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Abstract.    In this paper, a simple two-step method for structural vibration-based health monitoring for 
beam-like structures have been extended to plate-like structures with though-thickness cracks. Crack 
locations and severities of plate-like structures are detected using a hybrid approach. The interval wavelet 
transform is employed to extract crack singularity locations from mode shape and support vector regression 
(SVR) is applied to predict crack serviettes form crack severity detection database (the relationship of 
natural frequencies and crack serviettes) using several natural frequencies as inputs. Of particular interest is 
the natural frequencies estimation for cracked plate-like structures using Rayleigh quotient. Only the natural 
frequencies and mode shapes of intact structures are needed to calculate the natural frequencies of cracked 
plate-like structures using a simple formula. The crack severity detection database can be easily obtained 
with this formula. The hybrid method is investigated using numerical simulation and its validity of the usage 
of interval wavelet transform and SVR are addressed. 
 

Keywords:    plate-like structures; Rayleigh quotient; interval wavelet transform; natural frequency 
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1. Introduction 
 

It is well known that the modal parameters (natural frequencies and mode shapes) of cracked 
elastic structures differ from their healthy conditions. Some comprehensive literature survey of 
research activities regarding the vibration-based structural health monitor of various structures 
with cracks is reviewed in the works by Dimarogonas (1996), Doebling et al. (1998), Montalvão et 
al. (2006), Fan and Qiao (2011). In these paper, many vibration-based cracked/damaged methods 
for beam-like and plate-like structures are summarised, such as natural frequency based methods 
(Adams et al. 1978, Nandwana and Maiti 1997, Lele and Maiti 2002, Patil and Maiti 2003, Maiti 
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and Patil 2004, Patil and Maiti 2005, Chasalevris and Papadopoulos 2006, Sekhar 2008, Li and He 
2011), displacement mode shape based method(Ren and De 2000a, 2000b, Rajasekaran and 
Varghese 2005, Han et al. 2005, Ren and Sun 2008, Koo et al. 2008, Gökdağ and Kopmaz 2009, 
2010, Gökdağ 2011), curve mode shape based method(Pandey et al. 1991, Abdel and De 1999, 
Sampaio et al. 1999, Wahab 2001, Qiao et al. 2007, Chandrashekhar and Ganguli 2009, 
Tomaszewska 2010, Jiang and Ma 2012), etc.  

Because natural frequency can be easily and cheaply obtained from measured vibration 
responses, the natural frequency based methods have drawn special attention. Generally, there are 
two procedures to accomplish the crack detection in structures. The first procedure is the so-called 
forward problem analysis, which considers the construction of a cracked stiffness matrix 
exclusively for the crack section and the computation of crack detention database for dynamic 
parameters. The cracks require a large number of refined elements in the local areas and thus 
complicate the computational process. Therefore, wavelet finite element method (Chen et al. 2004, 
Han and Ren 2005, 2006, Xiang et al. 2007a, Chen et al. 2010, 2012, He and Ren 2012) with 
reduced number of elements was proposed to detect cracks in structures (Chen, et al. 2005, Li et al. 
2005, Chen et al. 2006, Xiang et al. 2007b, Chen et al. 2009, Xaing et al. 2011) more efficiently. 
However, both the finite element method and wavelet finite element method are complexity to 
construct the crack detection database. The second procedure is the inverse problem analysis, 
which measures natural frequencies and search for crack location and depth from the depth 
estimation database using optimization approaches, such as genetic algorithm (Kim et al. 2007, 
Yun et al. 2009), neural networks algorithm (Kim et al. 2008), support vector regression (Worden 
and Lane 2001, Isa and Rajkumar 2009), stochastic subspace identification and statistical pattern 
recognition method (Ren and Lin 2011, Lin and Ren 2011). However, so far only the single-crack 
detection methods are well established. The reason is that the natural frequency alone cannot 
provide enough information to construct a robust detection method to identify multiple cracks in 
structures. To minimize the differences (residuals) between analytical and experimental data, some 
studies were done. Jaishi and Ren presented finite element model updating technique based on 
modal flexibility residual (Jaishi and Ren 2006) and response surface method. However, the 
‘zero-setting’ procedure described by Adams (Adamas et al. 1978) might be the simplest method.  

