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Abstract.  The objective in this research is to determine the feasibility of using changes on the dynamic 
properties of a reinforced concrete (RC) structure to identify different levels of seismic induced damage. 
Damping ratio and natural frequency changes in a RC bridge column are analyzed using different signal 
processing techniques like Hilbert Transforms, Random Decrement and Wavelet Transforms. The data used 
in the analysis was recorded during a full-scale RC bridge column shake table test. The structure was 
subjected to ten earthquake excitations that induced different levels of inelastic demand on the column. In 
addition, low-intensity white noises were applied to the column in-between earthquakes. The results 
obtained show that the use of the damping ratio and natural frequency of vibration as damage indicators is 
arguable. 
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1. Introduction 
 

During a seismic event, a civil structure can be subjected to high inelastic demand and its 

dynamic properties can change depending on the resulting damage. If damage occurs, a decrease 

in its natural frequency and an increase in its damping ratio are expected. The main objective of 

this research is to assess the feasibility of employing the two aforementioned dynamic properties 

to identify different levels of seismic induced damage. 

Various signal-based techniques for Structural Health Monitoring (SHM) purposes are based on 

the vibration characteristics of a structure. They are grounded on the premise that changes in the 

physical properties of a structure (i.e., mass, energy dissipation mechanisms, and stiffness) are 

directly related to changes in the modal properties, such as the natural frequencies, mode shapes, 

and modal damping (Curadelli et al. 2008). Therefore, the fundamental basis of these methods is 

that a local or global, stiffness, damping, or mass shift will induce changes in the modal 

parameters, and these changes can be used for damage identification. The aforementioned 
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parameters can be measured by performing time domain analyses, frequency domain analyses, or 

simultaneous time-frequency domain analyses. 

The use of system identification for damage detection has been well studied in previous works 

in the field of SHM. Methodologies employing natural frequencies and damping ratios as damage 

indicators are summarized in Salawu (1997), Kareem and Gurley (1996), respectively. Banks et al. 

(1996), for instance, identified damage using frequency shifts using analytical and experimental 

results of small aluminum beam-like structures. Damping changes in aluminum beams were 

successfully detected by Kawiecki (2001) by employing the frequency transfer function, the 

proposed method is expected to work properly for light-weight and micro structures. Kullaa (2003) 

used changes in modal parameters to detect damage of the Z24 Bridge in Switzerland. He used 

stochastic subspace identification and ambient vibration test data in combination with statistical 

methods (control charts), which suggests a complex technique with the limitation that it was tested 

only to identify two damage stages. Zembaty et al. (2006) used experimental results obtained from 

two full-scale shaking table tests of reinforced concrete (RC) structures subjected to biaxial 

seismic excitations with increasing intensity levels. They performed dynamic identification 

analysis at different stages of damage; they found a decrease in the natural frequencies and an 

increase in the damping ratio. Todorovska and Trifunac (2007) analyzed data recorded from an 

instrumented six-story building severely damage by the Imperial Valley EQ in 1979. They found 

changes (drops) in the instant frequencies of the building which were calculated by performing a 

time-frequency analysis of the seismic response of the structure, i.e. the changes they found were 

determined during the EQ excitation. Curadelli et al. (2008) performed laboratory tests and 

numerical simulations for two RC structures and one 3D steel frame. They found that damage 

causes important changes in damping, and then parameters that characterize structural damping 

can be used as damage-sensitive properties. For the modal identification they used, among others, 

the Wavelet Transform (WT) and Random Decrement Technique (RDT). Michel and Gueguen 

(2010) performed time-frequency analysis to detect frequency variations of two RC buildings 

subjected to strong and weak seismic excitations. They found frequency shifts during the strong 

earthquake’s application; however, they also found that frequency variations under weak 

earthquakes are probably due to variations of the input motion. Loh et al. (2011) analyzed shaking 

table test data from six RC frames using a signal processing-based approach, among others, 

performing a system identification to support damage detection methodologies. While they were 

able to correlate the change in frequency with the inelastic demand in the structure, it should be 

noticed that the level of damage induced during the test remained on the serviceability level (e.g., 

no core crushing, no rebar buckling or rupture).One of the most recent studies was presented by 

Ç elebi et al. (2012). They used records obtained from a 9-story building that was damaged during 

the March 11, 2011 Great East Japan Earthquake. They also used records obtained from the 

building two days before, during, and after the aforementioned mainshock to study changes in its 

dynamic properties. They found significant frequency shifts during the mainshock which correlate 

well with the observed damage in a column and some walls of the building. They also detect 

frequency shifts after repairs that were made two months after the mainshock. 

