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Abstract.   Based on the general theory of elasticity, the static behavior of 2-2 cement-based piezoelectric 
curved composites is investigated. The actuator consists of 2 cement layers and 1 piezoelectric layer. 
Considering the electrode layer between the cement layer and the piezoelectric layer as the elastic layer, the 
exact solutions of the mechanical and electrical fields of the curved composites are obtained by utilizing the 
Airy stress function method. Furthermore, the theoretical results are compared with the FEM results and 
good agreements (with almost no error) are obtained, thus proving the validity of this study. Furthermore, 
the influence of certain parameters is discussed, which can help to get the desired displacements and stresses. 
Finally, it is seen that the analytical model established in this paper works well, which could benefit the 
design of this kind of cement-based smart devices. 
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1. Introduction 
 

A cement-based piezoelectric composite has excellent piezoelectric properties and good 
compatibility with concrete in civil engineering structures; moreover, it shows more benefit for 
measuring the properties of the civil engineering structures than other smart materials. Therefore, 
more and more efforts are being devoted in the preparation of cement-based piezoelectric 
composites and their applications in Civil Engineering. To meet the requirement of concrete civil 
engineering structures, Li et al. (2002) have fabricated the 0-3 cement-based piezoelectric 
composite by the normal mixing and spreading method for the first time in the field of 
piezoelectric materials. Preliminary results showed that the composite is effective and applicable 
in both piezoelectric properties and compatibility, and can be utilized to fabricate cement-based 
sensors for applications in concrete structures. Zhang et al. (2002a) have discussed the feasibility 
of the fabrication, polarization and adjustability of the acoustic impedance of the cement-based 
piezoelectric smart composites. They have showed that by using the cement-based materials as the 
matrix of the piezoelectric smart composites, the problems of the mismatch and fabrication as well 
as reducing the polarization voltage could be solved. With the dice-and-fill technique, Xu et al. 
(2009) have fabricated the 2-2 type cement based piezoelectric composites, which has wider 
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frequency band and higher sensitivity to be used as transducers. They have also analyzed the 
effects of the cement matrix and composite thickness on the electrical and acoustic properties of 
the 2-2 type cement-based piezoelectric composites (Xu et al. 2011). Li et al. (2001) and Zhang et 
al. (2002b) have introduced the piezoelectric effect and inverse piezoelectric effect in the 2-2 
cement based piezoelectric composite with high sensitivity and output drive. Besides, Huang et al. 
(2004) have investigated the piezoelectric properties of the 0-3 PZT/sulfoaluminate cement 
composites and their dependences on the content of PZT and electrode conditions. Chaipanich 
(2007a, b) and Chaipanich et al. (2010) have further studied the influences of the constituents 
(Portland cement, silica fume cement, and PZT ceramic particle size etc.) on the dielectric, 
piezoelectric and the ferroelectric hysteresis properties of the 0-3 composite. Although being 
widely used due to the simple fabrication method, the general performance of the 0-3 
cement-based piezoelectric composites can hardly meet the engineering requirements. Besides, 
Huang and Xu (2008) have also studied the dielectric and piezoelectric properties of 2–2 
cement-based piezoelectric composite. Potong et al. (2012) have fabricated a 1-3 cement based 
piezoelectric material by mixing zirconate titanate (PZT) ceramic with Portland cement. The 
ferroelectric hysteresis behavior and the dielectric properties of the 1–3 lead zirconate 
titanate–cement composites have been studied. With the compacted method, Wang et al. (2012) 
have fabricated a 0-3 cement-based piezoelectric composite with superior piezoelectric properties. 
In others applications, a new type of cement-based piezoelectric sensor has been developed and 
investigated for monitoring the traffic flows by Li and Yang (2006). Good potential has been 
shown for the cement-based piezoelectric sensor in the engineering application for monitoring 
traffic flows in the field of transportation. 

