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Abstract.  This study employs a novel beam-type wavelet finite element model (WFEM) to fulfill an 
adaptive-scale damage detection strategy in which structural modeling scales are not only spatially varying 
but also dynamically changed according to actual needs. Dynamical equations of beam structures are 
derived in the context of WFEM by using the second-generation cubic Hermite multiwavelets as 
interpolation functions. Based on the concept of modal strain energy, damage in beam structures can be 
detected in a progressive manner: the suspected region is first identified using a low-scale structural model 
and the more accurate location and severity of the damage can be estimated using a multi-scale model with 
local refinement in the suspected region. Although this strategy can be implemented using traditional finite 
element methods, the multi-scale and localization properties of the WFEM considerably facilitate the 
adaptive change of modeling scales in a multi-stage process. The numerical examples in this study clearly 
demonstrate that the proposed damage detection strategy can progressively and efficiently locate and 
quantify damage with minimal computation effort and a limited number of sensors. 
 

Keywords:  damage detection; adaptive-scale; wavelet finite element model; cubic Hermite multiwavelets; 
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1. Introduction 
 

Structural health monitoring (SHM) systems have been gaining worldwide popularity in the 

past two decades. In particular, substantial research has been focused on vibration-based damage 

detection approaches among a wide variety of SHM techniques (Doebling et al. 1996, Sohn et al. 

2004, Balageas et al. 2006, Fan and Qiao 2011). The damage-induced change in dynamic 

characteristics has been extensively used to locate and quantify structural damage, where the 

typical dynamic characteristics include frequencies, mode shapes, damping, mode shape 

curvatures, and strain mode shapes, and their representative derivatives include the modal 

assurance criterion, frequency response function, modal strain energy, energy transfer ratio, and 

flexibility matrix, among others. Many of these methods rely on the analytical finite element 

model (FEM) of a structure, which serves as a relationship model between sensor measurement 

and unobserved structural responses. The accuracy of FEM often affects the success of damage 
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detection. 

However, a dilemma exists in these FEM-based damage detection methods: On one hand, a 

delicate FEM with fine details is required to obtain high-resolution dynamic properties of 

structures to enable the identification of minor or localized damages; on the other hand, excessive 

meshing density of FEM is often impractical, if not impossible, in damage detection of large-scale 

civil structures, because a significant number of degree of freedoms (DOFs) render damage 

detection problems time consuming and even ill conditioned. Moreover, owing to sensor noise or 

the limited number of sensors, only low frequencies and mode shapes can be identified through in 

situ test data. An excessively dense meshing of FEM may not be necessary in this situation. 

Therefore, a multi-scale FEM is desirable for the damage detection purpose with high resolution at 

the critical locations and relatively low resolution elsewhere. 

The concept of using multi-scale FEM in damage detection has been embraced by several 

researchers. Ding et al. (2010) developed a multi-scale FEM of a long-span cable-stayed bridge, 

and their analysis results well correlated with the measured dynamic properties from ambient 

vibration tests. Li et al. (2009) proposed a multi-scale modeling strategy for structural 

deterioration analysis in which a “large-scale” model is adopted for the global responses of 

structures with linear behavior and a “small-scale” model is available for nonlinear damage 

analysis of the local welding. A substructuring method in which a complete structure was divided 

into several substructures has also been used for multi-scale damage identification, and the 

analysis focused on a substructure with a small number of DOFs (Perera and Ruiz 2008). Bakhary 

et al. (2010) proposed a damage detection approach based on a multi-stage artificial neural 

network model and progressive substructure zooming. To improve damage detection efficiency 

and accuracy, several multi-step damage detection processes have been presented, such as 

“location—quantification” (Shi et al. 2000, 2002), “identify general area of structural 

damage—locate a specific damaged structural component” (Kim and Bartkowicz 1997), “identify 

damage occurrence—classify damage type—locate and quantify damage” (Kim et al. 2010). 

Damage detection can greatly benefit from a multi-resolution FEM in that such an approach 

helps achieve an appropriate tradeoff between modeling details and entirety, as well as between 

computation accuracy and efficiency. However, a practical challenge arises from the fact that the 

probable damage locations and the required modeling resolutions are often unpredictable, and thus 

a priori finite element meshing based on analytical simulations or empirical estimates may not be 

appropriate. Therefore, an ideal damage detection strategy should be based on an adaptive-scale 

modeling technique that enables us to examine a structure in its entirety, detect the suspected 

region using a low-resolution model, and then identify the accurate location and severity of the 

damage with localized refinement in the suspected region only. However, the implementation of 

such adaptive-scale models in the context of traditional FEM is still a difficult task. Re-meshing a 

local region requires re-constructing stiffness and mass matrices, as well as repeating the entire 

computation process. As the desirable scales need to be determined by iteration, the damage 

detection process becomes computation intensive, especially for large-scale civil structures.  

