cantilever beam experiment (Liu and Deng 2004). Pang et al. (2005) suggested an 
improved subspace method using ensemble response sequence to identify the modal parameters of 
linear time-varying structures.  

The wavelet transform as an advanced time-frequency analysis technique has been designed for 
non-stationary time signals in the past two decades. The wavelet analysis reveals the detail and 
approximation of a time signal at multiple levels and retains the transient characteristics of the data 
series. Therefore, wavelet transform method is widely applied to the dynamic signal analysis of 
time-varying structures. A continuous wavelet-based technique has been advised by Hera et al. 
(2005) and Hou et al. (2006) for identification of instantaneous modal parameters of a 
time-varying structure. Recently, Wang and Ren (2013) presented the instantaneous frequency 
identification of time-varying structures by continuous wavelet transform where the singular value 
decomposition (SVD) and dynamic optimization technique are implemented to extract the wavelet 
ridges. To improve the quality of extracted wavelet ridges, a synchrosqueezed wavelet transform 
enhanced by extended analytical mode decomposition method is proposed to identify the modal 
parameters of time-varying structures (Wang et al. 2013). 

Since the physical parameters directly reflect the dynamic characteristics of a structure, the 
physical parameter identification of time-varying structures is more meaningful to civil 
engineering structures. Instead of modal parameter identification, however, the physical parameter 
identification is even difficult. Only a few researches are focused on the physical parameter 
identification of a time-vary structure. Shi and Law (2007) proposed a Hilbert transform and 
empirical mode decomposition (EMD) method to identify the stiffness and damping of 
time-varying multi-degrees of freedom dynamical systems. Wang and Chen (2012) further 
proposed an improved recursive Hilbert transform based method for shear type structures with 
time varying parameters. Ghanem and Romeo (2000) presented a discrete wavelet identification 
approach for a time-varying structure analysis. Their algorithm associated with a differential 
equation model related to the input and output responses using the wavelet Galerkin approach. 
Cooper and Worden (2000) proposed an on-line adaptive tracking technique to track time-varying 
parameter by using a forgetting factor in the standard formulation. Yang and Lin (2004, 2005) 
proposed an on-line adaptive tracking technique based on the least-squares estimation to identify 
the time-varying parameter. Li and Shi (2007) proposed a sub-space identifying method for the 
physical parameter identification of time-varying system based on free response data. Due to the 
complexity of the time-varying structural problem, these proposed algorithms have respective 
advantages and disadvantages. More related research work need to be carried out. 
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This paper is aimed at presenting a discrete wavelet transform method to identify the physical 
parameter of time-varying shear type structures. The proposed method expands the time-varying 
parameter into multi-scale approximation and detail signal by discrete wavelet basis. By ignoring 
the detail signal, the time-varying parameter is evaluated only using profile signal, and the scale 
coefficients that reflect the low frequency signal can be identified using least-squares method. In 
such a way, the original time-varying parameter can be reconstructed by using the identified 
time-invariant scale coefficients. A two-story shear type frame structure with time-varying stiffness 
and damping are simulated to validate the effectiveness and accuracy of the proposed method. 

 
 

2. Wavelet expansion and reconstruction 
 

2.1 Multiresolution analysis  
 

The space )(2 RL  of measurable function R can be decomposed as a sequence of closed 
subspaces defined as follow  

 ,,,, 11221110   jjj WVVWVVWVV                 (1) 

where   is a direct sum of space. Vj is the scale space and Wj  is the wavelet space of discrete 
orthogonal wavelet transform. 

For any square integrable function )()( 2 RLtx  , its multi-resolution analysis can be carried 
out by projecting the function onto the scale and wavelet space of different scales. Assuming that 

the space )(2 RL  is decomposed into Jth scale as follow 





J

j
jj VWRL )(2                             (2) 

the function )(tx can be orthogonally expanded as follow 

  













k j k

kjkjkJkJ
j

s
j

s tdtctftftx )()()()()( ,,,,                (3) 

in which )(tf j
s  is the profile signal projected to the scale space Vj , )(tf j

s  is the detail signal 

projected to the wavelet space Wj, kJc , is the scale coefficient of discrete wavelet transform under 

Jth scale, )(, tkJ is the scale function of wavelet transform, kjd , is the wavelet coefficient under Jth 

scale, and )(, tkj is the wavelet function. 