In this work, changes in damping ratio and first natural frequency of a reinforced concrete (RC) 

structure were analyzed. There are some commonly used methods to identify such dynamic 

properties using free decay responses. The Fourier spectrum is frequently used to compute natural 

frequencies and it is highly accurate. In the case of damping ratios, the logarithmic decrement 

method is usually employed. Nevertheless, estimation of damping in structural systems has an 

intrinsic high variability due to the existence of many energy dissipation mechanisms (Kareem and 
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Gurley 1996). Other Fourier Transform-based approaches available to compute damping ratios 

(e.g., the half-power method) present difficulties in terms of frequency resolution, resulting in 

leakage problems increasing the uncertainty of results. In order to overcome the mentioned issues 

and the problems that arise with the presence of noise in experimental signals, time-frequency 

analysis based methodologies using free vibration responses have been presented by several 

authors (e.g., Ruzzene et al. 1997, Staszewski 1997, Lardies and Gouttebroze 2002, 

Kijewski-Correa 2003, Le and Argoul 2004, Curadelli et al. 2008, Chen et al. 2009, Ü lker-Kaustell 

and Karoumi 2011, Le and Paultre 2012, Shi et al. 2012). In this article, system identification at 

different levels of induced damage will be performed using the Wavelet Transform (WT) and the 

Hilbert Transform (HT). 

The data used in the analysis was collected during a full-scale RC bridge column shake table 

test recently performed at the Network for Earthquake Engineering Simulation (NEES) Large 

High Performance Outdoor Shake Table (LHPOST) at the University of California, San Diego 

(UCSD). Ten ground motions, starting with low-intensity motions, were applied to the column 

leaving it on near-collapse conditions. One of the safety columns was struck by the superstructure 

during the last Earthquake (EQ) load, and so this motion is not considered. In addition to 

earthquake loads, low-intensity White Noise (WN) excitations were applied to the column between 

earthquakes to identify dynamic properties. Natural frequencies and damping ratios were estimated 

before and after the ground motions are applied using the structural response to the low amplitude 

WNs and the portion of the response after each EQ load when the structure is in free vibration. For 

a better understanding and interpretation of the results, these parameters are then related with the 

maximum displacement ductility, the Damage Index (DI) and experimental observations during 

each earthquake. 

The main contribution of this work can be summarized in three key points. First, while many of 

the studies found in the literature used small/reduced-scale structures, in this work experimental 

data from a real-scale reinforced concrete structure is used. Second, previous studies using actual 

structures or large scale tests commonly identify only few stages or levels of damage, the data used 

in this work provides the unique opportunity of analyzing the structure dynamic properties at 

several representative performance levels, from the pristine structure up to near collapse conditions. 

Finally, the results obtained set limitations not observed in early works for the use of frequency 

shifts for estimation of damage levels. 

This document is organized as follows: the theoretical basis of the signal processing based 

system identification (i.e., the complex analytical signal, Random Decrement Technique (RDT), 

Hilbert Transform (HT), and Continuous Wavelet Transform (CWT)) is presented in section 2. 

Section 3 presents a description of the structure. Section 4 presents the fundamentals of the 

Damage Index (DI). Section 5 shows the results of applying the two approaches studied, and 

presents an analysis of the results considering the ductility and the calculated DI. Finally, the 

conclusions are presented in Section 6. 

 

 

2. Signal processing based system identification 
 

Two different approaches were employed to identify the structure natural frequency and 

damping ratio at the different test stages. In the first one, free decay response is obtained by 

applying the Random Decrement Technique (RDT) to the column acceleration response to white 

noise (WN) excitations to generate a Random Decrement Signature (RDS). The Hilbert Transform 
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(HT) is then applied to find the analytical signal. In the second approach, free decay response is 

obtained from the end portion of the column acceleration response to earthquake (EQ) excitations. 

In this case, the analytical signal is obtained by performing a Continuous Wavelet Transform 

(CWT) analysis. In order to be consistent, in both approaches the first natural frequency and 

damping ratio are computed from the analytical signal by applying linear fits as explained later. 

 

2.1 The complex analytical signal 
 

The analytical signal z(t) (Gabor 1946) is a two dimensional signal composed of a real part and 

an imaginary part and it can be described by an exponential function given as 

𝑧(𝑡) = 𝑥(𝑡) + 𝑖 𝑦(𝑡) =  𝑎(𝑡)𝑒𝑖 𝜃(𝑡)                                                 (1) 

where 

𝑎(𝑡) =  √𝑥2 +  𝑦2and𝜃(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥
)            (2) 

where 𝑎(𝑡)and 𝜃(𝑡)are the instant amplitude (IA) and instant phase, respectively. The concept of 

instantaneous frequency as the time-varying derivative of the phase was proposed by Ville (1948) 

as 

𝐼𝐹(𝑡) =  
1

2 𝜋

𝑑

𝑑𝑡
(𝜃(𝑡))                                                             (3) 

Thus, the identification of the time-varying frequency of the system is provided by the phase of 

the complex analytic function. In this case, because the analyzed signal correspond to a free decay, 

the damped natural frequency(𝜔𝑑) is identified, and the amplitude term takes the form of an 

exponential which decays based on the natural frequency of the system(𝜔𝑛)and damping ratio(𝜉). 