In view of this, this paper proposes an adaptive-scale damage detection approach based on 

wavelet finite element models (WFEMs). The WFEM is a powerful FEM technique with unique 

multi-resolution and localization properties that has been developed in recent years (Ko et al. 1995, 

Chen and Wu 1995, Sudarshan and Amaratunga 2003, Han et al. 2005, 2006, Amaratunga and 

Sudarshan 2006, He et al. 2012, He and Ren 2012, 2013a, b). Its resolution can be modified 

conveniently to improve the required analysis accuracy, which is particularly suitable for 

adptive-scale damage detection. Some researchers have used the WFEM for the damage detection 
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of beams by establishing a database of the natural frequency—crack parameter relationship (Li et 

al. 2005, Chen et al. 2006, Xiang et al. 2006, Xiang and Liang 2011). However, those papers only 

used WFEM to carry out modal analysis and demonstrate its high computation efficiency. The 

most important multi-resolution and localization features of WFEM that would be useful for 

adaptive structural analysis and damage localization were not studied. The current paper adopts a 

progressive damage detection process in which problems are analyzed in coarse mesh first and 

better approximation can be subsequently acquired by high-resolution refinement in the concerned 

regions. Second-generation cubic Hermite multiwavelets are used as shape functions of beam 

elements, and the change ratio of modal strain energy is used as an indicator of the damage 

location. A damage matrix equation deduced from the equation of motion of a beam structure 

through modal perturbation is then used to quantify the severity of the damage. The proposed 

approach can locate and quantify sub-element damage in beam structures in a progressive manner. 

Numerical examples of a simply supported beam and a continuous beam with different damage 

scenarios are simulated in consideration of the effect of random noise. The results clearly 

demonstrate the effectiveness and accuracy of the proposed adaptive-scale damage detection 

approach. Compared with traditional methods, fewer DOFs in FEM and fewer sensors in modal 

tests are involved, thereby considerably enhancing both computation and test efficiency. 

 

 

2. Theory of multi-scale WFEM 
 

2.1 Wavelet-based multi-resolution analysis 
 

Multi-resolution analysis (MRA) is one of the most important properties of wavelets (Mallat 

1988, Chui 2009). Any function 2( ) ( )f x L R can be approximated with different levels of 

precision in the corresponding space 
jV , where the approximation space 

jV is spanned by the 

scaling functions ,j l . The subscripts j and l define the scale and shift of the scaling functions, 

respectively (Mallat 1988) 

, ( ) 2 ( )j

j l x x l                                 
 (1) 

For example, function ( )f x  can be approximated in 0V
 
as follows 

0

0, 0,( ) ( ) l l

l

f x f x a                             
 (2) 

where 
0,l

 
is the scaling function (also called father wavelet) at scale 0, and 

0,la represents the 

corresponding wavelet coefficient 

0, 0,( ), ( )l la f x x                             (3) 

The accuracy of approximation can be improved by adding terms in the space 0W , which is the 

orthogonal complement of 0V . As a result, the approximation in space 1V  is
 

1

0, 0, 0, 0,( ) ( ) l l m m

l m

f x f x a b                          (4) 

where 
0,l  is the wavelet function (also called mother wavelet) at scale 0, and 

0,mb  is the 
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corresponding wavelet coefficients in space 0W . 

 )(),( ,0 ,0 xxfb mm                               (5) 

With further increase in the approximation order, the wavelet representation of the function 

approaches to the exact function when j  . 

0, 0, , ,( ) ( )j

l l j m j m

l j m

f x f x a b     , ( ) ( )jf x f x            (6) 

 

2.2 Fundamentals of the WFEM 
 

The multi-scale WFEM is the fundamental of the adaptive-scale detection method of structural 

damage, and a brief introduction to the WFEM is provided in this section. In the WFEM, the shape 

function of an element uses the wavelet approximation shown in Eq. (6). A variety of wavelets 

have been used in WFEMs, such as Daubechies wavelets (Ko et al. 1995, Chen et al. 2006), spline 

wavelets (Chen and Wu 1995, Han et al. 2006, Xiang et al. 2006), trigonometric wavelets (He et al. 

2012, He and Ren 2012, 2013a, b), Hermite wavelets (Xiang and Liang 2011, Wang et al. 2011), 

and so on. The types of elements include the truss element (Wang et al. 2011), Timoshenko beam 

element (Wang et al. 2011), Euler-Bernoulli beam element (Han et al. 2005, 2006, He and Ren 

2012, 2013a), plate element (Han et al. 2006), solid element (Han et al. 2006) and so on. Its 

localization characteristics make the WFEM a powerful tool to analyze fields with gradient 

changes or singularities, such as material nonlinearity, local damage, and cracks. The refinement 

relations of the scaling functions and wavelets in two adjacent scales are expressed as follows 

(Chui 2009) 

, , , 1,j k j k l j l

l

h                               (7) 

, , , 1,j m j m l j l

l

g                              (8) 

where , : ( )j k k K j  represents the vector of multi-scaling functions at the jth scale, 

, : ( )j m m M j   represents the vector of multiwavelets at the jth scale, and , ,j k lh  and , ,j m lg are 

the low-pass and high-pass filters, respectively.  

