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Abstract.  Damage detection is a challenging, complex, and at the same time very important research topic 
in civil engineering. Identifying the location and severity of damage in a structure, as well as the global 
effects of local damage on the performance of the structure are fundamental elements of damage detection 
algorithms. Local damage detection is essential for structural health monitoring since local damages can 
propagate and become detrimental to the functionality of the entire structure. Existing studies present several 
methods which utilize sensor data, and track global changes in the structure. The challenging issue for these 
methods is to be sensitive enough in identifying local damage. Autoregressive models with exogenous terms 
(ARX) are a popular class of modeling approaches which are the basis for a large group of local damage 
detection algorithms. This study presents an algorithm, called Influence-based Damage Detection Algorithm 
(IDDA), which is developed for identification of local damage based on regression of the vibration 
responses. The formulation of the algorithm and the post-processing statistical framework is presented and 
its performance is validated through implementation on an experimental beam-column connection which is 
instrumented by dense-clustered wired and wireless sensor networks. While implementing the algorithm, 
two different sensor networks with different sensing qualities are utilized and the results are compared. 
Based on the comparison of the results, the effect of sensor noise on the performance of the proposed 
algorithm is observed and discussed in this paper. 
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1. Introduction 
 

Structural health monitoring (SHM) plays an integral role in maintaining the integrity of 

important civil, mechanical, and aerospace structural systems. Structures experience a number of 

loading scenarios on a daily basis ranging from typical ambient excitations to more extreme wind 

and earthquake loads. All these loading scenarios may have damaging effects on the structures and, 

whether the resulting damages are visible immediately or appear more gradually in time, it is 

important to be able to detect them before they propagate and become detrimental to the 

functionality of the entire structure and its surroundings. With renewed interest in the deteriorating 

state of the nation’s infrastructure, the need for effective, efficient, and affordable structural health 

monitoring approaches and maintenance management systems is becoming more and more 

apparent. A promising approach for monitoring and maintenance management is local damage 
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detection. Applying this approach helps reduce the cost of repairs by identifying the exact parts of 

structures that need to be repaired, instead of conservatively retrofitting the entire structure. 

Additionally, continuous or semi-continuous monitoring of these structures over time will help 

ensure that they do not fall to serious states of disrepair in the future, which will save on the cost 

of maintenance in the long term. 

Some of the traditional non-destructive evaluation (NDE) techniques, listed in ASM Handbook 

(Anon. 1992) include but are not limited to visual inspection, liquid penetrant (Deutsch 1979), 

eddy currents (Banks et al. 2002, Ziberstein et al. 2003), ultrasonic waves (Mallet et al. 2004), 

acoustic emission, and infrared thermography (Trimm 2003, Ball and Almond 1998). While these 

methods can be useful in certain circumstances, their success is dependent on a prior knowledge of 

potential damage location (Doebling et al. 1998). Also, for application of these methods, it is 

necessary to have direct access to the location of damage, which may be a difficult task, especially 

after an event such as an earthquake. Furthermore, NDE techniques are costly and labor-intensive.  

Advancements in sensing technology have allowed for the development of new SHM methods 

that can be applied on a temporary or semi-permanent basis for continual monitoring of structures 

(Lynch and Loh 2006, Farrar et al. 2005). One example of improvements in sensing technology is 

application of wireless sensor networks which have made instrumentation of sensing techniques 

more affordable and with minimal labor demand (Lynch et al. 2004, Pakzad et al. 2008, Jang et al. 