The multiresolution analysis can be calculated through the filter banks. Assuming that 0h and 

1h are respectively the impulse responses of low-pass and high-pass filters corresponding to the 
wavelet decomposition, 0g and 1g are respectively the impulse responses of low-pass and 
high-pass filters corresponding to the wavelet reconstruction, the scale coefficients and wavelet 
coefficients can be recursively calculated by the Mallat's pyramid algorithm as follows 
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where k  is the length of wavelet coefficients and it is related to the length of signal and the 
number of scale. The corresponding reconstructed algorithm of coefficients is expressed as 

  
k k

kjkjmj kmgdkmgcc )2()2( 1,0,,1                   (5) 

When the sampling frequency of a signal is higher than Nyquist frequency, the sample 
sequence )(nx of signal )(tx can be approximately considered as the scale coefficients kc ,0

decomposing on zero scale. If the sequence )(nx  is decomposed to scale 1j , the scale and 

wavelet coefficients are expressed as kc ,1 and kd ,1 respectively. So the original signal can be 

reconstructed by Mallat’s pyramid algorithm as follows 

 
k

k
k

k kngdkngcnx )2()2()( 1
1,1

1
0,1                   (6) 

The sequence )(nx can be decomposed continuously to the higher scale, and the original signal 
can be reconstructed by using Eqs. (5) and (6). The decomposition and reconstruction procedures 
can be implemented using the filter banks as shown in Fig. 1 ( 3j ).  

where )(0 ZH and )(1 ZH  are the low-pass and high-pass decomposition filter respectively, 

while )(0 ZG and )(1 ZG  are the low-pass and high-pass reconstruction filter respectively. 
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Fig. 1 Multiresolution analysis on scale j=3 
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Fig. 2 The equivalent relation of position-swapping between up (down) sampler and filter 
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Fig. 3 The equivalent relation of position-swapping with J filter modules connected in series 

 
 
In order to make the notation more compact, the equivalent relation of position-swapping 

between up(down) sampler and filter in the multi-rate filter banks is used in this study 
(Vaidyanathan 1990, Vetterli and Herley 1992 ) as shown in Fig. 2. 

It can be seen from Fig. 2 that the cascade of a sub-sample by 2, followed by a filter )(ZH , is 
equivalent to the filter )( 2ZH  followed by the same sub-sample. Moreover, when such multiple 
filter modules are connected in series, the similar equivalent relation of position-swapping exists 
as presented in Fig. 3. 

Thus, the multiresolution analysis structure as shown in Fig. 2 can be transformed into the 
equivalent structure as shown in Fig. 4. 

In the general case of multiresolution analysis on scale J, the equivalent structure contains a 
filter banks with J+1 branch. For the decomposition of a signal, the low-pass branch involves in an 
undersampling by 2J and the transform function of the equivalent filter is expressed as 

)()()()(
12

0
2

000




J

ZHZHZHZH J                      (7) 

The branch corresponding to the detail signal involves in a sampling by 2J and the transform 
function of the equivalent filter can be calculated as 












JjZHZHZHZH

jZHZH
jj

j

 ,3,2)()()()(

1)()(
12

1
2

111

11
            (8) 

The same algorithm is suitable to the signal reconstruction. The corresponding transform 
function of the equivalent filter can be obtained by substituting reconstruction filter G with 
decomposition filter H . 
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Fig. 4 Equivalent multiresolution analysis structure 
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If a discrete signal )(nx  is decomposed on scale J using multiresolution analysis where the 
scale and wavelet coefficients are kJc , and kjd , respectively, the original signal can then be 
reconstructed as follow 





