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Abstract.  The paper presents an investigation of the nonlinear dynamical system of an electrostatically 
actuated micro-cantilever by the incremental harmonic balance (IHB) method. An efficient approach is 
proposed to tackle the difficulty in expanding the nonlinear terms into truncated Fourier series. With the help 
of this approach, periodic and multi-periodic solutions are obtained by the IHB method. Numerical 
examples show that the IHB solutions, provided as many as harmonics are taken into account, are in 
excellent agreement with numerical results. In addition, an iterative algorithm is suggested to accurately 
determine period doubling bifurcation points. The route to chaos via period doublings starting from the 
period-1 or period-3 solution are analyzed according to the Floquet and the Feigenbaum theories. 
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1. Introduction 
 

Most micro-electro-mechanical (MEMS) inherently contains nonlinearities, such as intrinsic 

and exterior nonlinearities arising from coupling of different domains (Senturia 1998, Lyshevski 

1997). Also, there exist mechanical nonlinearities, i.e., large deformations, surface contact, creep 

phenomena, time-dependent masses and nonlinear damping effects (De and Aluru 2006, Ashhab et 

al. 1999), etc. Effective nonlinear dynamic analysis becomes an increasingly important task in 

MEMS research and manufacturing.  

The nonlinear dynamical behaviors of micro-cantilever based instrument in MEMS under 

various loading conditions have stimulated the curiosities and interests of many researchers 

(Passiana et al. 2003, Manna et al. 2010, Chan et al. 2000, Mahmoodi and Jalili 2009, Fu and 

Zhang 2009). For instance, the nonlinear vibrations of an electrostatically actuated 

micro-cantilever based device in MEMS were investigated through a simplified 

mass-spring-damping model subjected to nonlinear electrostatic force (Liu et al. 2003 and 2004, 

Zhang et al. 2007). The computation of the nonlinear dynamical systems of a micro-cantilever or 

other micro-structures focuses on using numerical methods (Meng et al. 2009). Since complicated 

nonlinearities exist in the governing equations of motions of the electrostatically actuated 
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micro-cantilever, Zhang and Meng (2005) suggested an approximate approach via expanding the 

nonlinearities into Taylor series and retaining only the first one and/or two terms. The simplified 

series of the nonlinear terms make it possible to implement harmonic balancing process. This 

process is the main procedure of harmonic balance method. Essentially, it equates the coefficient 

of each harmonic to zero hence a series of algebraic equations can be deduced. Also based on this 

simplification, Chen et al. (2010) proposed an iteration algorithm to analyze the periodic solutions.  

Numerical analysis shows that nonlinear MEMS systems can exhibit a lot of complex 

dynamical behaviors, such as period doubling bifurcations, sub-harmonic responses and chaos. 

The period doublings and symmetry breakings of MEMS systems have been investigated by many 

researchers based on experimental as well as simulation results (Nayfeh and Younis 2005). De and 

Aluru (2006) investigated the period doubling bifurcation of an electrostatically actuated 

microstructures by using time marching integration. Also using numerical method, Najar et al. 

(2010a, b) found that the nonlinear system of an electrostatic microactuator may exhibit period 

doublings when the excitation frequency locates in the resonance region. Towfighian et al. (2011) 

investigated the closed-loop dynamics of an electrostatic micro-beam, and analyzed the period 

doublings and reverse period doublings when the excitation frequency and amplitude sweep. 

Period doublings were also observed in nano-scale microsystems such as atomic force microscopy 

(Hu and Raman 2006).  

The subharmonic responses after period doublings are generally solved by numerical 

techniques. Well-known, numerical approaches such the Runge-Kutta method can only trace stable 

solutions. On the other hand, unstable solutions especially periodic ones are useful to better 

understanding of nonlinear dynamical behaviors such as bifurcations and routes to chaos. It is 

necessary to propose some analytical or semi-analytical techniques to efficiently detect both stable 

and unstable periodic solutions. 

Predicting nonlinear dynamic responses for scientific and engineering problems has been an 

active field for many years (Bayat and Pakar 2012, Borzi et al. 2013, and Waris and Ishihara 2012). 