2010, Gangone et al. 2011, Dorvash et al. 2012). An application which benefits from 

advancements of sensing and instrumentation technologies is vibration-based SHM which is 

commonly used to extract the dynamic characteristics of the structure from its response (Whelan 

and Janoyan 2009, Cho et al. 2010, Kim et al. 2010, Yu et al. 2010, Jang et al. 2010). Literature 

presents numerous damage detection methods which rely on changes in identified dynamic 

characteristics (e.g., natural frequencies, mode shapes, and modal damping) to reveal changes in 

the physical properties of the structure (e.g., mass and stiffness), i.e., structural damage (Doebling 

et al. 1998, Alvandi and Cremona 2006). While the concept may be intuitive, application of 

methods which rely on dynamic characteristics of the structure are not without obstacles. Modal 

properties are indicators of the global state of the structure and are not sensitive enough to local 

damages (Farrar et al. 1994, Chang et al. 2003). Therefore, these methods are mostly referred to as 

global-based damage detections. Also, some SHM practices involving global-based damage 

detection require knowledge of specific structural properties, including mass, stiffness, or damping 

ratio, for which it is often difficult to determine very accurate estimates (Koh et al. 1995, Morassi 

and Rovere 1997, Sohn and Law 1997, Ratcliffe 1997). On the other hand, local damage detection 

is desired for structural health monitoring since local damages happen first and can propagate to 

the entire structure. 

Literature also presents some effective local damage detection methods, such as damage 

locating vector (DLV) method (Bernal 2002, Sim et al. 2008, Sim et al. 2011) and 

two-dimensional gapped smoothing method (Yoon et al. 2005). While effective, these methods 

have some requirements. For example DLV method requires the knowledge of structural properties, 

or requires homogeneity of the structural properties as in the two-dimensional gapped smoothing 

method. In addition, considering the current state of damage detection techniques in practice, more 

research is still needed to improve existing algorithms, develop more effective techniques, and 

make damage detection more practical and applicable in real-life monitoring scenarios. In this 

regard, this paper presents an effective damage detection method, called Influence-based Damage 

Detection Algorithm (IDDA) that uses vibration responses to achieve localized damage detection 

without the need for exact knowledge of structural properties. The method is based on regression 
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of the vibration response and estimation of influence coefficients as damage indicators. (Dorvash 

et al. 2014, Shahidi et al. 2014, Yao and Pakzad 2014). While the algorithm is effective, it is also 

very practical as it converts the shear amount of time-history data into condensed information 

which enables detection of structural changes in the system. 

In IDDA, influence coefficients, as defined in section 2, obtained from linear regression 

between every two node responses, are used as the index for determining and detecting the 

occurrence of changes in the structural properties. The change point of time-variant influence 

coefficients is also determined using a Bayesian statistical framework (Pakzad 2008). The 

effectiveness of the proposed local damage detection method is demonstrated and verified through 

simulated and experimental results. For the experimental implementation of the algorithm two 

different networks of wired and wireless sensors are utilized and the results of the two sensor 

networks with different noise characteristics are evaluated and compared to observe the effect of 

sensor noise on the effectiveness of the algorithm. 

 

 

2. Localized damage detection method 
 

This algorithm bases its damage detecting capabilities on the premise that a structure’s response 

changes when physical properties change, i.e., due to damage. The response of the structure is 

monitored at various locations via a spatially dense sensor network, and linear regression influence 

coefficients are extracted. When damage occurs, this linear relationship changes, which is reflected 

in the influence coefficients indicating the existence of damage. In addition to identifying that 

damage has occurred, considering the locations of sensors associated with changing coefficients 

allows for localization of the damage as well. Furthermore, a statistical framework that utilizes 

hypothesis testing can be implemented to determine whether damage exists at a significant 

confidence level. 

 

2.1 Structural model 
 

Damage detection methods can be classified in a number of ways. One common classification 

is as identification of linear or nonlinear damage. The definition of linear damage is “the case 

when the initially linear-elastic structure remains linear-elastic after damage” (Doebling et al. 

1998). One advantage of studying a linear damage state is that the linear equations of motion still 

apply after damage. The method proposed in this work relies on this assumption of linearity before 

and after damage. 