Eq. (1) then becomes 

𝑧(𝑡) = (𝐴0𝑒− 𝜉 𝜔𝑛 𝑡)𝑒𝑖 (𝜔𝑑 𝑡+ 𝜙)                                                       (4) 

where 𝐴0 is an initial amplitude value, and 𝜙 is a phase shift. It should be noticed that if the IF is 

computed directly from Eq. (3), i.e., using numerical differentiation of instant phase values, the 

results obtained will show discontinuities at the same instants in which the instant phase presents 

discontinuities (Ramirez and Montejo 2011). This problem can be solved by using several 

techniques. One of them was proposed by Feldman (2011) and it consists of computing the phases 

of the differences instead of computing the differences of the phases 

𝐼𝐹(𝑡) =  
1

2 𝜋
 𝐴𝑟𝑔[𝑧𝑛 𝑐𝑜𝑛𝑗(𝑧𝑛+1)]                                                 (5) 

To obtain the complex analytical signal the HT or CWT can be employed as will be explained 

in sections 2.3 and 2.4. Having the analytical signal defined, the IA and IF are calculated using Eqs. 

(2) and (5), enabling the identification of the dynamic properties. During the signals analyzed in 

this study the natural frequency of the structure is not expected to change and therefore it can be 

estimated from the mean value of the IF or from the dominant peak in the amplitude Fourier 

spectrum. An average damping ratio is estimated by applying a linear fit to the natural logarithm of 

the instant amplitude as 

𝐿𝑛(𝐼𝐴) =  − 𝑚 ∙ 𝑡 + 𝐿𝑛(𝐴0)                     (6) 
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𝑚 =  𝜉 𝜔𝑛                   (7) 

where the resulting line slope (m) in Eq. (7) is computed from the linear fit. The structure average 

damping ratio and natural frequency can be calculated using Eqs. (8) and (9), respectively. 

𝜉 =  √
(𝑚)2

𝜔𝑑
2+ (𝑚)2                               (8) 

𝜔𝑛 =  
𝜔𝑑

√1−𝜉2
                                                                         (9) 

 

2.2 Random decrement technique 
 

The Random Decrement Technique (RDT) is used to obtain the characteristic free decay of the 

structure from its response to WN, so that an average damping ratio can be estimated. RDT is a 

fast-converging method to extract information from random data. This method can be applied to 

any system which is subjected to an unknown random excitation in which only the system 

response is measured (e.g., the acceleration response). The fundamental concept of the RDT is 

based on the fact that the response of a damped structure is composed of two parts: a deterministic 

part and a random part (Al Sanad et al. 1983). Segments of the random vibration response of a 

system are ensemble averaged to form a signature that is representative of the free vibration modal 

response of the system. By averaging enough segments of the same random response, the random 

part will be averaged out, leaving the deterministic part (i.e., impulse and/or step function). The 

deterministic part that remains is the free vibration response from which the dynamic properties 

(i.e., the natural frequency and damping ratio) can be measured. 

In order to explain the principles of the RDT, a linear single degree of freedom (SDOF) system 

will be analyzed. The displacement response 𝑥𝑖(𝑡) of a SDOF system that is subjected to an 

arbitrary load is governed by the following equation of motion 

𝑚 �̈�(𝑡) + 𝑐 �̇�(𝑡) + 𝑘 𝑥(𝑡) = 𝑓(𝑡)               (10) 

where 𝑥(𝑡) , �̇�(𝑡) , and �̈�(𝑡)  are the displacement, velocity, and acceleration responses, 

respectively. The parameters m, c, and k correspond to the mass, damping coefficient, and stiffness, 

respectively. Finally, f(t) is an arbitrary excitation force which, in this particular case, must be of 

random nature. For linear systems the response 𝑥𝑖(𝑡) can be decomposed into three parts: 

response to initial displacement 𝑥𝑑(𝑡), response to initial velocity 𝑥𝑣(𝑡), and response to the 

random excitation force 𝑥𝑓(𝑡). The response can then be written as 

𝑥𝑖(𝑡) =  𝑥𝑑(𝑡) +  𝑥𝑣(𝑡) +  𝑥𝑓(𝑡)             (11) 

The RDT consists of dividing a time history of a system response (i.e., displacement, velocity, 

or acceleration) into N equal length segments of durationτmax possibly overlapping as illustrated in 

Fig. 1. 

The starting time ti of each segment is selected such that each one begins at a selected 

amplitude xs. This means that xi (ti) = xs = constant and that the slope �̇�𝑖(𝑡𝑖) alternates between 

positive and negative. Segments are chosen such that half of them have initial positive slopes and 

half of them have initial negative slopes. These segments are then ensemble averaged to obtain a 

signature of length τmax whose initial amplitude is xs and which can be written as:
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(a) Selection of the initial points of equal length 

segments 

(b) Extraction of the RDS (continuous dark line) 

using only segments 1 and 2 (doted light 

lines) 

Fig. 1 Random decrement technique 

 

 

 

𝛿(𝜏) =
1

𝑁
∑ 𝑥𝑖(𝑡𝑖 + 𝜏)𝑁

𝑖=1                                                          (12) 

 

where N is the number of segments, and δ(τ) is a function called “the Random Decrement 

Signature” (RDS), which is defined in the time interval 0 ≤ τ ≤ τmax. Because the initial slopes 

alternate between positive and negative values, the average responses due to initial velocity cancel 

out. In addition, if the parts caused by the excitation force are averaged, they also disappear 

because the excitation is random with zero mean, Gaussian distribution by definition. The 

responses caused by initial displacement are left and their average is the random decrement 

signature which, for a linear SDOF system, represents the free vibration modal response of the 

system caused by an initial displacement, which corresponds to the initial value xs. The required 

number of segments N to be averaged depends on the signal shape, but usually 400 to 500 

segments are enough to obtain good results (Al Sanad et al. 1983). 

