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Abstract.    The model of unit dynamic reliability of repairable k/n (G) system with unit strength 
degradation under repeated random shocks has been developed according to the stress-strength interference 
theory. The unit failure number is obtained based on the unit failure probability which can be computed from 
the unit dynamic reliability. Then, the transfer probability function of the repairable k/n (G) system is given 
by its Markov property. Once the transfer probability function has been obtained, the probability density 
matrix and the steady-state probabilities of the system can be retrieved. Finally, the dynamic reliability of the 
repairable k/n (G) system is obtained by solving the differential equations. It is illustrated that the proposed 
method is practicable, feasible and gives reasonable prediction which conforms to the engineering practice. 
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1. Introduction 
 

A consecutive k-out-of-n (G) system is composed of n  units such that the system works if 
and only if at least k  units work. Obviously, if 1k  , the system is a parallel system whereas if 
k=n, the system is a series system. A consecutive k-out-of-n (G) system is a common type of 
system. It can be found in a variety of engineering systems, such as aircraft engine, power plant 
generator, etc. 

The reliability of engineering structures is an important indicator to evaluate their structural 
performance. Numerous system reliability prediction problems have been studied (Scheuer 1988, 
Roy and Dasgupta 2001, Yao and Zhao 2005, Sun and Shi 2004, Fang et al. 2013) and the 
reliability of the k/n (G) system has been received much attention too (Zhang and Lam1998, Utkin 
2004, Xie 2004). The reliability of the system was studied by using the inverse fuzzy estimator and 
the Systems Modeling Language (Lee 2011, David et al. 2010). The reliability of the k/n (G) 
system under one load could be well used in the industry to design the mechanism (Thomas et al. 
2013, Rezazadeh et al. 2012, Peng 2010). Dynamic reliability of failure dependence k/n (G) 
system has been studied in the article (Fang et al. 2013) using the stress-strength interference 
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theory. In addition, reliability of the 1/2 (G) system and k/n (G) system have also been analyzed 
and computed in the articles (Lewis 2001, Liu 1998) based on the assumption of independence of 
failure events, but large error could be produced by using these methods. The availability and 
queuing repair issues of the k/n (G) system were studied from a mathematical point of view in the 
articles (Xu et al. 2004, Chen 2010). It was shown the k/n (G) repairable system is an important 
system in the engineering that the k/n (G) repairable system was simulated by using the restart 
method (Jose 2010). Nevertheless, these studies did not involve the k/n (G) system under repeated 
random shocks and strength degradation with time. Based on the relevant literature, a new 
dynamic reliability model of repairable k/n (G) system under repeated random shocks has been 
developed, and thus the reliability of the system can be conveniently and accurately predicted from 
time response. 

 
 
2. Unit reliability analysis of k/n (G) system under repeated random shocks 
 

In this study, the external shocks that act on every unit of the k/n (G) system during its service 
period are random variables. The units of the system are not subjected to a single continuous shock, 
but repeated or multiple series of random shocks. Let the external random shock is denoted by s , 
the cumulative probability distribution function and the probability density function of s  are 

( )G s  and ( )g s , respectively. Suppose the maximum value of m-series of random shocks is maxs  
and it is assumed that if the unit does not fail under the maximum shock maxs , the unit will not fail 
also under the repeated (m-series) random shocks. In other words, fatigue failure is not considered 
in this study. Hence, the reliability of the system under repeated random shocks is equivalent to its 
reliability under the maximum random shock. For this reason, from a conservative point of view, 
the system reliability under the maximum shock maxs  can be used to evaluate the system 
reliability under the repeated random shocks. That is to say, maxs  is used as equivalent shock to 
predict the system reliability. The cumulative distribution of the shock under m-series of random 
shocks which is equivalent to the maximum shock can be written as follows 

max max( ) [ ( )]mF s G s                           (1) 

where max( )G s  is the probability distribution function of maxs , its probability density function is 

max( )g s , the mean and variance of maxs are max( )s and max( )s , respectively. 