In order to demonstrate the linear-elastic assumptions of this method, a rigid beam-column joint 

is considered, as shown in Fig. 1. The general free body diagram has 9 unknowns (xi, yi, ri, xj, yj, rj, 

xk, yk, and rk) assuming the joint to be restrained out-of-plane. The displacement at any point along 

the structure, 𝑢𝑛, can then be defined as a function of each of these unknowns as follows 

),,,,,,,,( kkkjjjiiin ryxryxryxfu 
                   

 (1) 

Because the joint represents a small portion of the structure, the member lengths create small 

angles. Small angles correspond to negligible rotations reducing the number of degrees of freedom 

(DOFs) to 6 independent translational DOFs (xi, yi, xj, yj, xk, and yk). This number of DOFs can be 

further reduced with the practical assumptions of inextensibility of the column and beam members. 
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A structure that is being monitored will experience excitations of the ambient type for a 

majority of its useful life. Other more extreme excitations should be considered as occurring 

during the damaging event, in which case the linearity assumption does not hold true. Because this 

method involves the comparison of the structural state pre- and post-event, as opposed to during 

the nonlinear damaging event, it is reasonable to consider the structure within a linear-elastic range. 

Thus it is valid to consider Eq. (1) as a linear function. 

Another important assumption for the application of this method is that the contributing mass at 

the considered portion of the structure is negligible. This assumption allows local dynamic effects 

to be neglected such that the structure can be considered in its linear static state (Pakzad 2008 and 

Chang and Pakzad 2014, Dorvash et al. 2014). Both found that because the stiffness of elements 

forming the connection is much larger in comparison to their contributory mass when considering 

a local portion of the structure, the effect of the mass term becomes negligible and the dynamic 

equation of motion can be reduced to a static relationship. However, it is important to note that this 

assumption only applies to a local joint. Therefore, the linear relationship between nodes that are 

within the same local joint and share a relatively stiff portion of the structure should be assessed 

for this algorithm. This may translate to small clusters of dense sensor networks within a 

larger-scale instrumentation network.  

Considering this small portion of the structure (the beam-column connection) as a linear static 

system, any displacement response along the connection is a linear function of the response at 

other locations and the relationship between the responses at any two locations, nodes i and j, can 

be defined as 

)()(.)( nnunu ijiijijj                         (2) 

where, ui(n) and uj(n) are structure’s response at nodes i and j, respectively, and at time 𝑛, βij is 

intercept value of regression between nodes i and j, αij is influence coefficient of regression 

between nodes i and j, and εij is the residual of the regression model. 

 

 

 

Fig. 1 Free body diagram of a rigid beam-column joint 
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2.2 Mathematical model 
 

The relationship between responses at different locations of a structure can be established using 

an Auto Regressive with Exogenousterm (ARX) model as follow 

 
 


P

p

Q

q
qp nqnxbpnya

0 1

)()()(                      (3)

 

where y and x are output and input respectively, ɑi’s and bi’s are ARX coefficients, ɛ(n) represents 

the residuals, n is the time index, and P and Q are orders of the autoregressive and exogenous parts 

of  the ARX model, respectively. Based on this mathematical representation, the response at any 

time step can be estimated having the past inputs and outputs and the current input.  

In a linear structural system, each output is a linear function of input excitations and therefore, 

the linear relationship holds between different outputs and the ARX model can be written to 

correlate outputs as follow 

  
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where output at node 𝑗 is related to current and previous outputs at nodes 𝑖 = 1 𝑡𝑜 𝑘. This 

equation establishes a relationship between one output and other outputs of the system. The 

accuracy of this model depends on the selected model orders. While higher model orders, in 

general, deliver more details of the system and reduce the estimation bias, it is always desired to 

keep the order at the minimum level to avoid over-parameterization. Considering the special case 

of the linear system with negligible mass (absence of inertia force),described in the previous 

section, the corresponding ARX model can be developed by assuming P and Q equal to zero 


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which correlates the response at node 𝑗 to current responses at nodes𝑖 (= 1 𝑡𝑜 𝑘). Addition of 

intercept (𝛽) into Eq. (5) is in order to account for the initial condition, since the effects of 

previous time steps are removed from the equation. Note that Eq. (5) represents a multi-variable 

version of Eq. (2) (i.e., considering 𝑘 = 1 and 𝑏𝑖/𝑎𝑗 = 𝛼𝑖𝑗, the same equation will be obtained).  