Due to its favorable localization characteristics and convenient integral operation, the 

beam-type element based on second-generation cubic Hermite multiwavelets constructed by Wang 

et al. (2011) is adopted for the damage detection of beam structures in this study. When defined on 

the interval [-1, 1], the scaling functions consist of two cubic Hermite splines 

1 2

0,0 0,0 0,0( ) ( )
T

x x                              (9) 

where 
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2

1 2

0,0

( 1) ( 2 1)       [ 1,0]

( ) ( 1) (2 1)         [0,1]

0                               otherwise

x x x

x x x x

     


   



                   (10) 

2

2 2

0,0

( 1)        [ 1,0]

( ) ( 1)        [0,1]

0                   otherwise

x x x

x x x x

   


  



                       (11) 

The refinement coefficients , ,j k lh  can be computed by solving simultaneous Eq. (7) at random 

vertices. The refinement relation of the cubic Hermite scaling functions between two adjacent 

scales j and j+1 reads 

2 2 1 2, 1, 1, 1,

1 3 1 3
            

2 2 2 2

1 1
        

8 4 8 4

j k j k j m j m

h h

h h
     

   
   

     
     
      

              (12) 

 

 

Fig. 1 The refinement relation for cubic Hermite scaling functions 

k1 m1 k2 m2 k3

0

0.2

0.4

0.6

0.8

1

k1 m1 k2 m2 k3

0

0.2

0.4

0.6

0.8

1

k1 m1 k2 m2 k3

0

0.2

0.4

0.6

0.8

1

k1 m1 k2 m2 k3
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

k1 m1 k2 m2 k3
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

k1 m1 k2 m2 k3
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1

2

1,j m 

1

1

1,j m 

2

1

1,j k 

2

2

1,j k 

2

1

1,j m 

2

2

1,j m 

k1 m1 k2 m2 k3
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

k1 m1 k2 m2 k3

0

0.2

0.4

0.6

0.8

1

k1 m1 k2 m2 k3
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

k1 m1 k2 m2 k3

0

0.2

0.4

0.6

0.8

1

2

1

,j k

2

2

,j k

2

1

,j m

2

2

,j m

1

2


3

2h


1

1

2


3

2h




8

h


1

4




1

8

h


1

4




1

1

Scaling 

functions

Wavelets

Scaling 

functions

289



 

 

 

 

 

 

Wen-Yu He, Songye Zhu and Wei-Xin Ren 

 

Fig. 1 shows the refinement relation of the cubic Hermite scaling functions defined in Eq. (12). 

The scaling function 
2,j k has a compact support on 1 3[ , ]k k , whereas the scaling function 

21,j k  is 

compactly supported on 1 2[ , ]m m , only a half interval of that at scale j; h is the length of the interval

1 3[ , ]k k .  

The wavelets corresponding to the cubic Hermite scaling functions are not unique. Several 

cubic Hermite wavelet functions have been previously derived (Sudarshan and Amaratunga 2003, 

Averbuch et al. 2007, Wang et al. 2011). For example, Sudarshan and Amaratunga (2003) 

constructed cubic Hermite wavelets with four vanishing moments using the lifting scheme 

proposed by Sweldens (1996). Another simple form of cubic Hermite wavelets was constructed 

and used by Averbuch et al. (2007), Wang et al. (2011), He and Zhu (2013) 

2 2, 1,j m j m                                (13) 

These multiwavelets are adopted in this study because of their simplicity and relatively short 

support length. The wavelets are compactly supported on the interval between two adjacent 

k-nodes, e.g., 2 3[ , ]k k . The Hermite scaling functions and wavelets have two DOFs at each node, 

namely, displacement and rotation DOFs.  