The external random shock is usually considered to obey Possion distribution with parameter 

Lt  (Lewis 2001). Thus, the probability distribution function of maxs  at time t  is shown as 

follows 
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where ( )N t  is the number of random shock happening at time t , (0)N  is the number of 
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random shock happening at time 0  and m  is the number of random shock happening from time 
0  to t . 

Eq. (2) can be rewritten when maxs  is substituted by s as follows 

[ ( ) 1]( ( )) Lt G sP s t e                             (3) 

The mean ( )s  and variance ( )s  of the ( )G s  can be determined using the synthesis 
method with algebraic approach and the results are as follows 

2 2( ( )) (1 ( ) ( ) ( ))Ls t t s s s                           (4) 

2 2 2( ( )) (1 ( ) 4 ( ) ( ) 2 ( ))Ls t t s s s s                        (5) 

On the other hand, working resistance of each unit is considered to degrade and the value 
decreases with time, the remaining working resistance ( )r t  at time t  can be calculated as 
follows (Schaff 1997) 

( ) (0) ( (0) )( / )cr t r r s t T                        (6) 

where (0)r  is the initial resistance of working unit, T is the service period of the unit and c is the 

exponential of material degradation. Both (0)r  and )(tr  are considered as random variables in 
this study, s is the same as the Eq. (3). 

The mean ( ( ))r t  and variance ( ( ))r t  of the remaining resistance ( )r t  can be determined 
using Eq. (6) 

( ( )) ( (0)) [ ( (0)) [ ( ( ))]( / )cr t r r r T t T                         (7) 
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where ( (0))r  and ( (0))r  are mean and variance of unit initial resistance, respectively, 

whereas ( ( ))r T  and ( ( ))r T  are mean and variance of unit resistance at the end of service 
period, respectively.  

The dynamic reliability index at time t  can be determined by using the stress-strength 
interference theory and the first order second moment method as follows 

2 2
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( ( )) ( ( ))
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r t s t
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Finally, the dynamic reliability can be calculated as follows 

( ) ( ( ))r rR t t                            (10) 

where   is the standard normal distribution function.  
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3. System reliability analysis of repairable k/n (G) system under repeated random 
shocks 
 
For the case where the k/n (G) system is repairable, the repair time is considered to obey 

exponential distribution where its parameter is t . It is assumed that the repaired unit is new after 

it is repaired. The status of the k/n (G) at time   is ( )M  , if 0  , ( )M   is a Markov process, 

its status space is  ={0, 1, 2, , n-k, n-k+1, , n}, its working state space is W={0, 1, , n-k} 
and its fault state is F={n-k+1, , n}. 

The state of the system is transited from i to j and is denoted by ( )ijp   which can be 

calculated as follows 

( ) ( ( ) ( ) )ijp P N j N i           ,i j                 (11) 

The probability of the number of unit failure is added from i to j under a random shock and is 
denoted by ija  which can be calculated as follows 

(1 )j i n j j i
ij n i f fa C P P  

                       (12) 

where 1 ( )f rP R t  . 

The transfer probability function of the system is obtained by using the transfer states 
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1( ) ( ), 1,2, , 1.ii tp o i n k                        (13e) 

where ( )o   is the higher order infinitesimal of  . 
The elements of the probability density matrix are given as follows 
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0 0 , 1, 2, , .j L jq a j n                        (14b) 

, 1, 2, , .ij L ijq a i n k i j n                       (14c) 
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1 , 1,2, , 1.ii tq i n k                         (14e) 

The steady state probability of the system is obtained by using the steady state distribution 
property of the Markov chain 
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All steady state probabilities of the system can be solved by using the backward substitution 
method and the sigma-completeness of the probability 0 1 1nP P P    .  