 

2.3 Influence coefficients as damage indicators 
 

IDDA takes responses of the structure and uses the assumed linear relationship between 

different nodes, or sensor locations, with one another. By calculating influence coefficients, 𝛼𝑖𝑗, 

between two nodes 𝑖  and 𝑗 , based on vibration-induced acceleration response data, the 

correlation between these responses is determined according to Eq. (2).  

The comparison of the resulting influence coefficients from the initial undamaged state with 

that of the damaged state of the structure serves as a “damage indicator” when it yields a 

significant change in the value of the coefficients from state to state. More specifically, the 

influence coefficients exhibit a much more significant change when nodes i and j are located on 

opposing sides of the damaged segment versus when they are on the same side. From linear 

regression, this translates to a change in the value of αijfrom that of the original undamaged case. 
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This characteristic allows for the identification of the damage location by inspection of the pattern 

in which influence coefficients exhibit significant changes. 

 

2.4 Influence coefficient accuracy and estimation error 
 

Once the coefficients are estimated, the accuracy of the data must be assessed and verified 

before damage detection can be performed. This is done through consideration of both the 

accuracy of the pair-wise coefficients and the estimation error. The product of influence 

coefficients αij and αji, yields the evaluation accuracy, EAij, of these coefficients, indicating 

which node responses are linearly related to one another with the least amount of error, εij, and thus 

are more accurate predictors. An evaluation accuracy of 1.0 signifies a strong accuracy of 

estimation, while a product of less than 1.0 corresponds to progressively higher values of noise 

and nonlinear behavior of the physical structure. 

The second parameter that is used for data verification is normalized estimation error, which is 

calculated by 

ij

ij

ij






                                 (6) 

where αij is influence coefficient between nodes i and j and  σαij
 is standard error of the 

influence coefficient estimates αij and can be estimated by the following equation 




2/12 )( i

ij

ij
y






                            (7) 

In Eq. (7), σeis the standard error of the residuals, e (the difference between the estimated and 

true response).  

Normalized estimation error allows for a direct comparison of the amount of error associated 

with the estimation of each influence coefficient as a damage indicator. A low estimation error, 

resulting from a low standard error of the estimated influence coefficient, will correspond to a 

more accurate predictor. Once the accuracy and error have been assessed for each coefficient, 

post-processing of the best influence coefficients can be performed for damage identification and 

localization. 

When the influence coefficients have been assessed for accuracy and error, the most reliable of 

these are chosen for use in damage detection. As was previously discussed, changes in the physical 

properties of the structure, such as loss of material stiffness or change in boundary conditions due 

to damage, are reflected in changes in the behavior of the structure which can also be seen directly 

in the influence coefficients; the linear relationship between certain locations of the structure will 

change to differing degrees depending on the location of the damage. The degree to which certain 

coefficients change can indicate the location of the damage. 

 

2.5 Statistical framework 
 
In order to determine what defines a “significant change” in the influence coefficients, a 

statistical framework has been developed and applied. This framework is useful for processing 

large volume of data as a structure is monitored over time. A Bayesian Statistic is used to 

90



 

 

 

 

 

 

Statistics based localized damage detection using vibration response 

 

determine the change point, the point at which the data indicates damage, at a 95% confidence 

level (Chen and Gupta 2000). This statistical inference method tests the hypothesis that the mean 

of the influence coefficients for each successive test is equal to the mean of the influence 

coefficients from the initial undamaged state.  

  NH 210 :
                        

(8) 

Eq. (8) defines null hypothesis, H0, which assumes that the mean of the influence coefficients is 

unchanged. This is tested against the one-sided alternative hypothesis, HA, where assumes that the 

values of the influence coefficients beyond the change point, denoted as r, are greater (or smaller) 

than that of those prior to this point by a significant amount 

NrrAH     11:
                    

(9) 

where N represents the number of tests. The change point r, mean μ, and standard error σ of the 

influence coefficient are all unknown. The statistic that is developed to test the aforementioned 

hypothesis is a Bayesian statistic as follow 

)( 1

1
  



 i

N

riN iS
                          

(10) 

where r, the change point, can be any point from 1 to N − 1. This Bayesian statistic, in fact, 

assigns a weight (i) to changes that happen successively. In other words, as the offset in the mean 

value of the influence coefficients persists, the difference between the mean and the baseline will 

be accumulated by increasing factors. To test the significance of change and conclude the 

alternative hypothesis, HA, with a certain confidence level, the following normalized 𝑡-statistic is 

utilized 

6

)12)(1( 



NNN

S
t N


                         