J

j k

jj
kj

k

JJ
kJ kngdkngcnx

1
1,0, )2()2()(               (9) 

 
2.2 Wavelet scale coefficient reconstruction of time varying signal  
 
A slow time-varying signal expressed as follows is considered 


















1085.0

84))4(5.0cos(5.05.0

421

205.01

)(

t

tt

t

tt

tx


              (10) 

The db3 wavelet is used to decompose the signal into scale 4J , and the signal is 
reconstructed using the scale and wavelet coefficients respectively. In such a way, the low 
frequency profile signal and high frequency detail signal can be obtained. The reconstructed low 
frequency components on different scales are shown in Fig. 5, and the reconstructed high 
frequency signal is shown in Fig. 6.  

It can be observed from Fig. 5 and Fig. 6 that the energy of the signal mainly concentrates on 
the low frequency components. In other words, the energy on the high frequency part is very small, 
which only exists in the position of signal break. Therefore, for a slow time-varying signal, 
through muiltresolution analysis and ignoring the detail component by setting the wavelet 
coefficients as zero, the original signal can be approximately reconstructed only using scale 
coefficients. So Eq. (9) is simplified as 

 
k

JJ
kJ kngcnx )2()( 0,                          (11) 

 

Fig. 5 Reconstructed signal with scale coefficients reflecting low frequency components 
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Fig. 6 Reconstructed signal with different wavelet coefficients ( 4,3,2,1,d ii indicates the decomposed 

wavelet coefficients corresponding to scale i) 
 
 

3. Physical parameter identification 
 
For the physical parameter identification of time-varying systems, Tsatsanis and Giannakis 

(1993) expanded the time-varying parameter onto a finite set of wavelet basis sequences and 
transformed the time-varying problem into a time invariant model. They estimated the 
time-varying spectrum using their proposed method. In this study, the time-varying physical 
parameter will be similarly expanded at the multi-scale as the profile and detail signal using 
multiresolution analysis, and then the physical parameters are identified by solving linear 
equations using least-squares method. The detail algorithm is presented as follows. 

 
3.1 Single-degree-of-freedom time-varying system 
 
Considering a single-degree-of-freedom system with time-varying stiffness and damping, the 

equation of motion can be expressed as 

)()()()()()( tftxtktxtctxm                       (12) 

The discrete format of Eq. (12) can be represented by 

)()()()()()( nfnxnknxncnxm                     (13) 

All stiffness at different time point constitutes a discrete serial signal, so it can be decomposed 
at different scales using multiresolution analysis. Assuming that the wavelet and scale coefficients 
are known, the original stiffness can be approximately reconstructed according to Eq. (11) 

 
i

JJ
iJ ingknk )2()( 0,                       (14) 

where iJk , are the decomposed scale coefficients. 
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The same algorithm can be used to deal with the damping coefficients, and the result is 
expressed as 

 
i

JJ
iJ ingcnc )2()( 0,                      (15) 

Substituting Eqs. (14) and (15) into Eq. (13), one can obtain the transformed motion equation 
as follows  

)()()()2()()2( ,0,0 nxmnfknxingcnxing
i

iJ
JJ

i
iJ

JJ            (16) 

If the input load and structural response are measured in a discrete time point Nn ~1 , 
substituting into Eq. (16), one can obtain the following equation  

RCKG                            (17) 

where )]()([][ kGcGG  , 
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










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
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
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







               (19) 

][][ ,1,,1,  iJJiJJ kkccCK                           (20) 

])()()1()1([][  nxmnfxmfR                      (21) 

Now, the scale coefficients of iJc , and iJk ,  are the unknown time invariant variables, so the 

identification task of time-varying system is transformed into estimating time-invariant scale 
coefficients. It can be resolved using least-squares method as follow 

RGGGCK TT 1][][                           (22) 

where superscription T and 1 indicate the transpose and inverse of the matrix respectively. 
Substituting the resolved results into Eqs. (14) and (15), the time-varying stiffness and damping 

of a structure can be identified. 
 