The repairable ( 1) /n n  (G) system is used to illustrate dynamic reliability analysis of the 
repairable k/n (G) system under repeated random shocks. This is because the dynamic reliability 
prediction process of the repairable k/n (G) system is similar to that of the repairable ( 1) /n n  
(G) system under repeated random shocks. Based on the former analysis, dynamic reliability can 
be obtained by solving the following differential equations 
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Its initial condition is shown as follows 

0 1( (0), (0)) (1, 0)Q Q                         (17) 

)(0 Q  and )(1 Q  are determined using Eqs. (18) and (19), respectively 
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2 1
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where 1s  and 2s  are expressed as follows 
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Eq. (20) is the dynamic reliability prediction model of repairable ( 1) /n n  (G) system under 
repeated random shocks.  

 
 

4. Examples 
 
The repairable 3/4 (G) system is used as an example to verify the proposed dynamic reliability 

prediction model. The initial resistance of each unit and the external random shocks obey the 
normal distribution and are given as MPaNr )60,600()0(   and MPaNL )40,400( , 

respectively. The service life period of the system is T = 10000 hours, 1.5 /L h  , 1t   and 

4.092c  .  
Firstly, the dynamic reliability index of each unit can be obtained using Eq. (9) as follows 
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Fig. 1 The unit dynamic reliability index of 3/4 (G) repairable system 
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The unit dynamic reliability indices calculated from Eq. (22) are shown in Fig. 1. It is observed 
that the reliability of the unit is decreased drastically when the external random shocks are applied 
on the system at 6528t h . Once 6528t h  has been obtained, the dynamic reliability index, 
dynamic reliability and probability of failure of each unit of the system can be calculated as 
follows 

(6528) 2.3805r  , 

(6528) 0.9991225rR  , 
4(6528) 8.775 10fP    

Therefore the failure probability of the unit at 6528t h  is used to compute ija . The 

probability of the number of unit failure is added using Eq. (12) as follows 

01 0.0035a  ，      6
02 4.6119 10a   ，     9

03 2.7004 10a    
13

04 5.9291 10a   ，  12 0.0026a  ，          6
13 2.3080 10a    

10
14 6.7568 10a   ， 23 0.0018a  ，        7

24 7.7001 10a    

 4
34 8.775 10a                                                    (23) 

Then, the probability density matrix is obtained using Eq. (16) 

0.0053      0.0053 0 0
1 1.0039        0.0039 0 0

1 1.0027      0.0027      0
0 0 1 1 0
0 0 0 1 1

0

0Q

 
  
  
   

             (24) 

Finally, the dynamic reliability of the system can be obtained using Eq. (20). 

5( ) 0.001exp( 1.0091 ) 1.001exp( 2.048 10 )R                     (25) 

 

Fig. 2 The dynamic reliability of 3/4 (G) repairable system 
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The computed values of the system dynamic reliability from Eq. (25) are shown in Fig. 2. It is 
observed that the reliability of the system is descended to 0.9179 when the external random shocks 
are applied on the system longer than 6500 hours. In other words, the system has been serviced to 
4333.3 hours. The fact that the system is repairable, from this moment the reliability of the system 
is decreased slowly. 

When the external random shocks are applied on the system for 10000 hours or when the 
service period of the system reaches 6667 hours, the reliability of the system is decreased to 
0.8760. In fact, at the end of its service life, the reliability of the system will also further decreased 
at a faster rate with increasing number of external random shocks and extended maintenance time. 

 
 

5. Conclusions 
 
The unit dynamic reliability index of repairable k/n (G) system under repeated random shocks 

has been established in the paper. The probability density matrix and the steady-state probabilities 
of the system can be retrieved from the transfer probability function. Finally, the dynamic 
reliability of the repairable k/n (G) system is obtained. It is shown that the proposed dynamic 
reliability prediction model of repairable k/n (G) system under repeated random shocks is feasible 
and conforms to the engineering practice. 
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