Singularity detection from mode shape is attractive mainly because it is possible to distinguish 
the intact and cracked structures and further identify crack locations when the priori knowledge of 
the cracked zones is not available. Certain mode shapes associated with cracked beam structures 
contain local singularity information. However, we cannot directly observe singular location from 
the mode shape. Wavelet transform is a useful tool to extract singularity information from many 
different kinds of data. Therefore, it has been employed to detect crack locations in the literature 
(Ren and De 2000a, b, Rajasekaran and Varghese 2005, Han et al. 2005, Ren and Sun 2008, Koo et 
al. 2008, Gökdağ and Kopmaz 2009, 2010, Gökdağ 2011). However, the usage of wavelet 
transform to extract singularity positions will not lead to reliably crack severities detection results. 

To overcome the difficult of the above motioned methods, Xiang proposed a simple method to 
detect cracks in beam-like structures (Xiang et al. 2012a). The method presented a hybrid of curve 
mode shape and several natural frequencies of cracked beam. An arbitrary curve mode shape of 
slender beam was decomposed using wavelet transform to detect crack locations. Rayleigh 
quotient was applied to estimate the natural frequencies of beam-like structures with various 
boundary conditions. Only one formula was necessary to estimate the possibly natural frequencies 
to construct the crack severities detection database. Finally, the particle swarm optimization (PSO) 
was employed to predict the crack severities from crack severities detection database. 
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The purpose of the present work is to extend the simple method to plate-like structures and 
further establish a simply and relatively robust method to detect the locations and severities of 
multiple through thickness cracks in plate-like structures using interval wavelet transform and 
SVR. With this approach, certain peak locations in one of the wavelet details of the mode shape 
are considered as the crack locations. To simply contract the crack severities detection database, 
the natural frequencies estimation formula is derived for cracked plate-like structures using 
Rayleigh quotient. The resulting inverse problem of natural frequency based method is then solved 
by SVR. 

This paper is organized as follows. In section 2, the natural frequency estimation formula is 
derived using fracture mechanics theory and Rayleigh quotient. In section 3, a detection technique 
for the cracked plate-like structures, called the hybrid mode shape and natural frequencies 
approach, is proposed. The interval wavelet transform and SVR are briefly reviewed and applied 
to detect crack locations and severities, respectively. In section 4, the natural frequencies of a 
cracked simply supported plate are estimated and the results are compared with the results 
obtained with finite element method. The crack detention approach is also verified using numerical 
simulation. Finally, conclusions are summarized in section 5. 

 
 

2. Natural frequencies estimation formula 
 
Fig. 1 shows a plate containing n though-thickness cracks oriented at different angles

),,2,1( nii  . The coordinate ),( cici yx , ( ni ,,2,1  ) denotes the crack location i in plates. xl  

and yl  are the length and width of the plate, respectively, ),,2,1(2 nibi   are the crack lengths, 

xM  and yM  are the bending moments perpendicular to x-axis and y-axis, respectively. 

The mth natural angular frequency m (for the intact plate and the corresponding natural 

frequency  2/mmf  ) and m (for the plate with n though-thickness cracks and the 

corresponding natural frequency  2/mmf  ) can be approximately obtained using Rayleigh 
quotient as 

m

m
m T

U
2                                  (1) 

and 

m

m
m T

U
2                                  (2) 

where mU  and mU  are the strain energy of the intact and cracked plates, respectively, mT  and 

mT  are respectively the kinetic energy of the intact and cracked plates. According to the 
assumption that the volume is a tiny loss of materials between intact and cracked structures, we 
have  

mm TT                                    (3) 
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Fig. 1 A plate containing n though-thickness cracks oriented at different angles ),,2,1( nii   

 
 
Therefore, consideration of Eq. (1) to Eq. (3), we have 
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where mmm UUU   denote the difference between the strain energies of the intact and 
cracked plates, which is equal to the strain energy stored in the cracks in its mth mode (Kannappan 
and Shankar 2007). 

Using binomial expansion, we have 
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Neglecting higher order terms, we get 
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In order to calculate mf , we have to determine mU , mf  and mU , respectively. 
The strain energy of the intact plate can be calculated based on Kirchhoff plate theory as 
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where m  is the mth mode shape of the intact plate,   is the Possion’s ratio and D is the 
flexural rigidity of the plate given by 

)1(12 2

3




Eh
D                                 (8) 
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where h is the thickness of the plate and E is the Young’s modulus. 
According to linear elastic fracture mechanics theory, the decrease in the strain energy of n 

cracks under mth modal vibration is equal to the energy stored in the cracks, which can be 

expressed in stress intensity factor (SIF) i
IK  at the crack tip, shown by Kobayashi (Tada et al. 

2000) as 

 



n

i
i

A

i
Im AK

E
U

i
1

2d)(
1

                          (9) 

where iA  is the area of ith crack. 