In contrast to intensive experimental work, the cement based piezoelectric composite is still not 
fully understood. The above mentioned works have focused on fabricating and testing the cement 
based piezoelectric composite. Only small amount literatures deal with the theoretical analysis of 
the cement based piezoelectric composite, especially for the 2-2, 0-3 and 1-3 cement based types. 
For example, the authors have performed the exact analysis of the dynamic properties of a 2-2 
cement based piezoelectric flat transducer (Zhang and Shi 2011a, b) based on the previous work 
(Shi 2005, Shi and Zhang 2007). However, because of the complicated shape of bonding layer 
between the flat sensor/actuator and the curved surface of the host, it could be much more difficult 
to get precise information from a single test point. Therefore, this paper extends the exact analysis 
to the 2-2 cement based piezoelectric curved actuator considering the effect of the electrode layer. 

The rest of the paper is organized as follows: In section 2, an analytical model consisting of 
piezoelectric/cement/electrode layers was established for the 2-2 cement based piezoelectric 
curved actuator. The actuator consists of one piezoelectric layer, two cement layers and two 
electrode layers. With the displacement method, the exact solutions are obtained for the 
displacement and stress of each layer under external electric signal in Section 3. Section 4 presents 
the comparisons and discussions between the numerical and analytical results, which agree well 
with each other. Furthermore, the influence of some parameters on the displacement and potential 
of the piezoelectric/cement layers are demonstrated, such as: the influence of the ratios  

11 33/E ES S  (considering the anisotropy/isotropy of the cement and electrode layer) and the layer 

thicknesses (especially that of the electrode layer); these parameters could be adjusted to obtain the 
desired displacements and stresses. Finally, the conclusions are given. 
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2. Basic model and formulae 
 
Fig. 1 shows the schematic of a 2-2 cement-based piezoelectric curved composite with random 

 . The basic layer model consists of five layers: a central piezoelectric layer (#3) is sandwiched 
between two outer cement layers (#1, #5) with two interfacial electrode layers (#2, #4). An 
external electrical potential V0 is applied on the electrode layers. The thickness of the layer #i is 
derived as ( 1i iR R  ) (i=1-5). The strain, stress, induction and electric field are denoted by

, ,ij ij iS T D and iE , respectively. Without considering the body force/charge, the constitutive 

equations for the transversely isotropic elastic materials and piezoelectric materials subjected to a 
plane deformation can be written as 

11 13

13 33

44

E E r

r E E r

r E r

S S T S T

S S T S T
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      (for piezoelectric layer #3) (1b) 

where klES  and D
klPS  are the coefficients of the effective elastic compliance for the elastic and 

piezoelectric layers; klg  and T
kl  are the coefficients of the piezoelectric and dielectric 

impermeability for the piezoelectric layers. The strain components for both elastic and 
piezoelectric materials can be expressed by means of the displacement components ( ru  and u ) 

as 
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                          (2a) 

For the piezoelectric materials, another set of geometrical equations for the electric field E and 
the electrical potential  holds 
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                              (2b) 

By ignoring the body force, the equilibrium equations for both elastic and piezoelectric 
materials hold 

1
0

21
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r rr

r r
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r r r
T T T
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 
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                        (3a) 

Moreover, by ignoring the body charge, the induction components of the piezoelectric materials 
should satisfy the following equilibrium equation 

1
0r rD D D

r r r



 

  
 

                       (3b) 

Besides, to ensure that the displacement can be derived by integrating the strain field, the strain 
components must satisfy the following compatibility equation 

2 2 2

2 2 2 2

2 1 1 1 1
r rS S S

r r r r r r r r r   
          

                    
           (4) 

Solutions of the above equations for the 2-2 cement-based piezoelectric curved composites 
considering the electrode layer will be discussed in the following sections. 

 
 

Fig. 1 Schematic of a 2-2 cement-based piezoelectric curved composite with random  . (C, E and P 
denote cement layer, electrode layer and piezoelectric layer respectively) 
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3. Analytical solutions of 2-2 multi-layered piezoelectric curved composites 
 
First, we consider the 2-2 cement-based piezoelectric curved composites with 

anisotropic cement layers and electrode layers. With the aid of the general theory of the 
piezo-elasticity and the previously obtained results (Shi and Zhang 2007), the expressions for each 
constituent layer are obtained as 

1 1
( ) 2( ) 3( ) 4( )

1 1
( ) 2( ) 3( ) 4( )
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3 3

3 3

1 1
(3) 2(3) 3(3) 3 4(3) 3

1 1 1
(3) 2(3) 3(3) 4(3) 5

33 5

33

( )
,

0,   0,  0

S S

S S
r

P
r r

r

T C C S r C S r

T C C r C r C r

S Cd r
E D

dr g r

E D T



  