(11) 

where σ̂ is the estimated error of the influence coefficient and the denominator of the equation is 

the deviation of SN. The test statistic 𝑡, has a 𝑡-distribution with 𝑁 − 2 degrees of freedom (Sen 

and Srivastava 1975). In this work, the hypotheses are tested at a 95% confidence level.  

The physical significance of this hypothesis testing is such that the alternative hypothesis, HA, 

indicates that the structure has incurred damage, while the null hypothesis, H0, means that there is 

not adequate evidence to establish that damage exists. These hypotheses are tested for those node 

pairs that have been identified as significant damage indicators in the assessment and verification 

stage of the method. 

Influence-based damage detection algorithm with its different steps is outlined in Fig. 2. There 

are three phases in the implementation of this algorithm: (i) data retrieving and parameter 

extraction, (ii) validation and accuracy assessment, and (iii) post-processing and decision making. 

The next sections of this paper will present the implementation of the algorithm on different 

simulated and experimental models. 
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Fig. 2 Methodology for damage detection 

 

 

3. Simulated beam-column connection  
 

Since IDDA is developed for detection of local damages, the evaluations are presented based 

on a beam-column connection (which is a local and also a critical structural element) as a testbed 

structural component. In this section, IDDA is validated using a simulated model of the 

beam-column connection with 1.8 (m) length for column, 0.9 (m) length for beam, and cross 

section of 25 (mm) square hollow tube with a wall thickness of 3 (mm) and modulus of inertia 

equal to 23711 (mm
4
). The finite element simulation is created using SAP2000. The beam-column 

shown in Fig. 1 represents a localized portion of a larger structure, for example a single joint in a 

larger building frame. A joint is a location in a structure that is prone to damage due to high stress 

concentrations at the connections. The ability to determine not only the joint, but the location 

within the joint where damage has occurred can lead to more efficient and cost-effective repair 

solutions in a structure. 

The column portion of the joint is fixed at both ends while the beam cantilevers out from the 

centerline of the column. Two simulation conditions are performed which include (1) an 

undamaged baseline condition and (2) a damaged condition, characterized by a reduction in the 

beam stiffness (15% reduction in stiffness). For each of these models, acceleration response is 

simulated at each of the 9 nodes for a white noise excitation applied at the free end of the beam in 

the y-direction. Measurement noise is accounted for by adding a Gaussian noise with a standard 

deviation equal to 5% of the root mean square (RMS) of each response signal. Fig. 3 shows the 

schematic of the simulated beam-column connection and the acceleration response at two nodes 

before and after the damage is applied. 

The influence-based damage detection algorithm is then applied to the simulated data and the 

parameters are extracted. The relative changes in the influence coefficients between the 

undamaged and damaged states are shown for each pair-wise node relationship in Table 1. The 

influence coefficients αij, 1 ≤  i, j ≤  6  all experience very small (less than 5%) changes 
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between the undamaged and damaged states. This implies that the physical properties between 

these nodes have not changed significantly. However, the coefficients of nodes 1 through 6, paired 

with nodes 7, 8, and 9 show relative changes of between 20-30%. When nodes are on opposite 

sides of the damage, i.e., nodes 1 through 6 are located on the undamaged column, while nodes 7, 

8 and 9 are located on the damaged part of the beam, the physical properties between the paired 

nodes changes. This physical change is reflected in a more significant relative change in the value 

of influence coefficients. Furthermore, the influence coefficients αij, 7 ≤  i, j ≤  9  also 

experience a noticeable change in coefficients (about 5-10%). This signifies that the physical 

properties of the structure between the nodes associated with α78, α79, and α89 have changed. 

Therefore, damage is more likely to exist between these nodes. This is consistent with the 

simulated damage which was applied by stiffness reduction of the beam. 