The SIF i
IK  ( ni ,,2,1  ) for the ith through-thickness crack in the plate have been provided 

by Boduroglu and Erdogan (1983) expressed as 

ii

i
mi

I bf
h

M
K )(

6
2
0                            (10) 

where i
mM 0  is the moment per unit width acting along the normal of the ith crack, the relative 

crack length yii lb /2 . It is note that )( if   is the finite width correction factor (a function of 

the relative crack length i ) , which is different for the thick and the thin plates. 

For the thick plate, )( if   is not just a function of relative crack length, but also a function of 

width to thickness ratio hly / , and some cases can be calculated by (Boduroglu and Erdogan 

1983) 

153.039.315.206.345.21)( 2345
4  iiiiiif              (11) 

163.116.063.2428.5297.37)( 2345
8  iiiiiif                (12) 
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01.191.303.1984.3409.865.26)( 2345
16  iiiiiif                (14) 
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For the thin plate, )( if   can be calculated by (Wilson and Thompson 1971)  
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where 

1002.002.06.57.1412)( 2345
1  iiiiiif                    (17) 

As shown in Fig. 2, suppose i  is a running variable representing the instantaneous crack 

length and substituting Eq. (10) into Eq. (9), we have 
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Fig. 2 Cross section at the location of the ith crack ),,2,1( nii   
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Substituting ii hA dd   into Eq. (18), we have 
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As the length of cracks is denoted by ),,2,1(2 nibi  , the crack locations are identified by x 
and y coordinates of its mid point, i.e., ),( cici yx , ( ni ,,2,1  ).  

i
mM 0  can be expressed in terms of the moments xM  and yM  along x and y axes, 

respectively and twisting moment xyM  as 
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Substituting Eq. (21) into Eq. (20), we get 
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From Eqs. (6), (7), (19) and (22), we can see clearly that on of the main advantages of the 
natural frequency estimation formula developed herein is that, only the mth natural frequency mf  
and mode shape my  of the intact plate are required to solve the natural frequency of the cracked 
plate. 

The natural frequency mf  and the mode shape m  of the intact plate can be obtained using 
the close-from solution with the boundary condition of all edges simply supported (Timoshenko 
1974), exact solutions with every kind of boundary conditions (Wu 2007) or finite element method 
for complex plate-like structures with every kind of boundary conditions (Zienkiewicz et al. 
2005). 

For a rectangle plate with the boundary condition of all edges simply supported, the close-from 
solutions of both mf  and m  are given by Timoshenko (Timoshenko 1974) as 
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where 1n  and 2n  are the coefficients. When 121  nn , we obtain the first natural frequency 

(the fundament frequency) 1f . The other frequency mf ( 2m ) is determined by the plate length 

lx, plate width ly, the coefficients 1n  and 2n .  
Therefore, according to Eq. (6), we can use symbolic or numerical integrals to calculate the 

natural frequency mf  of the plate with n though-thickness cracks. 
 
 

3. Crack detection approach 
 
3.1 Interval wavelet transform 
 
In this section, we give a brief description and the reason to the usage of the interval wavelet 

transform. When the wavelet transform is applied to decompose finite data sets or signals, 
boundary distortion phenomenon will inevitably occur (Cohen et al. 1993). This phenomenon 
would influence the singularity detection results. To avoid boundary distortion phenomenon, 
several methods based on signal extension on the boundaries are presented, such as zero-padding, 
symmetrization and smooth padding, etc. (Strang and Nguyen 1996). Interval wavelet transform is 
a natural way to overcome boundary distortion phenomenon (Cohen et al. 1993). Interval wavelets 
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are the construction of special boundary wavelets together with the usual wavelets for the interior 
within the interval to generate a multi-resolution analysis (MRA) on the interval (Cohen et al. 
1993).  

The good performance of interval wavelet decomposition of mode shape is verified for 
beam-like and plate-like structures by Xiang (Xiang et al. 2011). Therefore, in this paper, we use 
CDV3 (3 denote the vanish moment of Daubechies wavelet) wavelets as a tool to decompose the 
first mode shape and the source files of WAVELAB (Donoho et al. 2012) to code program so as to 
decompose the first mode shape and further detect crack locations in though-thickness plate-like 
structures. More details about interval wavelet transform can be seen in the paper written by 
Cohen, Daubechies and Vial (Cohen et al. 1993). Fig. 3 gives the boundary scaling functions and 
wavelets of CDV3. 