One of the main advantages of this method is that it requires no knowledge of the excitation 

force f(t), because of its random nature. As an example, Fig. 2 shows a low-intensity WN 

excitation and its corresponding simulated acceleration response of a damped SDOF system with 

natural frequency 2 Hz and damping ratio 2.5%. The RDT is applied to the acceleration response 

and the extracted RDS is illustrated in Fig. 3 as a continuous dark line. 

An alternative way to obtain the Random Decrement Signature (RDS) is by estimating the Auto 

Random Decrement (ARD) functions, namely, the auto-correlation function from the random 

structural response (i.e., a stationary, zero mean, Gaussian distributed process). The Auto Random 

Decrement Signature (ARDS) δxx(τ) of the structural response x(t) is proportional to the 

auto-correlation function Rxx(τ) (Brincker et al. 1991, Lin and Chiang 2012), and it can be 

computed as 

𝛿𝑥𝑥(𝜏) =
𝑅𝑥𝑥(𝜏)

𝑅𝑥𝑥(0)
∙ 𝑥𝑠                                                             (13) 
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(a) 

 
(b) 

Fig. 2 (a) Generated low-intensity white noise excitation and(b) simulated acceleration response of a 

damped SDOF system 

 

 

Fig. 3 Extracted RDS (continuous dark line) from the segments (doted light lines) after applying the RDT 

to the simulated acceleration response of a damped SDOF system 

 

 

where Rxx(τ) is the auto-correlation function of the signal x(t) defined in the time interval 0 ≤ τ ≤ 

τmax, xs is the initial amplitude, and Rxx(0)=Rxx(τ=0). Since the correlation function has the same 

mathematical form as that of the free vibration response (Lin and Chiang 2012) the ARDS can also 

be taken as the free vibration response for system identification purposes. 

As an example, the RD function is computed for the simulated acceleration response ẍ(t) of the 

damped SDOF system illustrated in Fig. 2(b) and the result is presented in Fig. 4(a); for 

visualization purposes, only part of the response is shown. Fig. 4(b) shows the extracted ARDS 

using the same time interval used for the extracted RDS in Fig. 3. Notice that this free decay is 

proportional to the RD function but it is scaled according to the initial amplitude value xs, which in 

this particular case is 95% of the signal’s maximum amplitude. It is seen that the random 

decrement signature obtained using the two different approaches are quite similar (Figs. 3 and 

4(b)); the amplitude differences are due to a tolerance criterion and the number of segments used 

to compute the RDS. 
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(a) Auto-correlation function of ẍ(t) 
(b) Extracted ARDS defined in the time interval 0 

≤ τ ≤ τmax 

Fig. 4 Auto-correlation functions from the simulated acceleration response ẍ(t) (Fig. 2(b)) 

 

 

For multiple degree of freedom systems the response needs to be pre-processed to isolate all the 

modes in the response, which can be done by using methodologies like the Empirical Mode 

Decomposition (Huang et al. 1998), the Hilbert Vibration Decomposition (Feldman 2006), the 

Synchrosqueezed Transform (Daubuchies et al. 2011, Montejo and Vidot 2012) or band-pass 

filtering. The dynamic properties can then be estimated for each mode. 

 

2.3 Hilbert transform 
 

The Hilbert Transform (HT) of a function x(t) is defined by an integral transform (Hahn 1996) 

𝐻[𝑥(𝑡)] =  
1

𝜋
∫

𝑥(𝜏)

𝑡−𝜏
𝑑𝜏

+∞

−∞
                         (14) 

The HT is the convolution integral of the function x(t) and the inverse of time, the result is the 

original signal with phase shift of π/2. The HT can then be used to generate the analytical signal 

(Eq. (1)) of the function x(t) 

𝑧(𝑡) = 𝑥(𝑡) + 𝑖 𝑦(𝑡) = 𝑥(𝑡) + 𝑖 𝐻[𝑥(𝑡)] = 𝑎(𝑡)𝑒𝑖 𝜃(𝑡)        (15) 

Given the HT it is possible to compute the IF and IA of a mono-component signal, allowing the 

identification of the natural frequency and damping ratio. Nevertheless, if the HT is applied to a 

multi-component signal it will still identify only one IF, which represents a weighted average of 

the frequencies occurring in the signal. Hence, for multi-component signals it is necessary to 

decompose them first into their mono-component constituents, using any of the methodologies 

mentioned in section 2.2. 