 

 

 

(a) (b) 

Fig. 3 (a) Simulated model and (b) Acceleration response in undamaged states 

 

Table 1 Relative change in influence coefficients, αij, from undamaged to damaged states for simulated 

structure 

Node 1 2 3 4 5 6 7 8 9 

1   -2.52 -2.98 -5.47 -6.09 -4.36 23.38 26.90 19.65 

2 0.03   -0.62 -1.24 -0.99 -0.80 15.20 15.59 45.37 

3 0.38 -0.25   -1.16 -0.39 -0.47 30.94 14.91 22.18 

4 0.73 0.26 0.18   0.16 0.04 11.57 41.78 27.38 

5 0.03 -0.76 -0.94 -1.54   -0.51 12.45 15.50 20.46 

6 -2.30 -2.20 -3.99 -6.58 -3.98   26.69 25.47 20.65 

7 -12.24 -9.60 -15.14 -13.13 -11.98 -25.28   6.00 12.41 

8 -15.90 -15.06 -17.73 -19.65 -19.95 -13.48 -5.82   5.37 

9 -33.70 -23.31 -25.59 -13.27 -33.58 -16.35 -8.56 -6.60   
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While functionality of the algorithm is showed throughout this example, its performance still 

needs to be evaluated throughout experimental data. The next section shows the implementation of 

IDDA, including accuracy assessment, post-processing and decision making steps, on a 

beam-column connection model constructed in the laboratory. 

 

 

4. Experimental beam-column connection 

 

IDDA is further verified through implementation on a laboratory beam-column connection 

model. The prototype represents a portion of the beam and column members as they come to a 

local joint. The small-scale experimental prototype was constructed with the same dimensions as 

the simulated model (1.8 [m] length for the column member, 0.9 [m] length for the beam member 

with 25 [mm] square hollow tube cross section with a wall thickness of 3 [mm]).The specimen is 

tested for both an undamaged and a damaged state. To simulate damage in the location of the 

connection joint, the beam member was switched out for a member of lesser wall thickness 

(corresponding to a 40% stiffness reduction).Note that this just represents a reduction in stiffness 

near the connection and not the entire beam element. 

To generate acceleration responses, the free end of the cantilever is attached to an actuator and 

excited by harmonic force at 15 Hz frequency with amplitude resulting in 40 mg acceleration at 

sensor location 9. The wired data is collected at a 250 Hz sampling rate with each test lasting 40 

seconds. The wireless data is collected with the same length as wired data. Using both wired and 

wireless sensors, the data collection is performed simultaneously for direct comparison. The 

undamaged and damaged structures are each tested 15 times. The collected data samples are then 

processed through IDDA to detect the occurrence of damage. The results of the implementation of 

the algorithm using wired sensors are presented in this section and the comparison of sensor 

network results are discussed in the next section. 

The structure is instrumented with two sensor networks with different noise levels of the 

accelerometers; wired and wireless accelerometers each including 9 sensors, as shown in Fig. 4. 

The wireless accelerometers used in this implementation consist of Imote2 processing board 

produced by Intel (2005) combined with SHM-A sensor board, integrating tri-axial LIS3L02AS4 

(STMicroelectronics 2005) accelerometer with 50 µg/√Hz noise density, developed by Rice and 

Spencer (2008, 2009). The wired sensors, on the other hand, are capacitive accelerometers 

(PCB3701, Piezotronics, Inc. 2004) with 3 µg/√Hz noise density. Due to lower noise level of 

wired sensors and the more reliable network, the wired results are used as a direct comparison 

point for the wireless sensors. Table 2 shows the specifications of the two accelerometers used in 

the two sensor networks of this study. The reason for having two sensor networks is to assess the 

effects of sensing network quality on the damage detection process and the level of confidence for 

decision making. 