 
 

 

Fig. 3 Boundary scaling functions and wavelets of CDV3 
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3.2 Support vector regression 
 
In machine learning, support vector machine (SVM) is supervised learning models with 

associated learning algorithms that analyze data and recognize patterns, used for classification 
(Support vector classification, SVC) and regression (Support vector regression, SVR) analysis 
(Alex and Bernhard 2004). SVR has been used for predictive data analysis with many applications 
in various areas of study. For optimization problems, as the SVR leads to a convex optimization 
problem and thus the optimal solution must be global (Alex and Bernhard 2004). The basic idea of 
the SVR is to map the input data into the feature space via a nonlinear map.  

Consider the problem of approximating a set of data D 

 l

iii yD 1),(  x , RRx  i
n

i y   ,                    (25) 

with a linear function 

bf  xwx ,)(  with Rb                     (26) 

where x is the inputs data, w is the weight vector,  xw,  represents the dot product of the x 
and w. To ensure that the norm can be minimized, we write this problem as a convex optimization 
problem, i.e. 
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where   denotes the tolerance error. To deal with infeasible constraints of the optimization 

problem, i  and *
i are introduced, and the formulation can be recast as  
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where constant 0C determines the trade-off between the flatness of f  and the amount up to 

which deviations larger than   are tolerated. 
Applying the Lagrange multipliers, we have  
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subject to  0)(
1
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i
ii  , ],0[* Cii                (29) 

where i ,
*

i are Lagrange multipliers, and the support vector expansion can be expressed as 

follows 
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For non-linear cases, the dot product is replaced by a kernel function ),( xx iK , and the 

expansion for the non-linear cases is  

bKf i

l

i
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xxx ,)()(
1
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It notes that the loss functions can also be introduced to the SVR algorithm. Generally, there are 
four loss functions, i.e., Quadratic, Laplace, Huber and - insensitive loss functions. Kernel 
functions are also an important issue to obtain a high precision regression model of the training 
data. Linear, polynomial, radial basis, sigmoid, Spline, B-spline and Fourier functions are often 
selected as SVR kernel functions.  

Many investigations show that on one hand, the -insensitive guarantees a sparse set of support 
vectors and leads to a fast calculation, on the other hand, to train a data set without priori 
knowledge, the radial basis functions (RBF) is the best one (Alex and Bernhard 2004). Therefore, 
they are selected in the present work. 

 
3.3 A two-step approach to detect crack locations and severities 
 
The basic idea of the two-step approach proposed in the literature and crack locations and 

severities were detected by two-steps (Xiang et al. 2012a, b). In order to improve the accuracy of 
locations detection in the first step, the wavelet transform (Xiang et al. 2012b) or interval wavelet 
transform (Xiang et al. 2012a) was employed to analyze an arbitrary modal shape. In the wavelet 
transform, the spatially distributed modal shape was decomposed into one approximation signal 
and three detailed signals. The wavelet shrinkage signals was proposed and applied to a specific 
scale, which can clearly identify the damage positions of a plate by showing peaks at the 
corresponding locations (Xiang et al. 2012b). To further decrease the boundary distortion 
phenomenon, interval wavelet transform was employed and the boundary distortion would be 
enormously suppressed (Xiang et al. 2012a). Once the crack locations have been identified, the 
next step is to detect the damage severities by natural frequency based method using finite element 
method (Adams et al. 1978, Nandwana and Maiti 1997, Lele and Maiti 2002, Patil and Maiti 2003, 
Maiti and Patil 2004, Patil and Maiti 2005, Chasalevris and Papadopoulos 2006, Sekhar 2008, Li 
and He 2011).  

In the present investigation, the diagram of the two-step approach shown in Fig. 4, which is the 
improvement from Fig. 3 in the literature (Xiang et al. 2012b) 
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Fig. 4 The block diagram of the two-step damage detection method 
 
 
3.3.1 Detect crack locations 
Obtain an arbitrary mode shape of the cracked plate by experimental modal analysis (EMA). In 

the present investigation, because we use numerical simulation to testify the performance of the 
present approach, the finite element method is employed to calculate the mode shapes. Then we 
use interval wavelet transform to decompose the mode shape and the peaks in the detail signal 
indicate the crack locations ),( cici yx , ni ,,2,1   and the corresponding angles i . Obviously, 

if the peaks or sudden changes are not available, it means that no cracks are available in plates. In 
addition, the relative crack locations can be represented by xcici lx /  and ycici ly / . 