In Wang et al. (2011), only static equations and the corresponding lifting scheme are presented 

for beam structures. As the modal properties of structures are often needed in system identification 

or damage detection, the dynamic equations of beam structures and the corresponding lifting 

scheme are derived in this study for the aforementioned multi-scale WFEM. According to the 

classic theory of Euler-Bernoulli beams, the generalized function of potential energy for free 

vibration is calculated as follows (Zienkiewicz and Taylor 1961) 

2
2 2

20 0

( ) 1
( ) ( )

2 2

l l

p

EI x d w
w dx w dx

dx
   

                    

(14) 

where l is the beam length,  is the mass per unit length,  is the vibration eigenvalue, w is the 

deflection, and EI is the flexural rigidity. The unknown field w  can be approximated by the 

scaling and wavelet functions of the cubic Hermite multiwavelets 

0, 0, , , 0 0 0 1 1 1 1k k m j m j j j j j

k j m

w a b           Φ a Ψ b Ψ b Ψ b Φ C         (15) 

where 0Φ  
represents the scaling functions at scale 0, and 

jΨ  
represents the wavelets at scale j, 

0 0 1 1[ , , ]T T T T

j j  Φ Φ Ψ Ψ Ψ is a row vector of scaling and wavelet functions, and 

0 1 1[ ;  ; ; ]j j C α b b b  is a column vector of the undetermined wavelet coefficients, which can be 

regarded as the general DOFs in the wavelet finite element space. Substituting Eq. (15) into Eq. 

(14) leads to 

1
'' ''

30 0

( ) 1
( ) ( ) ( )

2 2

l
T T T T

p j j j j j j

EI x
w d d

l
     C Φ Φ C C Φ ΦC             (16) 

where j
Φ represent the second derivatives of Φ with respect to the local coordinate  . To 

minimize the potential energy by letting 0p  , the free vibration formulations of beam elements 
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at scale j can be obtained as follows 

( ) 0j j j K M C
                           

(17) 

where   and jC  are the eigenvalues and eigenvectors corresponding to the DOFs in the 

wavelet finite element space, repectively; and jK
 
and jM

 
are the element stiffness and mass 

matrices at scale j, respectively: 

'' '' '' '' '' ''

0 0 0 0 0 1

'' '' '' ''
1

'' '' 0 0 0 1

3 30
     

  

( ) ( )    ( ) ( )       ( ) ( )

                      ( ) ( )      ( ) ( )
( ) ( )

             sym                                   

T T T

j

T T
T j

j j j

EI EI
d

l l




 

Φ Φ Φ Ψ Φ Ψ

Ψ Ψ Ψ Ψ
K Φ Φ

1

0

'' ''
1 1                                                 

 

               ( ) ( )T
j j

d

 

 
 
 
 
 
  



Ψ Ψ

   

 (18) 

0 0 0 0 0 1

1 1
0 0 0 1

0 0

1 1

 

                                            

          

                    
 

        sym                    

      

T T T

j

T T
T j

j j j

T
j j

l d l d   





 

 
 
 

   
 
  

 

Φ Φ Φ Ψ Φ Ψ

Ψ Ψ Ψ Ψ
M Φ Φ

Ψ Ψ

            
(19) 

Due to the orthogonality of the selected cubic Hermite scaling functions and wavelets, the 

non-diagonal sub-matrices of Eq. (18) become zeros and the stiffness matrix is thus scale 

decoupled (Wang et al. 2011) 

'' ''

0 0

'' ''
1

'' '' 0 0

3 30
     

                                                   

( ) ( )    

                      ( ) ( )    
( ) ( )

                                                     

    

T

T
T

j j j

EI EI
d

l l
 

Φ Φ

Ψ Ψ
K Φ Φ

1

0

'' ''
1 1

 

          ( ) ( )T
j j

d

 

 
 
 
 
 
  



Ψ Ψ
  

  (20) 

Although the mass matrix jM is not scale decoupled, the matrix jM can be completely 

retained in the lifting procedure from scale j to scale j+1, and only new rows and columns are 

added into the existing matrix. Unlike in conventional FEM, the mass and stiffness matrices in 

WFEM can be conveniently updated upon refinement without re-meshing the structures and 

re-constructing the entire matrices. In addition, the new results after refinement can be readily 

obtained via iteration with the initial values equal to the results at the last scale. This merit of the 

Hermite WFEM renders the computation in the refinement process more efficient, and makes the 

adaptive-scale modelling technique more effective in damage detection where the desirable 

modelling scales are a priori unknown and need to be dynamically and conveniently changed 

according to different damage scenarios.  

The eigenvectors jC  represent the mode shapes expressed in the wavelet finite element space. 

Although the mode shapes obtained in modal testing are always expressed in general DOFs, they 

can be conveniently converted into wavelet DOFs using the Hermite interpolation properties of the 

adopted multiwavelets. The physical meaning of wavelet DOFs (or coefficients) differs from that 

of traditional DOFs of nodes. However, adding high scales in the wavelet space is equivalent to 

adding new interior DOFs within the original element. This is analogous to the mesh refinement in 
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conventional FEM, but with much simpler operations. 

