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Abstract.    The objective of this study is to improve the survivability and reliability of the FBG sensor 
network in the structural health monitoring (SHM) system. Therefore, a model reconstruction soft 
computing recognition algorithm based on support vector regression (SVR) is proposed to achieve the high 
reliability of the FBG sensor network, and the grid search algorithm is used to optimize the parameters of 
SVR model. Furthermore, in order to demonstrate the effectiveness of the proposed model reconstruction 
algorithm, a SHM system based on an eight-point fiber Bragg grating (FBG) sensor network is designed to 
monitor the foreign-object low velocity impact of a CFRP composite plate. Simultaneously, some sensors 
data are neglected to simulate different kinds of FBG sensor network failure modes, the predicting results are 
compared with non-reconstruction for the same failure mode. The comparative results indicate that the 
performance of the model reconstruction recognition algorithm based on SVR has more excellence than that 
of non-reconstruction, and the model reconstruction algorithm almost keeps the consistent predicting 
accuracy when no sensor, one sensor and two sensors are invalid in the FBG sensor network, thus the 
reliability is improved when there are FBG sensors are invalid in the structural health monitoring system. 
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1. Introduction 
 

Carbon fiber reinforced polymer (CFRP) composite plate has generated wide interest in the 
fields of aeronautics and astronautics due to their high strength-to-weight ratio, excellent resistance 
to corrosion, easy to design (Andres et al. 1998). However, the aerospace structure may suffer the 
fatigue loads and accidental crash in service and produce local damage. In extreme circumstances, 
the local damage may cause the structure wrecked. Conventional visual and schedule inspection is 
not only lack of precision, but also the damage can’t be found timely. Structural Health Monitoring 

                                                       
Corresponding author, Professor, E-mail: zxli_nuaa@163.com 
a Ph. D., E-mail: zxli_nuaa@nuaa.edu.cn 
b Ph. D., E-mail: zj2007@nuaa.edu.cn 
c Ph. D., E-mail: lujiyun@nuaa.edu.cn 



 
 
 
 
 
 

Xiaoli Zhang, Dakai Liang, Jie Zeng and Jiyun Lu 

 

(SHM) consist a system of active and passive sensors and data management, which are able to 
continuously monitor a structure health status and provide an early warning such as the damage 
type, position and range etc., thus avoid the severe losses of the structure (Hoschke et al. 2008). 
Various sensors are available for the strain distribution monitoring of composite structure, 
especially fiber Bragg grating (FBG) sensor offers several advantages over their lightweight, small 
physical size, high resolution and accuracy, high multiplexing capabilities, corrosion resistance, 
immune to electromagnetic interference (EMI) etc. (Maaskant et al. 1997, Mieloszyk et al. 2010). 
They are ideally suitable for SHM of composite materials such as CFRP. 

Various applications such as in SHM for aerospace structures, FBG sensors are mounted on or 
embedded in the structure with distributed and quasi-distributed network without any serious 
effect on the structural integrity. Yet surface mounted sensors will be exposed on the outside of the 
aerospace, they are inevitably affected by sunlight, moisture, erosion and severe mechanical 
contacts, which make them can’t survive for a long time. Furthermore, due to the high degree of 
multiplexing can reduce in both cost and complexity in a multipoint configuration, multiplexing of 
more than five FBG sensors is required along a single fiber (Dai et al. 2009). This type of network 
topology has some defects, if fibers, nodes, or sensors link fail, all of the FBG sensor signals 
behind the failure point will not be demodulated, thus the SHM system may not work as normal. 
For ensuring safe and efficient operation, SHM system is always used to monitor and control the 
critical systems and components of the aerospace structure. Therefore, it requires the SHM system 
must be highly reliable and rugged, ultimately including self-repairing function (Prokopenko et al. 
2005). Currently, there have been many academic works on the reliability and self-repairing 
function of SHM system. For example, CSIRO-NASA Ageless Aerospace Vehicle (AAV) concept 
demonstration Scott et al.(2009)proposed a circular segment topology based on optical switch and 
multi-agent technology to achieve sensor network self-monitoring and self-repairing. Peng et al. 
(2010) proposed optical switches as auxiliary component to check the failure point and reconfigure 
the FBG sensor network if any link fails in the star-bus-ring architecture, thus the self-healing 
function of the SHM system is facilitated. Yeh et al. (2009) proposed and experimentally 
investigated a multi-ring passive sensing architecture to enhance the survivability and capacity for 
the multi-point FBG sensor system. 