 
3.3.2 Detect crack severities 
To detect crack severities, there are two problems to be proceeded, one is the forward problem 

analysis and the other is the inverse problem analysis. In forward problem analysis, to construct 
crack depth detection database (the relationship between natural frequencies and crack severities) 
for q natural frequencies using Eq. (6), the qth natural frequency qf  and mode shape qy  of the 

intact plate should be previously obtained using close-from solution (Timoshenko 1974), exact 
solutions (Wu 2007) or finite element method (Zienkiewicz et al. 2005). Therefore, we 
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continuously compute natural frequencies versus different relative crack lengths i ( ni ,,2,1  ) 

for the known crack locations ),( cici yx , ni ,,2,1   and the corresponding angles i , as 

follows 

),,2,1(      ),,,( 21 nqmFf nmm                      (32) 

where mF  denote the relationship between relative crack lengths n ,,, 21   and the 

corresponding natural frequencies mf ( qm ,,2,1  ). In order to evaluate n crack depths in the 
plate-like structure with though-thickness cracks, the least q should be equals to n. Eq. (32) is also 
called the crack severities detection database. 

In inverse problem analysis, based on Eq. (32), we have 

)(     ),,,( ),,,( 21
1

21 nqfffF qn                      (33) 

From Eq. (33), we can see clearly that the inverse problem to determine the relative crack 
lengths i  of n cracks is essentially a optimization problem. In this study, we adopt the SVM 

toolkit programmed by Professor Gunn of the University of Southampton (Gunn 1998).  
To detect n cracks in the plate-like structure, q natural frequencies are employed as training 

samples and n relative crack lengths i  act as test samples to obtain a trained SVR model. 

According to the SVR algorithm, the training and test samples are 

  },,,{,, 211 qi

l

i
s
ii fffH  XX for n

s
iH  ,,, 21                (34) 

where iX  and s
iH are respectively the training and test samples, and l is the number of samples. 

For each training and prediction, n loops are needed to obtain relative crack lengths i . It is 

desirable to use normalized, non-dimensional parameters to speed up the computational process 
(Alex and Bernhard 2004). Therefore, prior to the training of the SVR model, all data are 
separately normalized to be bounded by [-1, 1]. Take a dataset },,,{ 21 nggg g  for example, 

the normalized dataset g~  is calculated by the formula gg  ggg max/)(~ , where the mean 

value 



n

i
ig

n
g

1

1
. The corresponding renormalized formula is g ggg max~ . 

In practical applications, the large difference between the measured frequencies and the 
computed ones may make solutions irrelevant. For this reason, the model updating technique 
(Xiang et al. 2012a) is adopted for model updating and hence reducing the difference.  

 
 

4. Numerical simulation 
 
In section 4.1, several examples are given to validate the approximate natural frequencies 

formula. The suggested crack detection approach is also introduced in section 4.2. 
 
4.1 The validity of approximate natural frequencies formula 
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4.1.1 Single crack 
In this study, we consider a rectangle plate simply supported on all edges with one 

though-thickness crack. The dimensions of the plate are: length lx = 105 mm, width ly = 100 mm 

and thickness h = 5 mm. Material properties are: Young’s modulus 211 N/m10923.1 E , 
Poisson’s ratio 33.0  and material density ρ=7810 kg/m3.  

The relative crack locations xcc lx /11   and ycc ly /11  , the crack angles 1  and the 

relative crack lengths 1  of eight crack cases are listed in Table 1. 
Table 1 gives the first sixth natural frequencies using Eq. (6) and those by Shell63 element in 

commercial FEM software ANSYS (Moaveni 2003). Additional analyses are performed to 
examine the performance of the present natural frequency approximation formula. For this purpose, 
we use more than 50000 triangular shell63 elements to calculate the first six natural frequencies. In 
Table 2, the maximum errors for the first six natural frequencies of the eight cases are 0.146%, 
0.293%, 0.063%, 0.121%, 0.079% and 0.036%, respectively. It indicates that the performance of 
the natural frequency estimation formula is good. 
 

4.1.2 Multiple cracks 
Consider a same plate as shown in Example 1 with three though-thickness cracks. The relative 

crack locations xcici lx /  and ycici ly / , the crack angles i  and the relative crack 

lengths i  of five crack cases are listed in Table 3, where i=1,2,3. 

In each crack case, a different combination of relative crack locations, angle orientations and 
relative crack lengths is consider to check the general applicability of the present natural frequency 
estimation formula Eq. (6) to the plate with multiple cracks. As shown in Table 4, we use more 
than 60000 triangular shell63 elements to calculate the natural frequencies as a benchmark. For the 
five cases, the maximum relative errors for mode 1 to mode 6 are 0.105%, 0.316%, 0.428%, 
0.262%, 0.079% and 0.038%, respectively. The small errors between the present method and FEM 
indicate the present approximate equation is likely to be reliable. 
 