 

 

3. Adaptive-scale damage detection 
 

Damage detection methods based on modal strain energy have been extensively explored in the 

context of traditional FEM in SHM (Shi and Law 1998, Cornwell et al. 1999, Shi et al. 2000, 

Guan and Karbhari 2008, Yan et al. 2010, 2012). Therefore, modal strain energy is also adopted in 

the damage detection in the present study. As the strategy described in this work aims to identify 

damage with a size smaller than a beam element, it uses the modal strain energy in a sub-element. 

In addition, the elemental modal strain energy in traditional FEM can be calculated as the 

combination of mode shape vector and element stiffness matrix (e.g., Shi and Law 1998, Shi et al. 

2000, 2002), while the modal strain energy of a given sub-division in the WFEM cannot be 

calculated in this direct way. Thus, the sub-element partial differential equation governing free 

vibration of a beam is used in the formulation of damage quantification matrix via modal 

perturbation. 

 

3.1 Modal strain energy-based damage localization 
 

The modal strain energy of the jth sub-element [ ja , 1ja  ] associated with the ith mode of a 

Bernoulli-Euler beam before and after damage is given by (Cornwell et al. 1999) 

 
1

2
2

, 2

1
( )

2

j

j

a
i

i j
a

MSE EI x dx
x

 
 

                       (21) 

    
1

2
2

, 2

1
( )

2

j

j

d
a

d d i
i j

a
MSE EI x dx

x

 
 

                      (22) 

where superscript d denotes damage, EI and i  are the flexural rigidity of the sub-element amd 

the ith mode shape, respectively. Given that flexural rigidity after damage ( )dEI x is unpredictable, 

the original flexural rigidity ( )EI x can be used as an approximation in Eq. (22). According to Shi 

and Law (1998), a normalized change ratio of the modal strain energy is taken as the damage 

location indicator 

, , , ,

, ,

/ max( )

d d

i j i j i j i ji

j

i j i j

MSE MSE MSE MSE
NMSECR

MSE MSE

 


               
(23) 

If more than one vibration mode is considered, the damage location indicator in the jth 

sub-element is defined as the average of i

jNMSECR  for all the concerned modes. 

1

1 m
i

j j

i

NMSECR NMSECR
m 

 
                      

(24) 

 

3.2 Damage quantification 
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In damage detection studies, it is a common assumption that no mass change occurs after 

damage. The occurrence of damage in a beam can be represented by a change in the flexural 

rigidity  

( ) ( ) ( ) ( ) ( )d

j

j

EI x EI x EI x EI x EI x     ( 1 0j   )            (25) 

where j is the stiffness reduction factor or damage index in the jth sub-element ( 1j ja x a   ). It 

causes perturbations, which are typically small, in the ith eigenvalue d

i and the ith mode shape 

( )d

i x , compared with the undamaged beam (Shi et al. 2000, Fox 1968).  

d

i i i                                  (26) 

       d

i i i i j j

j i

q    


                            (27) 

Then the damage-induced change in ,i jMSE can be expressed as 

     
1 1

2 2 2
2
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 (28) 

The ,i jMSE can also be expressed as 
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 
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 
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  (29) 

According to the dynamics of the beam (Clough and Penzien 1993), the partial differential 

equation defining the eigensolutions is  

       

2 2

2 2
[ ( ) ] ( ) 0i

i iEI x m x
x x


 

 
 

                        
(30) 

Again, when the beam is subject to damage, the above-described equation with a small 

perturbation becomes 

2 2

2 2

( )
[ ( ) ( )] ( ) ( )( ) 0i i

i i i iEI x EI x m x
x x

 
   

    
         

          
(31) 

Substituting Eqs. (25) - (27) and (30) into Eq. (31), and neglecting small terms leads to 

22 2

2 2 2
[ ( ) ( ) ] ( ) ( ) 0

j i
j i j j i i

j i j i

EI x q EI x m x q m x
x x x

 
   

 

 
     

  
 

        
(32) 

Pre-multiplying j and computing the integral along the interval [0, L] on both sides of Eq. 

(32), and considering the orthogonal condition 

( ) 0j i
L

m x dx    ( i j )                    (33) 
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the coefficient jq can be computed as 

2 2

2 2

1
[ ( ) ]

j i
j

L
i j

q EI x dx
x x

 

 

 
 

                       (34) 

Supposing jq sub-elements out of a total of N are damaged, the following damage equation 

can be obtained from Eqs. (28) - (29) and (34) 
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where  
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where , 1,2,k t m . In the WFEM, the eigenvalues   and eigenvectors   can be obtained 

directly from Eq. (17).  

After the damage is located using the method described in Section 3.1, its severity can be 

qualified by solving the above-described damage matrix equation. The two-stage process, i.e., 

location and quantification, can effectively reduce the matrix size and minimize the computation 

cost. Notably, the flexural rigidity after damage [ ( ) ( )EI x EI x ] rather than [ ( )EI x ] is used in 

the damage matrix equation. Therefore, the iteration computation adopted by Shi et al. (2000) is 

not required, which helps enhance detection efficiency. 