Fig. 5 shows the calculation of the dynamic properties via HT from the free decay response of 

the damped SDOF system presented in Figs. 3 and 4(b). The natural frequency and the damping 

ratio identified were 2.01 Hz and 2.52%, respectively, by using the RDT (continuous dark line) 

and 232 segments with 4 seconds of duration; in this case, the error in the estimation of the 

parameters is less than 1%. By using the ARD function (dashed dark line), the natural frequency 

and damping ratio computed were 2.00 Hz and 2.82%, respectively; the error in the estimation of 

the damping ratio is 12.8%. Notice the edge effects at the beginning and end, an expected feature 

for any transform. 
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(a) Instant frequency 

 

(b) Natural logarithm of the instant amplitude 

Fig. 5 Calculation of dynamic properties via HT 

 

 

2.4 Continuous wavelet transform 
 

The Continuous Wavelet Transform (CWT) allows performing a time-frequency analysis of a 

signal that can provide information about how the frequency content of the signal evolves with 

time (e.g., Montejo 2011, Montejo et al. 2012). The CWT of a function 𝑥(𝑡) of a real variable is 

defined as a function of two variables W(a,b), which is the convolution of the signal and a scaled, 

shifted versions of the mother wavelet 𝜓(𝑡) 

𝑊(𝑎, 𝑏) =  
1

√𝑎
∫ 𝑥(𝑡) 𝜓 (

𝑡−𝑏

𝑎
)  𝑑𝑡

+∞

−∞
                     (16) 

The wavelet coefficients 𝑊(𝑎, 𝑏) are a measure of the similitude between the shifted mother 

wavelet and the signal at the time position b and scale 𝑎 which can be related with frequency 

(Kijewski and Kareem 2003). A modified version of the Complex Morlet Wavelet (Grossman and 

Morlet 1990, Yan and Miyamoto 2006) is used in this research 

𝜓(𝑡) =  
1

√𝜋 𝑓𝑏
𝑒𝑖 2 𝜋 𝑓𝑐 𝑡𝑒

−𝑡2

𝑓𝑏
⁄

                      (17) 

where 𝑓𝑏 is a bandwidth parameter that controls the shape of the mother wavelet and  𝑓𝑐  is the 

central frequency of the mother wavelet. In this case, the time and frequency resolutions for this 

wavelet at a frequency 𝑓𝑖, using the Heisenberg uncertainty principle, are given by 

Δ𝑡𝑖 =  
𝑓𝑐

𝑓𝑖

√𝑓𝑏

2
andΔ𝑓𝑖 =  

𝑓𝑖

𝑓𝑐

1

2 𝜋 √𝑓𝑏
              (18) 

Just as for the HT, it is necessary to find the analytical signal of the response function 𝑥(𝑡) in 

order to compute the dynamic properties of the system. In this case, because a complex wavelet is 

used, the wavelet coefficients obtained after a CWT analysis are also complex and the analytic 

signal can be extracted from them. 

Usually, the wavelet coefficients 𝑊(𝑎, 𝑏) are illustrated in a two-dimensional graph as shown 
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in Fig. 6(b). This graph is called a wavelet map, and it is a representation of the response function 

x(t) in the time-frequency domain. The darker colors indicate higher values of the wavelet 

coefficients. The estimation of the instant frequency is done by identifying a ridge in the 

time-frequency plane which can be obtained by locating the local maxima at each time instant 

(Montejo 2011). The ridge can be obtained according to 

𝑊(𝑎 𝑟 , 𝑏) = max[𝑊(𝑎, 𝑏)]            (19) 

where 𝑎 𝑟 are the scales (that can be related to frequencies) corresponding to the ridge and 

𝑊(𝑎 𝑟 , 𝑏) is a complex function that represents the ridge that evolves with time. The real and 

imaginary components along the ridge are directly proportional to the response function content at 

that frequency and its corresponding Hilbert transform(HT) (Kijewski and Kareem 2003). The 

analytical signal in Eq. (1) can be formed as 

𝑧(𝑡) =  𝑊(𝑎 𝑟 , 𝑏)  = 𝑥(𝑡) + 𝑖 𝑦(𝑡) = 𝑎(𝑡)𝑒𝑖 𝜃(𝑡)        (20) 

Once the analytical signal is constructed, IF and IA can be computed to estimate the dynamic 

properties, as explained in section 2.1.  

 

 

 
(a) Free vibration modal response 

 
(b) Wavelet map and extracted ridges 

 
(c) Instant frequency 

 
(d) Natural logarithm of the instant amplitude 

Fig. 6 Calculation of dynamic properties via CWT 
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Damping and frequency changes induced by increasing levels of inelastic seismic demand 

Fig. 6 shows the calculation of the dynamic properties via CWT of the simulated free decay 

response of a damped SDOF system with a damping ratio of 2.50% and a natural frequency of 2 

Hz. The calculated natural frequency and damping ratio identified were 1.94 Hz and 2.49%, 

respectively. In this case, the error in the estimation of the parameters is less than 3%. Edge effects 

appear at the beginning and the end as in the HT approach. 