Many approaches, both analytical and numerical types, were developed. Among various methods 

for nonlinear dynamics analysis, there is a widely-used semi-analytical approach named 

incremental harmonic balance (IHB) method. The IHB method was initiated in 1980s by Lau and 

Cheung (1981). This method has many advantages over other techniques. It can be applied to deal 

with strongly nonlinear systems and provides highly accurate results. Moreover, it is a much 

simpler and more systematic approach and consequently can be more easily implemented on a 

computer than the perturbation method. The IHB method is indeed exactly equivalent to the 

harmonic balance (HB) plus the Newton Raphson method (Ferri 1986). The IHB method has been 

successfully applied to the analysis of many periodic and almost periodic vibration and related 

problems (Raghothama and Narayanan 1999, Xu et al. 2003, Shen et al. 2008). 

The major motivation of this study is to employ the IHB method to analyze the dynamical 

behaviors of an electrically actuated micro-cantilever. In the solution procedure of the IHB method, 

an inevitable step is to expand the incremental equations as truncated Fourier series. As shown 

later, it is very cumbersome to realize this step because the electrostatic force is expressed as a 

fractional function. It is sometimes impossible to implement some routine procedures to complete 

this task. To this end, a method of undetermined coefficients is presented to tackle this problem. 

The rest of this paper is organized as follows. Firstly, the dynamical system under consideration 

is introduced in Section 2. In Section 3, the IHB algorithm is briefly introduced. The purpose of 

Section 4 is to deal with an obstacle arising in implementing the IHB method. And numerical 

examples and bifurcation analysis are presented in Section 5 and Section 6, respectively. This 
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paper ends with some remarks and conclusions in Section 7. 

 

 

2. Dynamical system 
 

The electrostatically actuated micro-cantilever in MEMS as shown in Fig. 1 is 4.5 um×80 

um×200 um in dimensions (Liu et al. 2003). The motions of a cantilever beam should be 

inherently modeled by continuous theories of beam or plate. Although numerical simulations using 

such models can give accurate results when compared with experimental data (Homstein and 

Gottlieb 2008, Kacem et al. 2010), it is easier to understand the physics behind the nonlinear 

dynamic properties of electrostatic MEMS through a simpler mass-spring-damper model (De and 

Aluru 2006). The governing equation of motion for the micro-structure can be described as (Zhang 

and Meng 2005) 

 )(
1

...

tFkyycym
E


                

 (1) 

where the superscript denotes the differentiation with respect to time 1
t , y  the vertical 

displacement of the micro-cantilever relative to the origin of the fixed plate, m  the mass, k  and 

c  are the effective spring stiffness and damping coefficient of the simplified system, respectively. 

According to the parallel plate theory, the fringe effects at the edges of the plates are ignored (Price 

et al. 1989), hence E
F , the electrostatic force between the capacitor plates (the fixed plate and the 

movable plate) generated by applying a voltage )(tV , can be expressed by 

2

1

2

0

)(

)(

2 yd

tVA
F

E





                  (2) 

where 0  is the absolute dielectric constant of vacuum, 12

0
105.8  N/m, A  the overlapping 

area between the two plates, and d  is the gap between them. Other parameters are given as 
11105.3 m kg, 17.0k N/m, 61078.1 c kg/s, 9106.1 A m

2
 (Zhang and Meng 2005) and 

2.1d um. 
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Fig. 1 A simplified dynamical model of the micro-cantilever in MEMS 
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Introducing the following dimensionless variables 

 dyx / , mk /
0
 , 10

tt    

then one can rewrite Eqs. (1) and (2) as 

 
2

2...

)1(

)(

x

tV
Txxx


  (3) 

where kmc / , )2/( 3

0
kdAT  , and the superscript ( . ) denotes the differentiation with 

respect to t . When the applied voltage, )(tV , includes alternating current (ac) voltage, 

)cos(
0

V , and polarization voltage, P
V , then one has )cos()(

0
tVVtV

P
 .  

The inequity 1x  must hold because the movable plate is not allowed to contact the fixed one 

(x=1). Additionally, a mathematical singularity will arise for Eq. (3) if x approaches 1. In such 

cases, the so-called pull-in happens. As we know, static and/or dynamic pull-in instability may 

arise in electrostatic actuated oscillators (Nayfeh et al 2007). The physically valid parameters 

should below the minimal escape threshold that leading to pull-in (Hassani et al. 2010). As Fig. 2 

shows, there minimal values for both Vp and V0 above which dynamic pull-in may happen. 

Therefore, the parameters in this study are chosen below these minimal values according to Fig. 2. 