 

3.3 Progressive damage detection 
 

This study adopts a progressive damage detection strategy, in which a low-resolution structure 

model is first used to acquire the potential location and severity of damage, and a multi-resolution 

model with refinement in the suspected regions is then used to obtain more accurate estimation of 

the damage. Although this adaptive-scale strategy can theoretically be realized in the context of 

traditional FEM with effort of re-meshing the models and re-constructing the matrices, the novel 

WFEM provides considerable convenience and flexibility to dynamically change the modeling 

scale according to the needs in each step. A flowchart of the adaptive-scale damage detection 

process is shown in Fig. 2, which consists of the following main steps: 
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Adptive-scale WFEM

Analytical modal analysis

Modal test

Experimental modal analysis

Damage location and qualification 

using modal strtain enegory

Refine WFEM in 

suspected damage 

regions locally

Add more sensors to 

suspected damage 

regions locally

Has  accurate 

detection been 

achieved?

Stop

No No

Yes

 

Fig. 2 Flowchart of adaptive-scale damage detection scheme 

 

 

Step 1: Arrange the sensors in the tested beam structure, measure the modal properties (i.e., mode 

shapes), and calculate the modal strain energy in each region; 

Step 2: Analyze the modal properties of the undamaged beam using the adaptive-scale WFEM, 

and then compute the modal strain energy in the corresponding regions; 

Step 3: Locate the suspected region by comparing the analytical and measured modal strain 

energies and then quantify the damage severity (However, damage quantification is not 

compulsory in this step. To reduce the computation cost, it can be carried out only in Step 

6 after the damage is properly located);  

Step 4: Refine the WFEM by adding high-scale wavelet terms in the suspected damage regions, 

and then add more sensors in the corresponding regions of the tested beam;  

Step 5: Repeat Steps 1-4 until accurate estimations of the location and severity of the damage are 

achieved. As each considered region is divided into two equal-length sub-regions when 

refine the WFEM, this iterative progress can be stopped if the newly divided two 

sub-regions are all located as damage areas;  

Step 6: Quantify the damage severity based on the modal strain energy. 

 

This progressive method is efficient in terms of computation and testing, in that (1) the 

structural model is refined only in the key locations; (2) the refinement process in the context of 

the WFEM is convenient due to its salient features; and (3) only a limited number of sensors need 

to be added in the critical regions.  
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4. Adaptive-scale damage detection 
 

Numerical examples of a simply supported beam and a continuous beam are used to 

demonstrate the effectiveness of the adaptive-scale damage detection method. The material and 

section properties of these two beams are as follows: elastic modulus 2 GPaE  , density
32500kg/m  , cross-sectional area 20.005mA , and moment of inertia 4 41.667 10 mI   . 

Table 1 summarizes the three damage cases investigated in this numerical study. The first two 

involves a simply supported beam, while the third involves a two-span continuous beam. Different 

locations and severity of the damage are assumed in the three cases, where the location refers to 

the interval of damage, and the severity refers to the loss of flexural rigidity in the damage interval. 

In numerical simulations, the modal properties obtained from very densely meshed traditional 

FEMs are taken as the measurement results. In particular, the measurement error due to sensor 

noise is considered in Section 4.2 in order to check the robustness of the damage detection method 

in all the cases. Considering that only the lower mode shapes can be measured in real field testing, 

only the first mode shape is used in the examples without noise, while the first four mode shapes 

are used in the examples with noise. The damage detection results for each case are elaborated in 

this section. 

 

 
Table 1 Damage scenarios considered in the numerical simulations 

Structure Damage Scenarios 
Damage  

Location Severity (%) 

A simply-supported beam Case 1 Single damage [5.25, 5.5] 20 

Case 2 Double damage [1.0,1.5] 

[6.25,6.5] 

20 

20 

A two-span continuous beam 

 

Case 3 Double damage [3.25,3.5] 

[12.5,12.75] 

20 

20 

 

 

4.1 Examples without noise 
 

Case 1 involves a simply supported beam structure subject to a single damage in the interval of 

[5.25, 5.5] with the severity of 20%. Fig. 3 shows the model refinement process, and Fig. 4 shows 

the damage identification results in each step. In the adaptive-scale damage detection process, a 

low-scale WFEM is used to simulate the original beam structure. The beam is modelled by eight 

cubic Hermite wavelet finite elements at scale 0, i.e., the shape functions of each element are 

approximated in wavelet space V0 (as shown in Fig. 3). The corresponding number of DOFs at 

scale 0 is 18. The modal strain energy associated with the first mode shape is computed for eight 

beam elements. By comparing the difference between the simulated and “measured” results, the 

location and severity of damage can be estimated using the method described in Sections 3.1 and 