 
 
3. Test description 

 

The RC bridge column was tested under uniaxial seismic excitation on the NEES-UCSD Large 

High Performance Outdoor Shake Table. The column had a height (cantilever length) of 7.32 m 

(24ft) with a circular cross section of 1.22 m (4ft) diameter, and it also had a reinforced concrete 

block at the top with a total weight of 2245 kN (250ton). A total of 18 No. 11 bars were provided 

as the longitudinal reinforcement and butt-welded double No. 5 hoops spaced 152 mm (6in) center 

to center were used as the transverse reinforcement. Further details of the test, material properties, 

and specimen geometry were presented by Schoettler et al. (2012). Fig. 7 shows schematic 

pictures of the test setup. 

 

 

4. Damage index 
 

A RC structure can be weakened or damaged when it is subjected to a combination of stress 

reversals and high stress excursions. Park and Ang (1985) proposed a damage model which 

includes not only the maximum response, but also the effect of repeated cyclic loadings. The 

seismic structural damage can be estimated as a Damage Index (DI) which is expressed as a linear 

combination of the damage caused by excessive deformation and that contributed by the repeated 

cyclic loading. Mathematically the DI can be calculated as follows 

𝐷𝐼 =  
𝛿𝑀

𝛿𝑈
+

𝛽

𝑄𝑌∙𝛿𝑈
∫ 𝑑𝐸                                                       (21) 

 

   
(a) Front view (b) 3D view from bottom (c) 3D view from top 

Fig. 7 Full-scale RC bridge column test setup (photos taken from: https://nees.org/warehouse/   

project/987/) 

 

455



 

 

 

 

 

 

Diego A. Aguirre and Luis A. Montejo 

where δM is the maximum deformation during an earthquake (i.e., a dynamic load), δU is the 

ultimate deformation, β is a non-negative parameter that represents the effect of cyclic loading on 

structural damage, dE is the incremental absorbed hysteretic energy, and QY is the calculated yield 

strength but, if QU (i.e., the maximum strength) is smaller than QY, then QY is replaced by QU. The 

result of the integral in Eq. (21) is the total absorbed hysteretic energy (E) which can be 

determined by using the load-deformation time history. Fig. 8 illustrates the load, deformation, and 

load-deformation time history for the first ground motion (EQ1) applied during the full-scale test. 

The sum of the area of all hysteresis cycles from Fig. 8(c), allows calculating the total absorbed 

energy (E). Notice that the area of the hysteresis cycles is small which means that E will be also 

small, therefore, DI will be low for the EQ1. The dashed lines in Figs. 8(a) and 8(b) represent the 

yield strength and yield displacement, respectively. It can be observed, neither the lateral force nor 

the displacement exceed the yield limits aforementioned. 

Structural damage is then a function of the responses δM and dE that are dependent of the 

load-deformation time history, while the parameters β, δU, and QY are independent of it. The 

parameters δU, QY, and QU can be obtained by performing a pushover analysis. Fig. 9 shows the 

simulated force-deformation curve for the column from which the ultimate deformation, yield 

strength, and maximum strength were δU = 106.1 cm, QY = 611.7 kN, and QU = 482.8 kN. Notice 

that QU< QY, hence, according to the DI’s definition, the yield strength must be replaced as QY = 

482.8 kN. 

 

 

 

 

 

(a) Lateral force time history 

 

(b) Displacement time history (c) Force-displacement time history 

Fig. 8 Structure response during EQ1 
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Damping and frequency changes induced by increasing levels of inelastic seismic demand 

 

Fig. 9 Simulated monotonic force-deformation curve 

 

 

The value of β can be obtained through a trial and error process by identifying different levels 

of performance. For example, if damage is induced such that the structure cannot be repaired then 

DI ≥ 1.0. In this study, the load-deformation time history is know from the pristine structure up to 

near-collapse conditions, in other words, from DI = 0.0 to DI ≥ 1.0. Moreover, the point of failure 

of the column was well-identified after the application of EQ7 due to the rebar buckling and the 

initial concrete core crushing. 

Displacement and force time histories as well as results from a monotonic pushover analysis 

were obtained from a detailed distributed plasticity fiber based finite element model that closely 

resembled the behavior of the column. The structural model was generated using the OpenSees 

software framework system (McKenna et al. 2000). The model was subjected to monotonic 

pushover and dynamic analyses. In a fiber based approach the section of the column is represented 

by unidirectional fibers and constitutive-material relationships (i.e., material stress-strain behavior) 

are specified to each type of fiber. Further details of the nonlinear finite element model were 

presented by Aguirre et al. (2013). 

In this work the DI is computed to analyze structural damage in a quantitative fashion, correlate 

it with the damage observed during the experimental tests, and for a better understanding and 

interpretation of the results obtained after performing system identification. In section 5.3, the DI 

is computed and then it is related with the frequency and damping changes of the structure. 

 

 
5. Identification on a RC bridge column 

 

In order to perform system identification analyses it is important to have a preliminary idea of 

the vibration characteristics of the analyzed signals. For this purpose, the normalized Fourier 

spectrum is computed using: (1) the column acceleration response to the WN excitations and (2) 

the free decay portion of the column acceleration response to the EQ excitations. Figs. 10(a) and 

10(b) show the Fourier spectra for the column response before and after EQ1 andEQ9 are applied. 