In this study, 5.0PV  and 30 V  are chosen, and   is taken as a control parameter with 

varying value. Note that the fixed points of system (3) are 6371.0x  and 5392.0x , as plotted 

in Fig. 4. The first is stable whereas the latter unstable, according to stability theories for nonlinear 

dynamical systems. 

 

 

 

ω ω 

V0 Vp V0=3 Vp=0.5 

Pull-in instability 

Pull-in instability 

 

Fig. 2 The minimal values of voltage amplitudes above with dynamic pull-in instability happens 
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Fig. 3 Bifurcation chart of system (3) versus ω 

 

 

The bifurcation diagram of system (3) obtained by the Runge-Kutta method is presented in Fig. 

3. There are two period doubling routes to chaos. One starts from a period-1 solution and the other 

from a period-3 solution. Usually, period doublings denote the evolution of a solution as the 

control parameter increasing. In our study, however, period doublings happen when the control 

parameter decreases. Sometimes, it is called as reversal period doubling bifurcation. For brevity, 

we call it period doubling.  

In addition, as Fig. 3 shows, sub-harmonic responses arise intermittently even when the control 

parameter is located in a chaotic region. They constitute narrow periodic windows. Sub-harmonic 

solutions and period doublings are of fundamental interest of many researchers and engineers who 

are interested in nonlinear dynamics. For this issue, sub-harmonic responses will be intensively 

investigated in the following paper via the IHB method. 

It is also worthy of pointing out that the displacement approaches closely 1 at the chaotic 

regions. In many electrostatic micro-oscillators, pull-in instability may exhibit when high level 

displacement happens. If the frequency decreases further, a dynamic pull-in will be confronted. 

 

 

3. Incremental harmonic balance method 
 

First of all, introduce a new time scale nt /   , where   is the angular frequency of the 

electrostatic force, and n is introduced to seek a 1/n sub-harmonic response (or period-n solution). 

Eq. (3) becomes 

 0),(// '2''2   xfxnxnx  (4) 

where the nonlinear term 
22

0
)1/()]cos([),( xnVVTxf

p
  . 

The first step of the IHB method is a Newton-Raphson procedure. Let i
x  denote a state of 

vibration corresponding to i
  , the neighboring state can be expressed by adding the 
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corresponding increments to them as follows 

 xxx
i

 ,  
i                           (5) 

Substituting Eq. (5) into (4) and neglecting all the small terms of higher order, one obtains the 

following linearized incremental equation 

 0),,()2()
),(

1( ''''''2 



 




iiii

i

i

ii
xRxxx

x

xf
xx  (6) 

where the residual 

),(//),,( '2''2 
iiiiii

xfxnxnxxR   

goes to zero as i
x  approaches the exact solution of Eq. (3) with i

  . 

  The second step is the Ritz-Garlerkin procedure (Urabe 1965), let 

 



N

j

jji
jsjccx

1

0
)]sin()cos([

2

1
  (7) 

 




N

j

jj jτsjτccx
1

0 )]sin()cos([Δ
2

1
Δ  (8) 

Substituting Eqs. (7) and (8) into (6), and implementing the Garlerkin procedure results in a set 

of linear equations in terms of 

 0Δ 
R

KKuK
u

  (9) 

where T

110
],,,,,[

NN
scscc  u , u

K  is the Jacobian square matrix of dimension 12 N , 

or called as the tangential stiffness matrix; K  is the frequency gradient vector, and R
K  is the 

residue vector. These matrixes and vectors depend upon the initial solutions i
x  and i

 . In the 

IHB method, usually, one parameter varying actively (called as the active increment) should be 

chosen to control the continuations of solutions. Provided that   is given, Eq. (9) describes a 

set of equations in the increments u  at each step, which can be solved iteratively. However, 

along an equilibrium path for varying  , it is possible that the solution curve may form a loop 

(when the Jacobian matrix u
K  is singular). In order to eliminate the singularity of u

K , one may 

use either the selective coefficient or the arc-length method (Leung and Fung 1990). The latter is 

chosen. 

Introducing a path parameter  , one has an augmenting equation 

 0),( ug  (10) 

The function 2)()()(),(
ii

T

i
g   uuuuu  is a good choice, where i

u  is constituted 

by the Fourier coefficients of i
x . Taking increments on u ,   and   in Eq. (10), respectively, 

one has 

 0
T













g

gg
u

u
                    (11) 
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Taking Eq. (9) into account, one constructs the augmented incremental equation 

 






























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

ggg

Ru
Ku

u

KK

/)/( T
 (12) 

The arc-length parameter   can be taken as the control parameter in constructing the solution 

curve with respect to varying  .  