  

   

   


   



  

   

         (i=3)         (5b) 
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where ( )k iC , ( )l iD , 5C and 6C  (i =1~5; k =2 ~ 4; l=1~3) are constants to be determined by 

using geometrical and electrical boundary conditions. 
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It is noticed that in deriving Eqs. (5) and (6), the term ( 21( 1) iS
iS r  ) appears under the 

condition 1iS  (anisotropic). The isotropic case (Si=1, i=1, 2, 4, 5) is considered by starting 

from Eqs. (1)-(4) and will be treated later in this section. 
Eqs. (5) and (6) constitute one type of solutions of the above basic equations, which are used to 

study the bending behavior of the cement-based piezoelectric curved composite. To solve the 

equations, it is first noticed that the boundary conditions ( 0
00


  DD ) are 

automatically satisfied. The boundary conditions of the electrical potential and stresses could be 
written as 

3
0r R
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                               (8a) 
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
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In full form, Eqs. (8) and (9) are 
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which shows that all ( )k iC (k =2, 3, 4) can be expressed in terms of 2(1) 3(1),C C  and 5C , 

respectively. To find a general solution and simplify the expressions, the following recurrence 
formulae are introduced 

2 1
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where the superscripts 1 and 2 should not be confused with the layer number and: (1 4i  ) 
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Here, the index l takes either 3 ( ) or 4 ( 0 0b  ).  

In order to satisfy the mechanical boundary conditions at the free end, the Saint-Venant’s 
principle is considered, which leads to the following two equations 

5

0

0
R

R
T dr     ,  

5

0

0
R

R
T rdr                     (18) 

where, the first equation is satisfied automatically. By substituting Eq. (14) into Eqs. (10), (11a) 
and the second equation of (18), 2(1)C , 3(1)C , 5C  and 6C  can be determined as 

0 1b 
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1C H L                               (19) 
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S S

h a R R

h R R

h R R

 

 

 

  

  

  

   
  
  

                 (21c) 

By substituting Eq. (19) into Eq. (14), all the unknown constants ( )k iC  , C5 and C6 can be 

determined. To determine the unknown constants iD  (i=1, 2, and 3) in ru  and u , the 

following geometric constraints will be considered 

0
)0,(

,0)0,(,0)0,( 00
0000 






Ru

RuRu r
r            (22) 

with  00 5 0 +R / 2R R . 

As a result, iD  (i=1~3) are deduced to be 
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3 3
1 1 2(3) 00 2 3(3) 00 3 4(3) 00 4 5

2

3

0

0

S SD p C R p C R p C R p C

D

D

     



 

            (23) 

Up to now, the exact mechanical and electrical fields of the 2-2 multi-layered piezoelectric 
curved composites are fully determined with the anisotropic cement and electrode layers .  

When considering the isotropic cement and electrode layers, one starts from Eqs. (1)-(4) 
and assumes that S(i)=1 ( i=1, 2, 4, 5, see Eq. (7) for definition), the stress components in the 
elastic layers are solved to be 

2
( ) 2( ) 3( ) 4( )

2
( ) 2( ) 3( ) 4( )

( )

(2 ln 3)

(2ln 1)

0

i i i i

r i i i i

r i

T C C r r C

T C C r r C

T









    
    
 

        (i=1, 2, 4, 5)       (24) 

It is noticed that Eq. (24) can not be obtained by simply substituting S(i)=1 ( i=1, 2, 4, 5) 
into Eqs. (5) and (6). The 2-2 cement-based piezoelectric curved composites with 
isotropic cement layers and electrode layers are studied and the exact solutions can be found 
in Appendix A for clarity. 

Furthermore, using the same procedure, the exact solutions of 2-2 cement-based 
piezoelectric curved composites with anisotropic cement layers and isotropic electrode 
layers can also be deduced, further details are not listed here for simplicity. 