A summary of the identified frequencies at each load stage is presented in Fig. 10(c). Notice that 

the shift in the natural frequency due to the induced damage is evident, from 1.2 Hz at the 

beginning of the tests to 0.43 Hz after the last EQ load application.  
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5.1 Identification using the response to white noises (RDT+HT) 
 

As mentioned before, in this approach the identification is made using the response to 

low-intensity WN excitations. For the sake of brevity, only graphic results for WN1 and WN9 

using the traditional RDT are displayed in Figs. 11-14. For all cases the segment duration varies in 

order to generate the RDS with the same number of cycles; a total of four cycles were used. 

In the case of WN1, the natural frequency and damping ratio identified were 1.07 Hz and 

3.26%, respectively, and a total of 206 segments with 3.66 seconds of duration were used to obtain 

the RDS. For the WN9, the natural frequency was 0.44 Hz, the damping ratio was 3.10%, and 186 

segments with 9.09 seconds of duration were used. Notice that in some way the results in 

frequency changes are as expected, but the damping ratios seem to remain constant. Results for all 

the WNs analyzed and for the autocorrelation approach are presented in section 5.4 

 

 

 

(a) Using the WN excitations before EQ1 and EQ9 

 
(b) Using the free decay portion after EQ1 and EQ9 (c) Summary of the identified first column 

frequencies at each load stage 

Fig. 10 Normalized Fourier spectra of the column acceleration response and summary of frequencies 

 

 

  
(a) Column acceleration response (b) Extracted RDS 

Fig. 11 Response and extracted RDS from the response to WN1 
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Damping and frequency changes induced by increasing levels of inelastic seismic demand 

 

 
(a) Instant frequency 

 
(b) Natural logarithm of the instant amplitude 

Fig. 12 Results of approach 1 for WN1 calculated from the free decay response in Fig. 11(b) 

 

 

  
(a) Column acceleration response (b) Extracted RDS 

Fig. 13 Response and extracted RDS from the response to WN9 

 

 

 
(a) Instant frequency 

 
(b) Natural logarithm of the instant amplitude 

Fig. 14 Results of approach 1 for WN9 calculated from the free decay response in Fig. 13(b) 
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(a) Time resolution (b) Frequency resolution 

Fig. 15 Resolution for the modified Morlet Wavelet for different values of fb and using fc=1 

 
 
5.2 Identification using free vibrations (CWT) 
 
Before applying the CWT to the free decay portion of the column acceleration response to EQ 

load, it is necessary to define the frequency ranges for the analysis and define the wavelet 

parameters (i.e., the central frequency fc, and bandwidth parameter fb). From the Fourier analysis 

(Fig. 10(b)) it is known that the frequencies to identify vary from 1.19 Hz to 0.43 Hz after 

applying EQ9. Hence, the analyses were performed from 0.10 Hz to 1.90 Hz. Fig. 15 shows time 

and frequency resolutions as functions of frequency to be identified using the Heisenberg 

uncertainty principle. The selected parameters were fb=fc=1 for all cases. 

Fig. 16 shows the results for the free decay portion after EQ1, and Fig. 17 presents the results 

for the free decay portion from EQ9. After EQ1 the natural frequency and damping ratio identified 

were 1.18 Hz and 2.83%, respectively. The natural frequency was 0.43 Hz and the damping ratio 

was 4.94% after EQ9 was applied. Results for all the EQs analyzed are presented in section 5.4. 

 

5.3 Damage index calculation 
 
The ultimate deformation (δU), yield strength (QY), and maximum strength (QU) are some of the 

parameters required to compute the DI; they were obtained previously in section 4. The maximum 

deformation (δM) and the parameter E, which is the integral in Eq. (21), need to be computed for 

each earthquake. Fig. 18 presents the maximum response and maximum displacement ductility for 

each ground motion.  

In the case of the total absorbed hysteretic energy (E), notice that it must be accumulated along 

all ground motions, for instance, for the EQ2 the total energy (E) is the sum of the hysteresis 

cycles of EQ2 and the energy previously calculated for EQ1, and so forth. Fig. 19 presents the 

absorbed hysteretic energy computed from all the hysteresis cycles of each EQ load. Given that for 

the experimental data only acceleration and displacement responses were available, the parameter 

E was computed using simulated force and displacement time histories as well as experimental 

accelerations and displacements. 
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Damping and frequency changes induced by increasing levels of inelastic seismic demand 

 

(a) Free decay portion 

 

(b) Wavelet map and extracted ridges 

 
(c) Instant frequency 

 

(d) Natural logarithm of the instant amplitude 

Fig. 16 Results of approach 2 for EQ1 

 
 
Fig. 19(a) presents a normalized version of the absorbed energy (E) for comparison purposes. 

In both cases the normalization was performed based on the maximum value obtained in each case. 

Notice that, since the structure response is highly dominated by its first mode, the results obtained 

are strongly correlated. Fig. 19(b) shows the accumulated energy at each load stage; these values 

are used later to calculate DIs using Eq. (21). The value for the parameter beta (β = 0.06) was set 

so that the DIs obtained correlate well with the damage observed during the test. For example, 

after EQ7 when multiple rebar buckling and core crushing was observed, DI should be close to 1. 