 

 

4. Fourier series expansion of fractional functions 
 

Eq. (12) provides us with a purely linear iterative algorithm, through which semi-analytical 

solutions can be obtained. Notice that all the solution procedures are manipulated in the 

frequency-domain. Another problem arising in practicing consists in the difficulty in expanding the 

two fractional functions, i.e., 2)1/(1
i

x  in KR and 3)1/(1
i

x  in Eq. (12) into truncated Fourier 

series. An omnipotence yet inefficient method of obtaining the Fourier coefficients is integrating 

the product in ]2 ,0[    of 2)1/(1
i

x  and each harmonic, i.e., )cos( k  and )sin( k . It is 

very cumbersome to do so, even though ix  is given as a truncated Fourier series.  

Denote the solution containing the Nth-order harmonic that obtained in the nth iteration step 

 



N

j

jijii
jsjcx

0

,,
)]sin()cos([   (13) 

where N  is a given positive integer denoting the highest harmonic. Substituting Eq. (13) into 
2)1/(1

ii
xI   or 3)1/(1

ii
xI   and neglecting harmonics higher than the Nth-order, one obtains 

 



N

i

jijii
jjI

0

,,
)]sin()cos([/1   (14) 

where ji ,
  and ji ,

  depend on ji
c

,  and ji
s

, , respectively. The problem is transformed into 

expanding the reciprocal of a truncated Fourier series as another one. In order to do so, assume the 

truncated Fourier series of i
I  as 

 



N

j

jijii
jjI

0

,,
)]sin()cos([   (15) 

where ji ,
  and ji ,

  are unknowns to be determined. Substitution of Eq. (15) into the left side of 

Eq. (14) results in 

 1)]sin()cos([)]sin()cos([
0

,,

0

,,
 



N

j

jiji

N

j

jiji
jjjj   (16) 

The left side of Eq. (16) can be also expanded into truncated Fourier series with N harmonics 

retained. The Fourier coefficients are in linear connection with ji ,  and ji, , respectively. 

Equating the Fourier coefficients of both sides to 0, one has 
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 1
eυ Φ  (17) 

where 
T

,,1,1,0,
],,,,,[

NiNiiii
   is the unknown vector of dimension 12 N , 

T

1
]0,,0,1[ e  is also a constant vector of dimension 12 N , and Φ  the coefficient matrix of 

dimension )12()12(  NN . Importantly, Φ  is only dependent upon ji ,
  and ji ,

  but 

not upon  . Eq. (17) is a linear algebraic one, which governs the coefficients of the truncated 

Fourier series of i
I . 

 

 
5. Sub-harmonic responses 
 

As mentioned in Section 3, there are two period doubling routes to chaos. Figs. 3 and 4 show 

the evolution of the subharmonic response that bifurcates from a period-1 solution. One can 

observe that the phase curve of the period-1 solution evolutes into two cycles, two into four and 

four into eight, etc. The IHB solutions are in excellent agreement with the numerical results. 

Intuitively, a period solution that can be tracked by time marching integration is considered as 

stable. The basic shapes of these phases don’t change too much as the period doubling proceeds. 

Also plotted in Fig. 4 are the fixed points of system (3), with both located within the phase planes. 

Note that, tracking a higher periodic solution without losing accuracy needs more harmonics to 

be included. Otherwise, the accuracy will be lost. The period-2n solutions are tracked on the basis 

of the preceding period-n ones just before period doubling. The period-n solution is adopted as the 

initial guess when solving the period-2n one. The detailed procedures will be addressed in the next 

section. Note also that, the Runge-Kutta solutions are obtained by choosing the initial conditions 

for system (3) based on the IHB solutions. 