 
Table 1 Crack cases for a simply supported plate with one crack 

Crack case 
Relative crack location 

Orientation 1  
relative crack 

lengths 1  
xcc lx /11   ycc ly /11   

1 0.25 0.25 90° 0.05 

2 0.25 0.25 90° 0.10 

3 0.35 0.25 30° 0.05 

4 0.35 0.25 30° 0.10 

5 0.40 0.25 30° 0.05 

6 0.40 0.25 30° 0.10 

7 0.25 0.40 0° 0.15 

8 0.25 0.40 0° 0.20 
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Table 2 Comparison of finite element method and the present solution for a simply supported plate with one 

crack 

Case 1 2 3 4 5 6 7 8 Uncracked 

Mode1 

(Hz) 

Shell63 1721.2 1720.4 1720.1 1716.3 1720.1 1716.3 1710.7 1702.7 

1721.5 Present 1721.1 1720.1 1720.8 1718.8 1720.6 1717.8 1708.9 1698.9 

Error(%) 0.006 0.017 0.041 0.146 0.029 0.087 0.105 0.223 

Mode2 

(Hz) 

Shell63 3308.5 3302.4 3310 3308.5 3310.4 3310 3289.8 3275.1 

3310.5 Present 3307.8 3299.8 3308.5 3302.3 3308.9 3304.1 3285.5 3265.5 

Error(%) 0.021 0.079 0.045 0.187 0.045 0.178 0.131 0.293 

Mode3 

(Hz) 

Shell63 5295.8 5293.0 5289.5 5269.8 5288.6 5266 5277.7 5261.8 

5296.8 Present 5295.7 5292.1 5289.3 5266.5 5288.2 5262.3 5276.5 5260.2 

Error(%) 0.002 0.017 0.004 0.063 0.008 0.07 0.023 0.03 

Mode4 

(Hz) 

Shell63 5956.3 5948.9 5958.1 5955.7 5956.8 5951.1 5946.6 5938 

5959 Present 5955.8 5946.3 5958.8 5958.3 5958.8 5958.3 5944.1 5932.2 

Error(%) 0.008 0.044 0.012 0.044 0.034 0.121 0.042 0.098 

Mode5 

(Hz) 

Shell63 6881.0 6868.9 6879.2 6862.4 6882.2 6873.3 6850.8 6822.1 

6885.9 Present 6880.3 6863.5 6879.2 6858.8 6882.3 6871.6 6847.5 6816.8 

Error(%) 0.010 0.079 0.000 0.052 0.001 0.025 0.048 0.078 

Mode6 

(Hz) 

Shell63 9528.0 9514.1 9533.4 9532.1 9529.8 9518.3 9514.6 9497.4 

9534.3 Present 9528.4 9510.5 9534.0 9533.2 9530.2 9517.9 9515.7 9500.8 

Error(%) 0.004 0.038 0.006 0.012 0.004 0.004 0.012 0.036 

 

 
By summarizing the above comparisons, the rectangle plates with one and three 

though-thickness cracks indicate that reasonably good calculation accuracy can be achieved for the 
crack problems by the proposed approximate natural frequency estimation formula.  

The main advantage of the present natural frequency approximation formula is the simplicity. 
Only the natural frequencies and mode shapes of uncracked plate is needed to estimate the natural 
frequencies of plate with multiple though-thickness cracks. For the simply supported plate, the 
close-form solution of the natural frequencies and mode shapes can be used. However, for the 
more complicated plate structures, the natural frequency estimation equation can also be used to 
estimate the approximate natural frequencies of the plates with though-thickness cracks. The key 
problem is that the natural frequencies and mode shapes of the uncracked complicate plate 
structures should be provided firstly, which can be solved easily using finite element method. 
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Table 3 Crack cases for a simply supported plate with three cracks 

Crack case i 
Relative crack locations 

Orientations i  
relative crack 

lengths i  
xcici lx / ycici ly /

1 

1 0.25 0.25 90° 0.05 

2 0.45 0.45 90° 0.10 

3 0.75 0.75 0° 0.15 

2 

1 0.25 0.25 0° 0.15 

2 0.45 0.45 0° 0.05 

3 0.75 0.75 90° 0.20 

3 

1 0.15 0.25 30° 0.05 

2 0.35 0.35 90° 0.15 

3 0.55 0.65 0° 0.10 

4 

1 0.25 0.45 45° 0.05 

2 0.45 0.25 30° 0.20 

3 0.75 0.35 0° 0.15 

5 

1 0.25 0.35 30° 0.05 

2 0.55 0.15 45° 0.15 

3 0.65 0.65 60° 0.10 

 
 