On the other hand, for the first two records DI should be below 0.3 because the induced damage 

was negligible. The DI values computed after each EQ are presented in Fig. 20. 
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(a) Free decay portion 

 
(b) Wavelet map and extracted ridges 

 
(c) Instant frequency 

 
(d) Natural logarithm of the instant amplitude 

Fig. 17 Results of approach 2 for EQ9 

 
 

 

Fig. 18 Maximum response during each earthquake applied 
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(a) Normalized energy during each EQ load 

 
(b) Accumulated normalized total energy at each load stage 

Fig. 19 Absorbed hysteretic energy (E) 

 
 

 

Fig. 20 Calculated damage index (DI) after each earthquake 

 

 

5.4 Analysis of results 
 

Fig. 21 summarizes the frequency shifts the structure experienced during the tests, it can be 

seen that the changes in the natural frequency are in close agreement for both approaches. There is 

some difference in the frequency values obtained for the structure after the first earthquake, but 

thereafter the frequencies identified are very similar. The largest frequency shift occurred for EQ3, 

just when the first substantial inelastic excursions occurred. From this point forth, the changes are 

less noticeable despite the increasing inelastic demand and induced damage during the following 

ground motions. The next observed frequency shifts (though much less significant) occurred for 

EQ5 which coincides with the observed deep concrete spalling and the on-set of buckling, and 

during EQ8, which coincides with the first rebar fractures. Table 1 summarizes and correlates the 

computed frequencies with the observed damage. 
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As can be seen from Fig. 22, differences in the results of the damping ratios identified by the 

three methodologies employed are larger than in the case of the natural frequencies. In this case 

results using the Auto Random Decrement (ARD) functions are also presented. A minimum of 200 

segments and initial amplitude (xs) equal to the maximum value of each WN acceleration response 

were used to compute the RDS in the RDT approach. It is seen that the estimated damping ratios 

are below 5%, typical of reinforced concrete structures. However there are variations in the values 

estimated by each methodology and a correlation with the induced level of damage is not evident. 

While a relation between induced inelastic action and the structure dissipative properties is evident 

from the hysteretic energy plot on Fig. 19, the use of an equivalent viscous damping ratio to assess 

the structure condition after a damaging event is arguable. 

Fig. 23 presents once more the frequency changes, but this time as function of the maximum 

displacement ductility reached during each EQ. Since the ground motions were not applied with 

increasing intensity levels, the results for EQ4, EQ6, and EQ7 are not shown. It is seen from Fig. 

23 that while there is a clear tendency on the natural frequency to decrease as the inelastic demand 

increase, this behavior is almost asymptotic. That is, the changes in frequency are more notorious 

at the early stages of ductility demand (<4) and then tend to saturate unless a major sudden 

damage occur for the first time (in this case rebar fracture around ductility 6-7). 

 

 

 

Fig. 21 Frequency changes after each earthquake for both approaches 

 

 

Fig. 22 Damping changes after each earthquake 
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Damping and frequency changes induced by increasing levels of inelastic seismic demand 

 

 
Table 1 Significant performance levels and frequency shifts 

Test Damage 
Relative 

Freq. Shift (%) 

Absolute 

Freq. Shift (%) 

EQ1 Hairline cracks 0.82 0.82 

EQ2 No significant changes 17.08 17.76 

EQ3 Concrete cover spalling 32.11 44.17 

EQ4 No significant changes 0.62 43.82 

EQ5 Deep concrete spalling 10.02 49.45 

EQ6 No significant changes 2.09 50.51 

EQ7 Rebar buckling 2.59 51.79 

EQ8 Rebar fracture (2) 15.04 59.04 

EQ9 Rebar fracture (3) 2.17 59.93 

 

 

 

 

Fig. 23 Frequency changes vs. ductility demand for both approaches 

 

 

 

Fig. 24 Frequency changes vs. damage index (DI) for both approaches 
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6. Conclusions 
 

The Random Decrement Technique (RDT) in combination with the Hilbert Transform (HT) and 

the Continuous Wavelet Transform (CWT) were the two approaches used in order to investigate 

the changes in dynamic properties in a RC bridge column. For the sake of brevity, the complete 

results for different number of segments and initial amplitude in the first approach (i.e., RDT + HT) 

are not presented. However, it was found that the results on computing RDS could be very 

sensitive to changes in these two parameters. 

The results of the CWT analyses seem to be more stable than those of the RDT approach. 

Nevertheless, the selection of the free decay portion from the column response to EQ excitation 

plays an important role in the final results because one can disregard important data in the 

selection process. The results obtained show that a clear trend in damping ratio changes is not 

observed and thus this dynamic parameter does not seem to be a good damage indicator. Other 

methodologies should be explored in order to better identify the changes in the dissipative 

properties of the structure. 

In regard to natural frequency, decreasing values were observed as the lateral demand in the 

column increased. However, the observed frequency shifts tend to saturate at large levels of 

ductility demand. Perhaps this parameter can be used as damage indicator for moderate damage 

(e.g., cracking and concrete spalling), however, its ability to differentiate moderate to severe 

damage (e.g., rebar buckling or rupture) is arguable.  
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