 

 

 

x 

.

x  

x 

.

x  

 

Fig. 4 Phase planes of period-1 ( 63.0 ) and period-2 solutions ( 6213.0 ). Solid lines denote the 

numerical results, and heavy dots the IHB solutions with N=32. The symbols “Ο” denote the stable 

fixed points, and “×” the unstable ones 
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Fig. 5 Phase planes of period-4 ( 62.0 ) and period-8 solutions ( 61976.0 ). Solid lines denote the 

numerical results, and heavy dots the IHB solutions with N=96 

 

 

Another period doubling bifurcation corresponds to the period-3 solution. As the control 

parameter   decreases a little from 0.6183 to 0.6182, the period-3 solution evolutes to a period-6 

one, shown in Fig. 6. As   decreases further, the period of this solution doubles again, hence a 

period-12 solution arises (Fig. 7). Likewise, the basic shape of the periodic solution remains the 

same when the bifurcations arising. An FFT analysis was added to identify the frequency of the 

solution in Fig. 7 as shown in Fig. 8. The 1/12 frequency can be observed, though it is much 

smaller than the primary frequency. 
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.

x  
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.

x  

 

Fig. 6 Phase planes of period-3( 6183.0 ) and period-6 solutions ( 6182.0 ). Solid lines denote the 

numerical results, and heavy dots the IHB solutions with N=96 
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Fig. 7 Phase planes of period-12 ((a) with 61818.0 ) with an enlarged section (b). Solid lines denote 

the numerical results, and heavy dots the IHB solutions with N=240 
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Fig. 8 The spectrum of time history shown in Fig. 6 

 

 

 

Besides these sub-harmonic responses resulted from period doubling bifurcations, there are 

period-5 (Fig. 9) and period-7 (Fig. 11) solutions arising intermittently when the control parameter 

is in the chaotic region. Interestingly, the period-5 solution can also bifurcate into a period-10 one, 

as shown in Fig. 10. One can still clearly observe the nice agreement of the IHB solution with the 

numerical results from the enlarged part, though basically the period-10 solution is nearly the same 

as the period-5 one in configuration. 
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Fig. 9 Phase plane of a period-5 solution ( 6177.0 ). Solid line denotes the numerical results, and 

heavy dots the IHB solution with N=100 
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(a) 

Enlarged in (b) 
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Fig. 10 Phase plane of a period-10 solution ((a) with 61769.0 ) and an enlarged section (b). Solid line 

denotes the numerical results, and heavy dots the IHB solution with N=200 
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Fig. 11 Phase plane of a period-7 solution ((a) with 619161.0 ) and an enlarged section (b). Solid line 

denotes the numerical results, and heavy dots the IHB solution with N=100 
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6. Bifurcation analysis 
 

As the two period doubling bifurcations proceed due to the decreasing of  , the periods of the 

solutions double step by step and finally approach infinity, then chaotic motions arise. Note that, 

the period doubling bifurcations happen when the control parameter is in a very small region. For 

instance, the route starting from the period-1 solution exists in ]6225.0,619.0[  or so, and the 

one from period-3 solution arises in even narrower region, smaller than [0.6181, 0.6183]. Usually, 

a bifurcation point is determined by observing the phase plane and/or the Poincare map of a 

numerical solution, by letting the control parameter be a constant from time to time. In this section, 

we present an algorithm to find the period doubling bifurcation point more efficiently and 

accurately. This algorithm is based on the IHB method, as introduced above. 

Fig. 4 demonstrates a fact that, the phase plane of the period-1 solution doesn’t changes its 

shape after period doubling. The period-2 solution loses the 1/2 sub-harmonics. In other words, the 

coefficients of )2/cos( t  and )2/sin( t  converge to 0 when   approaches the exact 

bifurcation point. Given a period-2k solution as 

 



N

i

k

i

k

i

k isicx
2

0

222 )]sin()cos([   (18) 

As mentioned above, the non-dimensional time scale   is defined as kt 2/   . The 

superscript 2k denotes that x describes a period-2k solution. In the process that x
2k

 evolutes as a 

period-k solution, the coefficients of the first harmonic (i.e., i
c  and i

s ) approach 0. Under this 

assumption, one can let the coefficient of cos  in Eq. (7) be a very small quantity locating 

between 0 and kc2

1
, i.e. 

 )( 2

11

kcsignc   (19) 

where 10   . Note that 1
c  remains the same in the IHB iteration algorithm, i.e., its 

incremental part 1
c  is given as 0 and never changes. For every small quantity  , there must be 

one period-2k solution for some value of  , which is dependent upon  . Therefore, as   (or 

1
c ) goes to 0, the 1/2k sub-harmonics eliminates and 1/k sub-harmonic become as the lowest one, 

which implies the convergent solution is of period-k. At the same time,   converges to a 

constant. As long as enough harmonics are included, the limit of   can converge very accurately 

to the exact bifurcation point where a period-k solution becomes a period-2k one. This bifurcation 

value is denoted by a bookkeeping parameter k
 . 