 
 

4. Numerical results and comparisons 
 
In previous sections, the exact solutions of 2-2 cement-based piezoelectric curved composites 

considering the electrode layers with anisotropic or isotropic elastic layers have been 
obtained. Numerical analysis is presented in this section for comparison. To be specific and unless 
otherwise pointed out, the thickness of each cement layer, electrode layer and piezoelectric layer 
takes the value 0.25 Ch mm , 0.05 Eh mm  and 0.4 Ph mm , respectively. The inner radius 

of the curved composite 1R  is taken as 16 mm . The electrode layers are made of (Gold-tin, 80 

wt.% Au - 20 wt.% Sn) (Rassaian and Beranek 1999), with the elastic modulus and Poisson’s ratio 
of 137.3 GPa and 0.3, respectively. For the piezoelectric layers made of PZT-4, the material 
parameters are listed in Table 1 which is transformed from Table 2 in Ref. (Ruan et al. 2000). The 
ratios 11 ( ) 33 ( )/E i E iS S  (i=1, 2, 4, 5) are assumed to be the same and constant (for short as 

11 33/E ES S ) in the numerical calculation in the following figures. 

Based on the exact solutions obtained in the last section, Figs. 2-5 show, respectively, the 
dependences of normal stresses ( , rT T ), electrical potential   and induction rD  on the radius 
r for different values of 11 33/E ES S . It is found that the normal stresses ( , rT T ) in each layer 
decrease as 11 33/E ES S  increases. The stress rT  is much smaller compared to T , thus can be 
neglected especially when EE SS 3311  . However, 11 33/E ES S  has minor influence on the 
distribution of  , the slopes of T  and rD  in the composite. That is to say,   changes almost 
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linearly in the radial direction and T  and rD  are almost parallel to each other for different 
values of 11 33/E ES S . Figs. 2-5 show that the desired normal stresses could be obtained by changing 
the value of 11 33/E ES S  in designing the actuator. 

 
 

Table 1 Material constants of PZT-4 (For model-g constitutive relations) 

Elastic constant 

(10-12 m2/N) 

Piezoelectric constant 

(10-3 m2/C) 

Dielectric impermeability 

constant (106 m/F) 

11
DS  13

DS  33
DS  44

DS  31g  33g  15g  11
T  33

T  

7.95 -3.03 7.91 17.91 -17.8 23.91 40.36 76.87 99.65 
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Fig. 2 Relation of normal stress T  versus radius r at V0=100 V 
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Fig. 4 Relation of electrical potential   versus radius r 
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Fig. 5 Relation of induction rD  versus radius r at V0=100 V 

 
 
The displacements ( uur , ) at the center of the layer #3 are plotted as a function of the angle θ 

in Figs. 6 and 7 according to the present analytical solution and numerical results. Good agreement 
is achieved. From Figs. 6 and 7, the largest displacements uur ,  are obtained when

11 33/ 1E ES S  . This indicates that, we can have the largest displacement if the cement/electrode 
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layers are isotropic; for anisotropic cement/electrode layers, the larger 11 33/E ES S  results in 

smaller ru and larger u . Moreover, as 11 33/E ES S  decreases in Fig.6 and increases in Fig. 7, 

ru  (u ) approaches a constant value smaller than that at 11 33/ 1E ES S  . Therefore, the isotropic 

case is preferred, as the actuator will benefit from the larger range of displacement for braking. 
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Fig. 6 Displacement ru  at the interface (or middle layer) of the composite as a function of angle   at 

V0=100 V 
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Fig. 7 Displacement u  at the interface (or middle layer) of the composite as a function of the angle   

at V0=100 V 
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Assuming that the total thickness of the composite as well as that of the #3 layer is constant, 
Figs. 8 and 9 show the effect of the cement layer thickness on the distribution of ( ,r rT u ). Figs. 10 

and 11 present the distribution of ( ,r rT u ) over the thickness ratio /C Ph h  (hE is constant). We 

notice that the smaller the ratio /C Eh h  is, the larger the displacements and the internal stress 

become; on the other hand, the larger the ratios /C Ph h  are, the larger the displacements and the 

internal stress become. This indicates that thinner electrode layers are preferable for the composite. 
When the thickness of the cement layer hC approaches zero, the results obtained here are consistent 
with those given in our previous work, which are layered piezoelectric composite with electrode 
layers (Shi and Zhang 2007).  
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Fig. 8 Relation of normal stress rT  versus radius r for different values of hC/hE at V0=100 V 
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Fig. 9 Relation of displacement ru  versus radius r for different values of hC/hE at V0=100 V 
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Fig. 10 Relation of normal stress Tr versus radius r for different values of hC/hP at V0=100 V 
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Fig. 11 Relation of displacement ru versus radius r for different values of hC/hP at V0=100 V 