3.2 Muiltiple- degree-of-freedom time-varying shear type structure 
 
For a muiltiple-degree-of-freedom time-varying shear type structure, the physical parameter 

identification procedure is similar to that of a single-degree-of-freedom system. On the sake for 
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convenience, we consider a two-story shear type frame structure with time-varying stiffness and 
damping coefficient as shown in Fig. 7. The motion equation of such a two-story shear type frame 
can be expressed by  








22212221222

1221212212111 )()(

fxkxkxcxcxm

fxkxkkxcxccxm




              (23) 

Considering all time-varying stiffness and damping as the unknown variables, one can 
transform Eqs. (23) into (24) 








222212221

1112211122111

)()(

)()(

xmfkxxcxx

xmfkxxkxcxxcx




             (24) 

In Eq. (24), each equation is similar with Eq. (13). Again, decomposing and reconstructing 
every variable using above proposed procedure, one can obtain the following equation 

MMM RCKG                           (25) 

where 











)()()()(

)()()()(

22122212

21112111

kKkKcGcG

kKkKcGcG
GM                (26) 

in which the subscription 1 of )( 21 cG  indicates that it corresponds to the first equation in Eq. 

(24). 2c  indicates the corresponding unknown damping coefficient. Each matrix in MG  can be 

deduced using similar method with that of Eq. (18). Limited by length, only the matrices )( 21 cG  

and )( 21 kK  are listed as follows  






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In Eq. (25), the matrix MCK can be represented by  

][][ 2
,

2
1,

1
,

1
1,

2
,

2
1,

1
,

1
1,  iJJiJJiJJiJJM kkkkccccCK             (29) 

in which the superscript 2 of 2
1,Jc indicates that it corresponds to the unknown damping 

coefficient 2c . 
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The matrix MR of Eq. (25) can be described by 

 









])()()1()1([

])()()1()1([
][

222222

111111

nxmNfxmf

nxmNfxmf
RM 


             (30) 

Now, the matrix MCK  can be also resolved using least-squares method and the time-varying 
physical parameter can then be identified. 

If noise is present in the measured signal, the equations to be solved are often ill-posed. The 
Tikhonov regularization technique is implemented in the paper to reduce the solution error. 
 
 
4. Numerical verification 

 
A two-story shear type frame structure with time-varying stiffness and damping is simulated to 

validate the aforementioned method. The frame is shown in Fig. 7, and the equation of motion can 
be expressed by Eq. (23). 

The masses of frame are assumed to be a constant value of m1 = m2 = 2500 kg. The 40 second 
El-Centro earthquake load is applied to the frame base, and corresponding dynamic responses are 
calculated by using the Fourth-order Runge-Kutta method. The sample frequency of 50 Hz is 
used in the dynamic response calculation. To take into account for noise effect, the simulated 
Gauss white noise is added to the calculated time-history responses.  

In this study, two kinds of time-varying cases are simulated. Case one is both time-varying 
stiffness and time-varying damping coefficient. Case two is the time-varying stiffness but constant 
damping coefficient.  

 
4.1 Case one with time-vary stiffness and damping 
 
In this case, the changes in stiffness 1k  and damping 1c  with time are assumed to be 

mutational, while the changes in stiffness 2k  and damping 2c  with time are assumed to be 
linear. The unit of stiffness and damping is kN/m and kN.s/m respectively. The changes in 
assumed physical parameters are specified as follows  









st

st
k

8175

8250
1    , and tk  32002                     (31) 









st

st
c

1575.3

155.2
1 , and 









stt

st
c

25)25(175.05.2

255.2
2             (32) 

As mentioned above, the displacement, velocity and acceleration responses of two lumped 
mass can be calculated by using the Fourth-order Runge-Kutta method. Fig. 8 illustrates such 
time-history responses of lumped mass 1m
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Fig. 7 Two stories time-varying shearing frame model 
 

Fig. 8 Calculated responses of mass 1m (Dis: displacement, Velo: velocity, Acc: acceleration) 

 
 
To consider the influence of noise, 3% simulated Gauss white noise is added to the calculated 

response signals. By expanding the time-varying physical parameter to scale 5J using db3 
wavelet and reconstructing the parameter using the decomposition scale coefficient, the physical 
parameters can be identified according. The Tikhonov regularization method is used to deal with 
the ill-posed equation. Figs. 9 to 12 illustrate the identified time-varying stiffness and damping 
coefficients with and without noise. 