In this study, with the low velocity impacting loads on the CFRP composite plate as subject, by 
virtue of the FBG sensor network embedded in the structure, the model reconstruction algorithm 
which the support vector regression models and parameters are modified dynamically is 
researched to improve the reliability and survivability of the SHM system when the FBG sensors 
or fiber nodes are invalid in the network. The idea of this algorithm is performed as follows: if the 
distance error between the actual value and predicting value is too big to beyond the allowable 
range, the SHM system should be inspected, especially the FBG sensor network. When certain 
FBG sensor data display abnormally or can’t be achieved by the demodulator, the SVR impacting 
position predicting model is reconstructed again according to the survival FBG sensors in the 
SHM system. Then the impacting position identification of the CFRP composite plate is finished 
by the reconstruction model with the similar predicting precision partly, and it keeps the real-time 
monitoring of the original sensor network system again. In this way, the reliability and robustness 
of the SHM system is achieved rather than dismantle the monitored structure to repair the FBG 
sensor network in the engineering application. 
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2. Descriptions of support vector regression 
 
Support vector machine (SVM) was developed by Vapnik and his colleagues at AT&T Bell 

Laboratories in 1995 (Yang et al. 2010). SVM is used to describe the classification problem with 
support vector method firstly, with the introduction of  -insensitive loss function by Vapnik in 
2000, it has been successfully applied to regression problem, and the regression version is named 
as support vector regression (SVR) (Kapil 2010). In contrast to the traditional regression method, 
SVR based on the structural risk minimization principle has the excellent abilities of small sample 
learning and generalization (Guo and Bai 2009). 

For the non-linear regression, SVR is a kernel method that performs regression with the kernel 
function. Considering a training set RRd 

n
1iii )}y,{(x , such that xi and yi are input variable 

vector and output variable vector respectively, SVR map any input d
i Rx  to a higher 

dimensional feature space H by a nonlinear feature map )( . With this, the linear regression 

function can be given as bxwxf ii  )(,)(  , where w  is a regression coefficient vector in 

the feature space, ( )ix is a mapping from the input space xi to the feature space H, b is the model 

offset and  , is the inner product in feature space (Hu et al. 2010). 
In terms of the structural risk minimization principle, the coefficient w and b can be obtained 

from the following function (Ankit et al. 2007, Akay and Ipek 2010) 
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Maximizing the following optimum problem 
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If a function satisfies Mercer’s condition, it can be used as kernel function，and the kernel 

function equals the inner product of two vectors xi and xjin the feature space )( ix  and )( jx , 

that is  )(),(),( jiji xxxxK  (Vapnik 1999). 
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Where NSV denotes the number of support vectors in the model. 
There exist several choices of kernel function K like that linear, polynomial and Gaussian radial 

basis function. Generally, Gaussian kernel function can obtain better prediction performance. 
Therefore, the Gaussian kernel function is used as the SVR model kernel function in this study and 
it is defined below 

}/exp{),( 22
jiji xxxxK 

                         
(9) 

Where   is the bandwidth of the kernel function. 
For constructing a more reliable SVR model, the regressive parameters must be set carefully; 

inappropriate parameters in SVR may produce a worse performance SVR model and over-fitting 
or under-fitting problem. For the SVR model based on Gaussian kernel, the parameters C,   and 
  are required to be selected carefully. Hereby, grid search is used to optimize above proposed 
parameters, and improve the reliability of the SHM system (Zhang et al. 2006). 

 
 

3. Experimental investigation 
 
3.1 Impact experimental setup 
 
The periodic structure of the fiber Bragg grating is formed by photo induced periodic refractive 

index modulation within the fiber core, which results in a series of grating planes formed along the 
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fiber axis. If the Bragg condition is met, the reflectivity of the grating planes for the incident light 
will form a back reflected signal with a central wavelength that is known as Bragg central 

wavelength  B (Yeo et al. 2005). With this, B  can be expressed as  effn2B , Where   is 

the period of the grating plane, effn  is the effective refractive index of the fiber core (Kerrouche 

et al. 2009). The period change of the grating plane is sensitive to a number of physical parameters 
such as strain, temperature, pressure, ultrasound, high magnetic field, force and vibration. Thereby, 
by virtue of monitoring the resultant change in reflected wavelength, FBG sensor can be used in 
various sensing applications to measure physical parameters. If temperature change is negligible, 
then the shift of the central wave length spectrum basically reflects the change in the stress and 
strain status on the FBG. So the FBG sensor network can measure not only a low-frequency signal 
with large magnitude such as strain but also a high-frequency signal with small amplitude such as 
damage or impact signal which will be required for the structural health monitoring (Herszberg et 
al. 2005). 