4.2 Crack detection for simply supported plate with two though-thickness cracks 
 
As shown in Fig. 1, suppose the plate dimensions and the material properties are: length lx 

=1000 mm, width ly =1000 mm and thickness h = 20 mm. Material properties are: Young’s 

modulus E = 20.6 1110 N/m2, Poisson’s ratio 3.0  and material density 7860 Kg/m3.  
 
4.2.1 Detection crack locations 
Suppose the two crack location coordinates are: ( 1.01 cx , 1.01 cy ) and ( 6.02 cx , 

7.02 cy ), the crack angles are: 901  and 02  , the relative crack lengths are: 1.01  , 

2.02  , the finite element meshes ( 127127 ) using Shell63 is shown in Fig. 5.  
The second mode shape is employed to show how to determine the crack locations. It worth to 

point out that an arbitrary mode shape can be used to obtain the same results (Xiang et al. 2011, 
Xiang and Liang 2012b). For the analysis, CDV3 is used to decompose only one level. Fig. 6 
shows the decomposition results of the second mode shape. The approximation signal A as shown 
in Fig. 6(a) is essentially a approximation signal where the singularity components are removed.  
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Fig. 5 The finite element model of thin plate with two though-thickness cracks 
 

 

 

Fig. 6 The first mode shape and its wavelet decomposition using Db3 interval wavelets at level 1 
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The three detailed signal 1D , 2D  and 3D  are shown in Fig. 6 (b)-(d), respectively. As shown 
in the figures, 1D , 2D  and 3D  are all sensitive to damage singularity. Moreover, similar to the 
damage detection method using interval wavelet transform (Xiang et al. 2011), the severe 
boundary distortions that usually occur in wavelet coefficient computation near the signal edges 
(Xiang and Liang 2012b) are not shown in the CDV3 (interval wavelet transform) decomposition. 

The above results suggest that all of the three detailed signal 1D , 2D  and 3D  can be used to 
detect crack locations for plate with though-thickness cracks. The detected two crack angles and 

crack location coordinates are 90*
1  , 0*

2  , 1.0*
1 cx , 1.0*

1 cy , 6.0*
2 cx , 

7.0*
2 cy , respectively, as shown in 1D , 2D  and 3D . However, we can not determine the 

crack severities when the small measurement errors are introduced (Xiang et al. 2011, Xiang and 
Liang 2012b). Therefore, the two-step hybrid method provides for a more reliable crack detection 
strategy. 
 

 
Table 4 Comparison of finite element method and the present solution for a simply supported plate with 

three cracks 

Case 1 2 3 4 5 

Mode1 

(Hz) 

Shell63 1710.2 1707.7 1705.5 1691.2 1712.6 

Present 1708.8 1705.9 1703.9 1691 1712.2 

Error(%) 0.082 0.105 0.094 0.012 0.023 

Mode2 

(Hz) 

Shell63 3293.3 3262.3 3285.7 3286.3 3291.2 

Present 3292 3252 3283.6 3278.4 3292.0 

Error(%) 0.039 0.316 0.064 0.24 0.024 

Mode3 

(Hz) 

Shell63 5242.5 5230.6 5255.8 5143.5 5256.8 

Present 5235.4 5216.8 5250.3 5121.5 5240.4 

Error(%) 0.135 0.264 0.105 0.428 0.312 

Mode4 

(Hz) 

Shell63 5914 5897.9 5941.9 5905.0 5949.7 

Present 5908.3 5896.2 5945.3 5920.0 5934.1 

Error(%) 0.096 0.029 0.057 0.254 0.262 

Mode5 

(Hz) 

Shell63 6791.3 6737.1 6855.9 6809.5 6844.3 

Present 6768 6724.5 6854.3 6795.7 6872.1 

Error(%) 0.343 0.187 0.023 0.203 0.406 

Mode6 

(Hz) 

Shell63 9477.7 9398.4 9474.8 9376.5 9480.0 

Present 9470.6 9381.1 9496.2 9351.7 9446.3 

Error(%) 0.075 0.184 0.226 0.264 0.355 
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4.2.2 Detection crack severities 
We adopt the SVM toolkit programmed by Professor Gunn of the University of Southampton 

(Gunn 1998) to detect crack severities.  
To detect two though-thickness cracks in the plate, the first three natural frequencies 1f , 2f  

and 3f  calculated by Eq. (6) are employed as training samples and two relative crack lengths 1  

and 2  act as test samples to obtain a trained SVR model.  
According to the SVR algorithm, the training and test samples are 

  },,{,, 3211 fffH i

l

i
s
ii  XX  for 21 ,s

iH               (35) 

where iX  and s
iH are respectively the training and test samples, and l is the number of samples. 