 
Table 2 Specifications of the two accelerometers used in the two sensor networks of the experiment 

Parameter LIS3L02AS4 PCB 3701 

Acceleration range ±2 g ±3 g 

Output noise 50 micro-g/√Hz 3 micro-g/√Hz 

Sensitivity 0.66 v/g 1.00 v/g 

Temperature Range -40 to 85ºC -40 to 85ºC 
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Fig. 4 Experimental test bed for beam-column prototype instrumented with wired and wireless 

accelerometers 

 

 

4.1 Accuracy assessment and verification of influence coefficients 
 

Having 9 sensors, 72 influence coefficients can be obtained by performing linear regression and 

presented in Table 3. Once the coefficients have been calculated from the acceleration data, the 

estimates must be assessed to identify the most significant indicators, which can then be used for 

damage detection. The evaluation accuracy, EA and estimation error,γare integral for this accuracy 

assessment. By inspection of these parameters, different trends can be identified in the undamaged 

and damaged parameters, with different estimation errors and evaluation accuracies. The identified 

trends are associated to the location of node pairs on the structure. Identifying these trends allow 

classification of nodal pairs and the associated accuracy parameters of their influence coefficients 

into six different groups  based on the values of EA and γ, as presented in Table 4. In this table, 

the average accuracy of pairs at different regions is rated from high to low and their corresponding 

locations are presented to describe the reason for different accuracies. Region 1 in the table 

corresponds to the least estimation error and highest accuracy, and region 6 corresponds to the 

greatest estimation error and lowest accuracy. Therefore, parameters in region 1, consisting of 

αij, 7 ≤  i, j ≤  9, are the most accurate and have the least error. This is a reasonable outcome as 

the actuator applies force at the end of the beam, closest to nodes 7, 8, and 9. This proximity and 

boundary condition result in larger amplitude of excitation at these nodes compared with that of 

the column nodes, thus, corresponding to a higher signal-to-noise ratio (SNR) of the data at these 

nodes. A higher SNR correlates to better quality data and more accurate results. 

On the contrary, region 6, which consists of parameter α16, exhibits the poorest accuracy and 

the greatest estimation error. This can be accounted for by the fact that each of these nodes is 

located at either end of the column near the fixed ends. These boundary conditions restrict the 

column from movement closest to the support, greatly reducing the magnitude of the acceleration 

signal and thus, the SNR of these nodes. Figs. 5(a)-5(f) show examples of αfrom different regions 

and their corresponding 𝐸𝐴 and 𝛾. Fig. 5(a) shows that 𝐸𝐴 is almost equal to unity and 𝛾 is 

almost equal to 0 for region 1. The 𝐸𝐴 and 𝛾 values for a region 3 pair, shown in Fig. 5(c) also 

exhibit accurate values, although not quite as accurate as region 1. Fig. 5(f), however, shows a 
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much lower 𝐸𝐴 and a noticeably higher 𝛾 associated with region 6. Based on similar data for all 

6 regions, it can be concluded that regions 1 through 3 contain the most accurate data and thus the 

most useful damage indicators. On average, these influence coefficients exhibit accuracy greater 

than 98% and estimation error less than 0.2%.  

 

4.2 Post processing and damage detection 
 

Based on the accuracy assessment, region 1, 2, and 3 coefficients are considered for damage 

detection. Fig. 6(a) shows the average percent changes of a few pair-wise coefficients in different 

regions on their corresponding locations. This further supports the theory that nodes on opposite 

sides of damage show the greatest change, while nodes with no damage between them show a 

significantly smaller change. Pairs with nodes within the damage location show some change, but 

not as large as that of nodes on opposite sides. The reason for this is that when both nodes are 

within the damaged area, both nodes experience similar increases in flexibility, resulting in a less 

severe differential. Therefore, inspection of the pattern of changes in pair-wise coefficients points 

to the location of damage within the structure (i.e., damage between nodes 2 and 7, 3 and 8, and so 

forth). 