A SHM system for monitoring the foreign-object low velocity impact of a CFRP composite 
plate with a FBG sensor network is experimented. The CFRP composite plate length of 600 mm, 
width of 600 mm and thickness of 2.16 mm, it is manufactured withT300/QY8911, four sides of 
the plate is fixed by the screw and frame with width of 30 mm, so the effective area of inflicting 
impacting loads is 540 mm540 mm. The experimental setup is presented in Fig. 1. The impacting 
pendulum is fixed on the steel beam, and it can move along the beam freely, simultaneously, the 
steel beam can move up-down freely. In this way, any position of the CFRP composite plate can 
be inflicted impacting loads. For obtaining the training samples and testing samples that the SVR 
model needed, the composite plate is divided into 11 rows and 11 columns altogether 121 cells 
which length and width are both 45 mm, and the impacting loads are inflicted on the row-column 
intersections. The different position of the CFRP plate is subjected to artificial impact generated 
by dropping a small ball which diameter is 20 mm and quality is 5.03 g, the pendulum length and 
angle of the impact load are 900 mm, 52° and 60° separately which are applied to the 
intersectional position of the composite plate. After that, FBG sensors (Fig. 2) that are mounted on 
the CFRP composite plate receive the impacting wave when the strain change depending on time, 
the center wavelength of the reflected light from the FBG will change. And the impacting signals 
from multiple FBG sensors are sampled and the Bragg central wavelength shifts are viewed by the 
high-speed optical wavelength interrogation system SM130, a computer with data acquisition 
software (Lab View) for flexibility in data will display, process, and storage all of information 
observed.  

 
3.2 Impacting signal feature extraction 
 
If the impacting load inflicts on the central of the CFRP composite plate, Fig. 3 shows the 

waveform obtained by the FBG1. 
It is difficult to directly predict the impacting position from the measured waveforms. Hence, 

Fourier transform is applied to the waveforms for frequency analysis, and the transforming results 
of every FBG sensor for the inflicting impact on the central position of the plate depending on 
amplitude and frequency are displayed in Fig. 4. These results show that the values of amplitude 
decrease with the frequency increasing, and the larger amplitude mainly centralize between 0 Hz 
and 200 Hz. Therefore, the band energies of the waveforms are calculated depending on the 
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amplitude of 0-200 Hz frequency, and the band energy is calculated as: 
21

0
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1
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where N is the sum of total number of sampling points, xi(n) is the i th sampling point value, the 
calculating results are shown in Fig. 5. 
 

 

 

Fig. 1 Impact experimental setup based on FBG sensor network and Fig.2 Arrangement of 
sensors in the plate 

 
 
 

Fig. 3 Response of FBG1to an impact observed at the central of the plate 
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Fig. 4 Fourier transforms of FBG1 to FBG8impactsignals for the central position 
 

 

Fig. 5 Band energies of FBG1 to FBG8impacingt signals (0-200 Hz)for the central position 
 
 
In this way, the band energies for every FBG sensor on any inflicting impacting positions are 

calculated, the calculated results indicate that the value of the band energies for every FBG sensor 
in different impacting positions are different, so the band energy can be used for the feature of the 
impacting signals to train the SVR model and to predict any impacting load positions on the CFRP 
plate. 

 
3.3 SVR model reconstruction scheme for SHM 
 
For SHM system, many FBG sensors can be incorporated within a single fiber, and 

measurement makes from either end of the optical fiber, this type of single-ended topology has 
been discussed and demonstrated by a lot of investigators (Moyo et al. 2005, Chan et al. 2006). 
However, this topology is not designed for the network reliability and survivability that require the 
network working as normal if fibers, nodes, or sensors link fail, this becomes especially worrisome 
when they are arranged to monitor the hostile environments such as dams or submarines. Recently, 
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how to build a high reliability FBG sensor network becomes an important issue for the SHM 
system. 