It can be seen from Figs. 9-12 that the identified time-varying stiffness 1k and 2k in case of 
without noise are in good agreement with the theoretical values (Eq. (31)). When noise is present 
in the signal, the identified error is slightly larger than that of without noise, but it still can 
effectively track the change of time-varying parameters. The identified result of stiffness 2k  that 
varies linearly is better than the identified result of stiffness 1k  that varies abruptly. With regards 
to the identification of time-varying damping, it can be observed that the identified error of 
damping coefficients 1c and 2c with noise is larger than the stiffness identification. It means that 
the identification of time-varying damping parameter is more sensitive to noise. In addition, the 
identification error is larger at the end of time due to the end effect of wavelet transform. 
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Fig. 9 Identified time-varying stiffness k1 
 

Fig. 10 Identified time-varying stiffness k2 
 

Fig. 11 Identified time-varying damping c1 
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Fig. 12 Identified time-varying damping c2 
 
 
4.2 Case two with time-vary stiffness but constant damping 
 
In this case, the stiffness parameters are time-varying but the damping parameters remain 

unchanged. The constant damping coefficients are assumed to be 121  cc kN.s/m. Let the 

stiffness 1k  vary quadratically and 2k  vary periodically according to the following equations 

2
1 1.0500 tk  , and )

35

2
sin(402002 tk                   (33) 

As the same as previous example, the dynamic responses of frame structure excited by the 
seismic input can be obtained through the numerical calculation. The 5% Gauss white noise is 
added to the calculated responses to simulate the real measurement noised signal. By expanding 
the time-varying physical parameter to scale using db3 wavelet and reconstructing the parameter 
using the decomposition scale coefficient, the physical parameters can be identified accordingly. 
The Tikhonov regularization method is used to deal with the ill-posed equation. Figs. 13 to 14 
illustrate the identified time-varying stiffness with and without noise. 
 

Fig. 13 Identified time-varying stiffness k1 
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Fig. 14 Identified time-varying stiffness k2 
 

It is again demonstrated that the proposed method can effectively identify the time-varying 
physical parameters of a structure. When 5% noise is present in the response signals, the identified 
result is still satisfactory. It can been found that the identification error increases at both ends. It is 
clearly due to the end effect of wavelet transform. 

 
 

5. Conclusions 
 

A physical parameter identification method for time-varying shear type structures is proposed 
in the paper based on discrete wavelet transform. The time-varying physical structural parameters 
are first expanded on a multi-scale as the profile and detail signals using wavelet multiresolution 
analysis. By ignoring the detail signal, the time-varying parameter is reconstructed only using the 
profile signal. The identification of time-varying problem is therefore transformed to the 
identification of equivalent time-invariant problem. The Tikhonov regularization method is 
implemented to reduce the influence of ill-posed problem.  

The results of a numerical verification indicate that the proposed algorithm is capable of 
identifying the time-varying stiffness and damping coefficient. It is demonstrated that when 
structural stiffness and damping vary together with time, the time-varying physical parameters can 
be effectively identified even if noise is present. The identification result of time-varying stiffness 
is better than that of time-varying damping coefficients, which means that the time-varying 
damping identification is more sensitive to noise. When the structural stiffness varies smoothly, for 
example linear or periodic variation, the identification precision is higher than that of stiffness that 
varies abruptly. In addition, the proposed wavelet-based method is adaptive so that there is no need 
to assume the variation form of time-varying physical parameters beforehand. 
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