Table 1 shows the convergence of 1
 , 2

  and 3
  versus different values of  . As one can 

see, the values of k
  converge quickly to constants, respectively, as   decreases to 0. These 

constants are considered as approximate bifurcation values.  

The Floquet theory is a powerful and routine technique to analyze the stability of periodic 

solutions. It points out that, a periodic solution is considered as stable when and only when all 

multipliers have absolute values less than 1 (Anishchenko 2002). When 3
  , there exist two 

period solutions, i.e., a period-6 solution and a period-3 one. Notice that, there are two multipliers 

for every periodic solution of system (3). Notice also that, there is always one multiplier equaling 

to 0 for all the periodic solutions attained in this study. The non-zero Floquet multiplier 
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corresponding to the period-3 solution is -1.000018, while the one to the period-6 solution is 

0.999985. If   increases very a little, for instance, )101( 9

3

 , the period-3 solution still 

exists and its Floquet multiplier is -0.999955. On the other hand, the period-6 solution disappears 

and becomes the period-3 one, that the coefficients of 
,...5,3,1

c  and 
,...5,3,1

s  converge to 0 

simultaneously. As   varies from )101( 9

3

  to 3
 , therefore, the period-6 solution arises and 

the period-3 one loses its stability. This is a typical period doubling bifurcation. It is reasonable to 

say, the exact bifurcation value lies between 3
  and )101( 9

3

 . Moreover, the relative 

discrepancy between 3
  and the exact bifurcation value is no more than 10

-9
, or 3

  is accurate to 

more than 9 decimal places. 

According to the Feigenbaum theory (Feigenbaum 1978), as n  increases infinitely the space 

ratio of period-doubling bifurcation values, i.e., )/()(
11 nnnnn

 
  converges to the 

Feigenbaum constant (about 4.6692). Table 2 partly shows the numerical convergence of the space 

ratio to the constant as period-doubling bifurcations proceed. Note that 200 harmonics are included 

in the IHB algorithm when seeking these bifurcation values. 

 

 
Table 1 Convergence of approximate bifurcation points versus coefficients of   

  
1 , N=32 2 , N=100 3 , N=220 

1e-4 0.62237470313040 0.62026540394587 0.61827516907512 

1e-5 0.62237475492654 0.62026568071453 0.61827523043958 

1e-6 0.62237475544450 0.62026568348224 0.61827523105322 

1e-7 0.62237475544968 0.62026568350992 0.61827523105936 

1e-8 0.62237475544973 0.62026568351020 0.61827523105942 

1e-10 0.62237475544973 0.62026568351020 0.61827523105942 

 

 
Table 2 Space ratios of period-doubling bifurcation values for system (3) 

n  
n  n  

1 0.6223747  

2 0.6202657 4.700 

4 0.619817 4.773 

8 0.6197230 4.747 

16 0.6197032 4.714 

32 0.6196990  

Feigenbaum constant  4.6692 
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Along the routes of period doublings, if increasing   a little, system (3) gives rise up chaotic 

responses, as shown in Fig. 12 (figures (a) and (b)). The Poincare portraits of these responses are 

plotted in figure (b) and (d), respectively, where  /2T  is the period of the nonlinear 

electrostatic force and ,3,2,1k  . The chaos basins are similar to the chaotic solutions 

themselves in configuration.  
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Fig. 12 Chaotic responses (a) ( 6195.0 ) and (c) ( 618.0 ) and their respective Poincare portraits (b) 

and (d) 

 

 
62237.0  

E
x

tr
em

e 
o
f 

x 

  

P1 

 

Fig. 13 The extreme values of period-1 solutions versus varying  , the heavy dots denote stable 

solutions while the solid line unstable one 
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Fig. 14 The non-zero Floquet multiplier for parts of the period-1 solutions 

 

 

Taking   as a control parameter, the bifurcation chart of the period-1 solutions is presented in 

Fig. 13, also attained by the IHB method. Note that only the extreme values of the solutions are 

presented. As 1  decreases, the extreme values increases monotonously. The stability is also 

judged by computing the Floquet multipliers. Figs. 13 and 14 show that, when   increases 

beyond about 0.62237, the non-zero multiplier decreases beyond -1 from a value larger than -1, 

which means a period doubling happens at point P1. After P1, the period-1 solution still exists, 

however it becomes unstable according to the Floquet theory.  
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Fig. 15 The extreme values of period-2 solutions versus varying  , the heavy dots denote stable 

solutions while the solid line unstable one 
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More importantly, a period-2 solution arises just at P1, as shown in Fig. 15. According to Fig. 