So as to improve the reliability of the SHM system, a model reconstruction recognition 
algorithm based on SVR is proposed in this study. In the SHM system, FBG sensors are arranged 
with redundant. For one thing, the redundancy can improve the predicting accuracy of the 
monitoring system, for the other thing, it can compensate for the sensor data if partial sensors are 
invalid in the sensor network. The model reconstruction scheme is shown in Fig. 6. It works like 
this: Firstly, if each sensor in the SHM system is valid and their signals can be demodulated 
correctly, SVR model can be trained by the impacting signal feature values of the central 
wavelength change acquired by the demodulator, and the SVR model A is obtained. Here if an 
impacting load inflicts on the CFRP composite plate, model A is used for predicting the impacting 
load position. Secondly, if an FBG sensor is invalid in the monitoring system (neglecting certain 
FBG sensor data to simulate the failure mode), the SVR model is retrained by virtue of the sensor 
data that can be demodulated by the FBG demodulator, and the SVR model is called model B. 
Simultaneously, model B is treated as model A to predict the future impacting load position. For 
the rest failure mode such as sensor nth,(n-1)th, (n-2)th…, which can be done in the same way. 

 
3.4 Experimental results and discussions 
 
In the experimental area, 121 positions are chosen to inflict impacting load which energies are 

22.182 mJ and 27.314 mJ separately, thus 121 samples are obtained for each energy level. In this 
study, the 121 samples of 22.182mJ level are chosen as the training samples, the others are chosen 
as the testing samples. 

 
 
 

 
Fig. 6 Impacting position recognition algorithm based on model reconstruction scheme 
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For improving the generalization capability of SVR model, the FBG sensor feature values of 
the impacting signal in different position of the plate are normalized to [0, 1], and the training 
samples and testing samples are normalized separately. The predicting step is as follow: (1) the 
SVR model’s free parameters of x-coordinate and y-coordinate are optimized by the training 
samples; (2) the x-coordinate training samples and y-coordinate training samples are trained by the 
obtained optimal parameters separately, meanwhile, their corresponding SVR models are obtainde; 
(3) the x-coordinate and y-coordinate testing samples are predicted separately, the distance error 
between actual value and predicting value (DEBAP) is used to evaluate the predicting accuracy 
and determine the effectiveness of the established SVR model. Here, the DEBAP is described as:

2
^

2
^

)()( iiii yyxxDEBAP  . Where ix  and 
^

ix  represent the ith x-coordinate actual and 

predicting value respectively, iy  and
^

iy represent the ith y-coordinate actual and predicting value 
respectively. For the impacting position monitoring, the permissible predicting distance error 
(DEBAP) requires less than 45 mm. If one sensor or two sensors are invalid in the FBG sensor 
network, sensor 6th, sensor 7th, sensor 1st, 4th and sensor 6th, 7th are neglected separately to simulate 
these two kinds of failure modes, the model reconstruction scheme which is proposed in Fig. 6 is 
used to retrain the SVR model by the corresponding valid FBG sensor data. Then the impacting 
load position of the testing sample is predicted with the obtained SVR model, moreover, the result 
is compared with non-reconstruction respectively. The DEBAP of predicting samples from 12th to 
41st are graphically demonstrated in Figs. 9 -11. As a result, In spite of which one or two sensors is 
invalid in the FBG sensor network, the performance of the SVR model reconstruction has more 
excellent than that of non-reconstruction. Here, Non reconstruction denotes whether there are 
some sensors invalid in the FBG sensor network or not, only model A is used to predict the future 
unknown external loading damage position, and the DEBAP values are calculated by model A. 
Reconstruction works like above Fig. 6, correspondingly, the DEBAP values are calculate by 
model B……N. 

 
 

Fig. 7 Distance error for no sensor is invalid 
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Fig. 8 Distance error for sensor 6th is invalid 
 

Fig. 9 Distance error for sensor 7th is invalid 
 

Fig. 10 Distance error for sensor 1st, 4th are invalid 
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Fig. 11 Distance error for sensor 6th, 7th are invalid 
 

For demonstrating the number of FBG sensors needed least when the SHM system can work as 
normal, one, two, three or four sensors are neglected to simulate different FBG sensor network 
failure modes. For each failure mode, three or four kinds of patterns are randomly selected to 
investigate the predicting accuracy of the SHM system, and the results are compared with non- 
reconstruction respectively. The comparative results are given in Table 1. 
 