 
 
 

974



 
 
 
 
 
 

Theoretical analyses for a 2-2 cement-based piezoelectric curved composite with electrode layers 

5. Conclusions 
 
Based on the theory of piezoelectric elasticity, the analytical solutions of the 2-2 cement-based 

piezoelectric curved composites are presented with the consideration of the effect of the electrode 
layers. Both anisotropic and isotropic cement and electrode layers are investigated. It was found 
that:  

·The desired normal stresses could be achieved by changing the value of 11 33/E ES S  in 

designing the actuator;  
·The distribution of  the electrical potential  , the slopes of stress T  and induction rD  in 

the composite are independent with 11 33/E ES S ;  

· The isotropic case is preferred when the actuator requires large displacement range for 
braking; 

·Thinner electrode layers are preferred for the composite;  
·The present results could be readily used to model and design this type of cement-based 

piezoelectric curved actuators with random  .  
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Appendix A: 
 
For 2-2 multi-layered piezoelectric curved composites with the isotropic cement and 

electrode layers, the expressions for the i-th piezoelectric layer (5b) and (6b) are still valid. 
However, the expressions (5a) and (6a) for the i-th elastic layer are different and reads 

                    

2
( ) 2( ) 3( ) 4( )

2
( ) 2( ) 3( ) 4( )

( )

(2 ln 3)

(2ln 1)

0

i i i i

r i i i i

r i

T C C r r C

T C C r r C

T









    
    
 

         (A1) 

1
( ) 1( ) 2( ) 2( ) 3( ) 3( ) 5( ) 4( ) 1( ) 2( )

( ) 4( ) 4( ) 2( ) 1( ) 3( )

[ ln ] cos sin

cos sin

r i i i i i i i i i i

i i i i i i

u e C r e C r e e r rC D D

u e C r D D rD

 

  

      


   
    (A2) 

where ( )k iC , and ( )l iD  (i =1, 2, 4, 5; k =2 ~ 4; l=1~3) are constants to be determined. And 

1( ) 13( ) 11( )

2( ) 13( ) 11( )

3( ) 13( ) 11( )

4( ) 11( )

5( ) 13( ) 11( )

4

2( )

i i i

i i i

i i i

i i

i i i

e S S

e S S

e S S

e S

e S S

 
  
  
 
  

        (i =1, 2, 4, 5)                (A3) 

Using the same procedure and considering the mechanical and electric boundary conditions, all 
the governing equations for determining the unknown constants can be obtained. Eq. (8) is still 
valid. Eq. (14) becomes 

1 1 1
2( ) 3( ) 3(1) 4( ) 4(1) 5( ) 5

2 2 2
3( ) 3( ) 3(1) 4( ) 4(1) 5( ) 5

4( ) 4( ) 4(1)

1( ) 1 2( ) 2 3( ) 3, ,

i i i i

i i i i

i i

i i i

C C C C

C C C C

C a C

D D D D D D

  

  

   


  



   

        (i=1, 2, 4, 5)         (A3a) 

2(3) 4(3) 4(1)

1 1 1
3(3) 3(3) 3(1) 4(3) 4(1) 5(3) 5

2 2 2
4(3) 3(3) 3(1) 4(3) 4(1) 5(3) 5

1(3) 1 2(3) 2 3(3) 3, ,

C a C

C C C C

C C C C

D D D D D D
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


  


  
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        (i=3)              (A3b) 

Here we have for the elastic and cement layers: (i=2, 4, 5) 
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         (j=3, 4, 5)              (A4a) 

and for piezoelectric layer. 

3
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1 2
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4(1)
4( )

4( )
i

i

e
a

e
         (1 5i  )                    (A4c) 

Moreover, 3(1) 4(1) 5, ,C C C  and 6C  can be determined by 

1C H L                               (A5) 

in which 
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Here we suppose 

1 2 2 2 1 1
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in which superscripts 1 and 2 are symbols and the following symbols are used  
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Till now, all the unknown parameters have been determined. 
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