3.2 (as shown in Fig. 4). Although the damage severity cannot be evaluated accurately due to the 

low-scale model, the suspected damage region, i.e., interval [5, 6], can be successfully identified at 
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scale V0. Subsequently, the WFEM is refined on the interval [5, 6] by lifting the wavelet scale, i.e., 

its shape function is represented by the wavelet approximation in space V1; meanwhile, one more 

measurement point at 5.5x   is added in the modal testing, and thus the resolution of the 

measured mode shape is also refined in this region. As shown in Fig. 4, the damage location can be 

identified in a smaller sub-element region in step V1. Repeating the refinement and identification 

process allows for the more accurate estimations of location and severity of the damage through 

the iteration. Finally, the results at scales V2 and V3 show almost the same damage location, 

implying that the estimation converges and no further refinement is necessary. The quantification 

results of the damage severity in each step are also shown in Fig. 4. It is not surprising to see the 

relatively inaccurate estimation of the damage severity in a low-scale model, due to the inaccurate 

assumption of the damage location. However, the accuracy of quantification is effectively 

improved with the progressive refinement of the model, and it finally converges toward the real 

value in steps V2 and V3. It should be pointed out that the damage quantification results in Fig. 4 

are for illustration. According to the procedure describe in Section 3.3, the damage severity needs 

to be quantified only when the damage location is best identified, i.e., in the last step in this case. 

Considering the fact that the damage location is always unpredictable, the traditional FEM, if 

used in this case, should be uniformly meshed without the adaptive-scale technique. 32 beam 

elements with 66 DOFs are required in this way to accurately capture the damage in Case 1, where 

the single damage region consists of 1/32 of the whole beam. With the proposed adaptive-scale 

strategy, however, only 24 DOFs in step V3 are used in the WFEM to achieve the same accuracy 

level of damage detection. Furthermore, we do not need to specify the required model scale in 

advance, and the damage is located and quantified progressively. 
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Fig. 3 Model refinement process in Case 1 (the shaded area represents the damage region) 
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Scale Location Quantification 
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β = -0.064 on [5, 6] 

V1 

 

β = -0.115 on [5, 5.5] 
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β = -0.217 on [5.25, 5.5] 

V3 
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β = -0.209 on [5.375, 5.5] 

Fig. 4 Adaptive-scale damage identification results in Case 1 
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Fig. 5 Model refinement process in Case 2 (the shaded area represents the damage region) 

 

 
Table 2 Adaptive-scale location and quantification of damage using WFEM 

Scale 
Case 1  Case 2  Case 3 

Location Severity (%)  Location Severity (%)  Location Severity (%) 

V0 
[5, 6] 6.4  [1, 2] 7.8  [3, 4] 5.4 

   [6, 7] 5.2  [12, 13] 5.4 

V1 
[5, 5.5] 11.5  [1, 1.5] 21.7  [3, 3.5] 9.0 

   [6, 6.5] 9.5  [12.5, 13] 9.0 

V2 

[5.25, 5.5] 21.7  [1, 1.25] 20.4  [3.25, 3.5] 21.2 

   [1.25, 1.5] 20.5  [12.5, 12.75] 21.2 

   [6.25, 6.5] 20.5  
  

V3 

[5.25, 5.375] 21.0  [1, 1.25] 20.4  [3.25, 3.375] 20.6 

[5.375, 5.5] 20.9  [1.25, 1.5] 20.4  [3.375, 3.5] 20.1 

   [6.25, 6.375] 20.3  [12.5, 12.625] 20.1 

   [6.375, 6.5] 20.2  [12.625, 12.75] 20.6 

 

 

Case 2 involves a beam subject to double damage with the severity of 20%. The damage 

locations are described in Table 1, and the corresponding refinement process and the damage 

identification results are presented in Fig. 5 and Table 2, respectively. Following the same process, 

the locations and severities of the damage can be identified with progressively improved accuracy. 

As the left-hand damage consists of 1/16 of the entire beam, a good estimation is obtained in step 
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V1 and verified in step V2, and thus no further refinement is conducted in this region in the last 

step. In comparison, the right-hand damage is 1/32 of the beam length, and the relevant region is 

gradually refined until the last step V3. These demonstrate that the model scale can be adaptively 

adjusted according to the actual state of damage, and such adaptability of the proposed strategy 

can help achieve accurate results with minimized number of DOFs and computation cost in 

applications.  

Fig. 6 shows the dimension and damage locations of a two-span continuous beam. The severity 

of two damages is also 20%, with one in the interval of [3.25, 3.5] and the other in [12.5, 12.75]. 

The corresponding damage identification results are summarized in Table 2. Again, both the 

locations and severities of the damages can be identified with progressively improved accuracy. 