 
Table 1 the comparison of the predicting results by reconstruction and non-reconstruction 

Monitoring system 

condition 

Sample counts ratio Monitoring system 

condition 

Sample counts ratio 

Reconstruction Non-reconstruction Recon 

struction 

Non-recon 

struction 

No sensor is invalid 89.3% 89.3% Sensor 6this invalid 88.4% 13.2% 

Sensor 7this invalid 88.4% 8.3% Sensor 4this invalid 86.8% 9.1% 

Sensor 1stis invalid 86.8% 5.8% Sensor 3rd, 4thare 

invalid 

86.8% 4.13% 

Sensor 1st,4thare 

invalid 

85.1% 4.13% Sensor 6th, 7th are 

invalid 

84.3% 4.13% 

Sensor 1st, 7thare 

invalid 

84.3% 4.13% Sensor 1st, 7th, 8thare 

invalid 

80.2% 4.13% 

Sensor 1st, 6th, 7th are 

invalid 

75.2% 4.13% Sensor 1st, 2nd, 6thare 

invalid 

69.4% 4.13% 

Sensor 1st, 2nd, 7th 

are invalid 

69.4% 4.13% Sensor 1st, 4th, 6th, 

7thare invalid 

67.8% 4.13% 

Sensor 1st, 2nd, 7th, 

8thare invalid 

54.5% 4.13% Sensor 3rd, 4th, 5th, 

6thare invalid 

5.8% 4.13% 

(Note: Sample counts ratiodenotes the samples that less than or equal to 45mmcounts /total sample counts (121)) 
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For the reconstruction, when one and two sensors are invalid in the FBG sensor network, the 
ratio that less than or equal to 45 millimeter counts account for the total sample counts only 
decrease 2.5% and 5% to the full extent separately comparing with that no sensor is invalid in the 
FBG sensor network. When three and four FBG sensors are invalid in the FBG sensor network, the 
ratio decrease obviously comparing with that no sensor is invalid in the FBG sensor network, at 
the same time, the largest declining are 19.9% and 83.5% separately. However, for the 
non-reconstruction, one sensor is invalid in the network will make the predicting distance error 
(DEBAP) too big and the SHM system can’t work as normal. For the same numbers and different 
invalid FBG sensors assembly in the network, the predicting accuracy is different. For example, 
the predicting accuracy of assembly sensor 1st, 4th, 6th, 7th is more than 62 percentages above 
sensor 3rd, 4th, 5th, 6th. The results indicate that the placement of the sensor arrangement plays an 
important part role in the SHM system. Therefore, it is vital to optimize the sensor placement 
before mount on or embedded the monitoring structure. 

 
 

4. Conclusions 
 
For the structural health monitoring, FBG sensor network is mounted on or embedded in the 

structure with series or parallel. If fiber node is invalid, the FBG sensor can’t be demodulated 
behind the invalid point. With the wide application of FBG sensor network in the SHM system, it 
is necessary to improve the survivability and reliability of the FBG sensor network. In this study, a 
model reconstruction recognition algorithm based on SVR is proposed to achieve the high reliable 
FBG sensor network. Meanwhile, a SHM system for monitoring the foreign-object low velocity 
impacting position of a CFRP composite plate is designed to verify the reliability of the FBG 
sensor network. For the permissible predicting distance error (no more than 45 millimeter), when 
one and two sensors are invalid in the FBG sensor network, the sample counts ratios only decrease 
2.5% and 5% to the full extent comparing with that no sensor is invalid in the system, but for the 
non-reconstruction, the least declining ratios are 76.1% and 85.17%.These studies successfully 
demonstrate that the proposed model reconstruction algorithm based on SVR almost keep the 
consistent predicting accuracy when no, one and two sensors are invalid in the FBG sensor 
network, and the survivability and reliability of the SHM system are improved. For the different 
invalid FBG sensor position, this study also find that the predicting accuracy is different for the 
same numbers invalid FBG sensors. So it is necessary to consider the sensor arrangement position 
in the monitored structure in future. 
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