16, the non-zero Floquet multiplier for the period-2 solution decreases from 1. As   decreases 

further, the absolute value of the Floquet multiplier remains less than 1 until   gets a value of 

0.62027. This value is denoted by the point P2 in Figs. 15 and 16. At P2, the multiplier passes 

through -1, which means the period-2 solution bifurcates as a period-4 one. After P2, likewise, the 

period-2 solution becomes unstable though it still exists, with a multiplier smaller than -1. 
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Fig. 16 The non-zero Floquet multiplier corresponding to parts of the period-2 solutions 
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Fig. 17 The extreme values of period-3 solutions versus varying  , the heavy dots denote stable 

solutions while the solid line unstable one 
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Fig. 18 Four enlarged parts of Fig. 15 

 

 

The bifurcation chart of the period-3 solution is presented in Fig. 17, with four enlarged parts 

plotted in Fig. 18. Different from the period-1 and period-2 solutions, the period-3 solutions 

constitute a closed curve. Though it exists in a relatively broad area, about ]625.0,575.0[ , it is 

only stable in a very narrow region, i.e., from P3 to P4. As   decreases through P3, two period-3 

solution arise. One is stable and the other unstable. Along the lower part of the curve plotted in Fig. 

18 (a), the multiplier decreases from more than 1 and passes 1 at point P3, shown in the upper 

curve of Fig. 19. Then, the solution gains its stability between P3 and P4. At the same time, the 

multiplier decreases from 1 at P3 to -1 at P4. Similarly to the cases of the period-1 and the period-2 

solutions, a period doubling exists at P4. At this point, the period-3 solution becomes unstable and 

a stable period-6 solution arises. 
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Fig. 19 Parts of Floquet multipliers corresponding to period-3 solutions 
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The effects of the voltages on the bifurcations are discussed briefly, with 621.0  as an 

illustration. Figs. 20 and 21 show the period doublings when voltage amplitudes PV  and 0V  

sweep, respectively. The period doubles in very narrow regions such that the distances from 

period-1 solution to period-8 one are at the order of 10
-3

 for both PV  and 0V . In addition, the 

period doublings will lead to chaos if PV  (or 0V ) increases a little. Moreover, dynamic pull-in 

stability will arise soon after chaos if the voltages increase further. 
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Fig. 20 The bifurcation chart versus Vp obtained by the IHB with N=64, 621.0  and 30 V  
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Fig. 21 The bifurcation chart versus Vp obtained by the IHB with N=64, 621.0  and 5.0PV . 
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7. Conclusions 
 

The incremental harmonic balance method has been employed to analyze the bifurcation of the 

nonlinear dynamical system of an electro-statically actuated micro-cantilever. During the solution 

procedure, an inevitable difficulty is confronted when expanding the nonlinear terms as truncated 

Fourier series. A coefficient undetermined approach is proposed to tackle this problem. With the 

help of this technique, very high harmonics can be included in the IHB algorithm. This guarantees 

the excellent agreement of the IHB solutions with the numerical results. Moreover, the IHB can be 

used to seek both stable and unstable solutions.  

It is found that when altering the angular frequency of the electrostatic force, many 

sub-harmonic responses can arise. Some of those solutions are resulted from period doubling 

bifurcation, for example the period-2, 4, 8 solutions that from period-1 one, and the period-6 and 

period-12 solutions stemming from period-3, both in manner of period doublings. There are also 

period-5 and period-7 solutions arising intermittently even when the system exhibits chaotic 

responses. Interestingly, though the period-5 solution exists in a rather small parametric region, 

they can also bifurcate via period doubling. Additionally, the bifurcation diagrams of the period-1, 

period-2 and period-3 are analyzed, respectively, with the help of the presented algorithms and the 

Floquet theory. They all bifurcate in manner of period doubling, accompanied by the typical 

phenomenon that the non-zero Floquet multipliers decrease through -1. 

In addition, a means for determining a period doubling point is introduced. This method makes 

it efficient to determine the bifurcation point with high precision. The IHB method, together with 

the undetermined coefficient method for Fourier series expansion as well as the approach for 

determining bifurcation value, could be applicable in more nonlinear dynamical systems, 

especially those with nonlinear terms expressed as fractional functions. 
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