 

4.2 Examples with noise 
 

In actual modal testing, the collected data are inevitably contaminated by measurement noise. 

This section examines the sensitivity of the proposed damage detection method to the error or 

uncertainty in the measured modal properties. The mode shape with measurement error is 

expressed by (Yan et al. 2010) 

(1 )rj rj rj                               (38) 

where rj  and rj  are the “measured” and accurate mode shape components of the rth mode at 

the jth DOF, respectively;  is the measurement error level considered in the “measured” mode 

shapes; and rj  is zero-mean Gaussian random variables. Five different levels of measurement 

error in mode shapes are considered: 1%, 2%, 3%, 4% and 5%. To reduce the influence of random 

measurement error on the experimental mode shapes in this case, the first four mode shapes are 

utilized in the damage detection process. 
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Fig. 6 Model refinement process in Case 3 
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The random measurement error is simulated using the Monte Carlo method, and each level of 

measurement error consists of 10000 Monte Carlo simulations. The statistical characteristics of the 

damage detection results are examined, e.g., the coefficient of variance (COV) of the estimated 

damage severity 

 
a

a
   COV                                (39) 

where a  and a  represent the mean and standard deviation of damage index ( NMSECR  and β ), 

respectively. 
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error level 
Location Quantification 

No error 
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β = -0.201 on [3.375, 3.5] 
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3% error 
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Fig. 7 Damage identification results under different noise levels at scale V3 in Case 3 
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Fig. 7 shows the damage detection results in the last step (i.e., at scale V3) of Case 3 with 

different levels of measurement error, where the normalized modal strain energy        and 

the estimated damage severity β are the ensemble average of 10000 samples. The average results 

can well reflect the locations and severity of the double damage, but the presence of measurement 

error affects the average NMSECR of undamaged areas, which increases with the measurement 

error level. In general, no significant changes can be observed among three measurement error 

levels, implying that the impact of random measurement error can be minimized by averaging 

results from a sufficient number of measurements. However, apparently changes in COV can be 

observed with the increasing measurement error level. Figs. 8 and 9 show the COVs of the 

estimated damage indices at the different scales in Case 1 and Case 3. A higher COV in the results 

implies greater uncertainty in a single sample or more samples required to obtain accurate 

estimation. In general, the uncertainty in the detection results increases with the measurement error 

level. In particular, the same error level results in a greater COV at a high wavelet scale, indicating 

that a high-scale WFEM is more sensitive to measurement noise. Similar observations on the 

estimation of the damage locations can be made. 

 

 

 

Fig. 8 COV of the estimated damage index of the simply-supported beam in Case 1 

 

 

Fig. 9 COV of the estimated damage index of the continuous beam in Case 3 
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5. Conclusions 
 

An adaptive-scale damage detection approach using the second-generation cubic Hermite 

wavelet finite beam element is proposed in this study. The dynamic equations and modal 

properties of beam structures are derived in the context of the WFEM. In particular, the adopted 

WFEM can seamlessly connect to or even be used to refine traditional beam finite elements. Using 

modal strain energy as a damage indicator, structural damage can be located and quantified in a 

progressive manner—a coarse WFEM is used to identify the likely damage region first; whereas 

gradually lifted WFEMs with local refinement are used to estimate the accurate location and 

severity of the damage. The superior multi-resolution and localization properties of the WFEM 

enable a convenient change of modeling scales in the damage detection process. 

Numerical examples of a simply supported beam and a two-span continuous beam are analyzed 

with different damage scenarios. The results demonstrate that the adaptive-scale strategy can 

progressively and accurately locate and quantify the damage in beam structures in different cases. 

In particular, the impact of measurement noise on the identification results is also assessed via 

Monte Carlo simulations. The detection accuracy is more sensitive to the noise at a relatively 

higher scale. In general, the proposed damage detection strategy is very efficient, in terms of the 

number of DOFs, number of sensors, and computation effort. 

Modal strain energy is adopted to showcase the WFEM-based adaptive-scale damage detection 

strategy. It should be noted that some limitations had been found in the practical implementation 

of modal strain energy-based damage detection methods, such as mass normalization of measured 

mode shapes, ill-positioning of sensitivity matrix and so on (Ren and De Roeck 2002). As the 

purpose of this paper is to develop a WFEM-based adaptive-scale damage detection strategy which 

is very efficient in terms of the number of DOFs in structural models and sensors in modal tests, 

how to overcome these limitations is out of the main scope of this paper even though they are 

certainly very important issues that require further investigations by SHM community. Besides, 

various damage detection techniques that have been developed in the context of traditional FEM 

can also be used in conjunction with the multi-scale WFEM. Apart from beam elements, other 

types of WFEMs were developed in the past, and they warrant further research for their 

applications in damage detection. 
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