For each training and prediction, two loops are needed to obtain two relative crack lengths 1  

and 2 . - insensitive (=0.000001, suggested by Gunn(1998)) and radial basis functions are 

employed as loss and kernel functions respectively. Suppose the selected 1  are in the range of 

0.01 to 0.2 with step 0.01, whereas 2  are in the range of 0.01 to 0.4 with the same step. The data 
for training samples constitute a 800×3 matrix and test samples lead to a 800×1 vector. When we 

the trained SVR to predict the two relative crack lengths *
1  and *

2 , the input parameters should 
be the measured first three natural frequencies. In the present, the first three natural frequencies are 
calculated by about 60000 Shell63 elements. 

Table 5 lists the crack severities prediction results with combination (the width of RBF p1 = 10 

and C = 50) for the seven different cases. The absolute errors are defined by δ1=| *
1 - 1 |×100%, 

δ2=| *
2 - 2 |×100%, respectively. The maximum absolute errors δ1 and δ2 for seven cases are 

respectively 2.8% and 2.9%. The numerical simulation validate the SVR model and also indicated 
that the SVR performance. 

 
 

Table 5 Crack severities detection results (p1 = 10 and C = 50) 

Case 1  2  *
1f  *

2f  
*

3f  *
1  δ1 

*
2  δ2 

1 0.05 0.05 97.234 242.71 243.26 0.053 0.3 0.041 0.9 

2 0.05 0.1 96.981 241.12 243.25 0.07 2 0.076 2.4 

3 0.1 0.1 96.974 241.08 243.2 0.072 2.8 0.076 2.4 

4 0.1 0.15 96.558 238.55 243.17 0.095 0.5 0.132 1.8 

5 0.1 0.20 95.99 235.28 243.03 0.12 2 0.198 0.2 

6 0.15 0.20 95.975 235.17 242.95 0.122 2.8 0.199 0.1 

7 0.15 0.3 94.36 227 242.43 0.128 2.2 0.329 2.9 

Note: δ1=| *
1 - 1 |×100%, δ2=| *

2 - 2 |×100% 

414



 
 
 
 
 
 

A new method to detect cracks in plate-like structures with though-thickness cracks 

 

How to choose the trade off parameters p1 (the width of RBF) and C to obtain the good support 
vectors is a difficult task in theory analysis society and application field (Gunn 1998). To apply the 
SVR for the detection of cracks in structures, it notes that the simulation investigation can be 
preceded at first to obtain the good parameters p1 and C. Because the similarity of simulation and 
experimental/practical of the same structures, these parameters can also be employed to deal with 
the experimental/practical data. 

 
 

5. Conclusions 
 

In this paper, the crack detection approach of though-thickness plate-like structures has been 
investigated and the basic idea of this approach is deriving from a simple crack detection method 
for beam-like structures. The procedure involves two steps. The first step is the application of the 
first mode shape to detect the possibly existence and locations of cracks in plate-like structures. 
The second step is the employment of SVR to predict crack severities from the crack severity 
detection database. In particular, the interval wavelet transform is applied to decompose the first 
mode shape to eliminate boundary distortion phenomena. The natural frequencies estimation 
formula is derived for cracked plate-like structures using Rayleigh quotient and the relationship of 
natural frequencies and crack severities can be easily constructed by a simple formula. It is 
observed that the numerical results from both the natural frequencies estimation formula matched 
very well with those obtained by the finite element method. The hybrid crack detection approach is 
also verified using numerical simulations.  

The further work is to evaluate the natural frequencies of cracked thick plate/shell structures or 
other complicated structures. The possible way is to employ numerical analysis method, such as 
finite element analysis method and boundary element method, etc., to calculate natural frequency 
and strain energy of the intact structures. Then according to linear elastic fracture mechanics 
theory, we can determine the energy stored in the cracks. Finally, the natural frequencies of 
cracked structures will be calculated by Eq. (6). Moreover, the crack detection approach is similar 
to the present method. 
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