 

 
Table 3 Relative change in influence coefficients,    , for experimental structure 

Node 1 2 3 4 5 6 7 8 9 

1  2.91 5.22 8.57 2.26 1.37 16.65 27.39 31.76 

2 2.16  1.21 12.75 6.36 6.40 21.44 32.65 37.22 

3 4.15 1.10  13.22 6.96 7.19 22.56 33.91 38.54 

4 12.17 15.04 16.64  6.44 6.87 4.63 14.24 18.12 

5 5.67 8.62 10.21 6.68  0.22 12.21 22.50 26.65 

6 7.09 9.17 10.59 5.51 0.86  11.36 21.55 25.64 

7 15.54 18.10 19.24 6.35 11.93 12.03  9.28 13.06 

8 22.78 25.11 26.13 14.40 19.51 19.62 8.52  3.49 

9 25.44 27.67 28.65 17.37 22.30 22.42 11.63 3.38  

 

 
Table 4 Trend regions according to average estimation error ( ) and evaluation accuracy (EA) 

Region Influence Coefficients 
Location of pairs on the beam-column 

connection model 
γij Average 

EAij 

Average 

1 α78, α79, and α89 Between nodes on the beam 0.0001 1.000 

2 α23 and α45 
Between nodes on each side of column 

(except 1 & 6)  
0.0005 0.998 

3 
α27,α82,α29,α37,α38,α39,α47,α48, 

α49,α57,α58, and α59 

Between nodes on the beam with those on 

the column (except 1 &6 ) 
0.0012 0.985 

4 α12, α13, α46,α52 and α56 Between nodes on the column 0.0015 0.975 

5 α17, α18, α19, α67, α68, and α69 
Between nodes on the beam with those on 

the column’s ends 
0.0018 0.967 

6 α16 Between two ends of the column 0.0161 0.889 
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Fig. 5 Pair-wise coefficients (α), estimation accuracy (EA), and evaluation accuracy ( ), for region 1 (a) 

to region 6 (f) 

 

 

4.3 Hypothesis testing for significant damage 
 

The difference between undamaged and damaged coefficients can be indicative of the existence 

and location of damage in a structure. However, in practical scenarios, it is not easy to determine 

when damage has occurred, and make inferences at different confidence levels. Therefore, another 

element must be added for complete damage detection: a statistical framework. 

The hypothesis testing plot graphically shows the change point of damage, the point at which 

damage is identified at a certain confidence level, by plotting the test statistic against the test run 

number. A graph in which the data crosses the confidence bounds, either positive or negative, 

corresponds to a positive hypothesis, previously defined as HA in Eq. (9), indicating the detection 

of damage. If the accuracy and estimation error associated with the nodes being considered are 

high and low, respectively, the prediction of the hypothesis test will be more exact and will cross 
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Fig. 6 (a) relative change of some of coefficients and (b) hypothesis testing results for regions 1 to 3 

 

 

the confidence bounds closer to the occurrence of damage. In order to demonstrate this behavior, 

the test statistic from the 15 damaged state tests were plotted against their run number. Because 

damage exists for all of the plotted data, the more accurate damage indicators will yield a plot in 

which the confidence bounds are crossed closer to the occurrence of damage. 

Considering Fig. 6(b), it can be determined that a coefficient with a larger change between the 

damaged and undamaged states tends to show damage earlier than a coefficient of comparable 

accuracy with a smaller change. It was shown previously that the region 1 and region 3 

coefficients in Table 3 experienced 4-14% and 10-30% average changes, respectively. These 

parameters cross the bound after only 4 and 5 runs, respectively, whereas, the region 2 coefficients, 

with 1 to 7% change, take 7 runs to confidently show damage. This suggests that when a statistic 

crosses the bound first, compared to coefficients of similar accuracy, it is more important to the 

damage location. Therefore, these plots demonstrate that damage is detected by hypothesis testing, 

making this method a reliable means of damage detection. 

 

 

4.4 Comparison of wired and wireless sensor networks 
 

In order to consider realistic application of the proposed damage detection method, there must 

be a reliable and affordable sensor network with which to instrument the structure. Continued 

advancements in wireless sensor technology strive to fulfill that role. Deployment of wireless 

sensor networks (WSNs) is more affordable in terms of manufacturing cost and installation. 

However, while WSNs make the deployment of SHM more convenient, their possible impact on 

the reliability and accuracy of the results needs to be assessed (Dorvash and Pakzad 2012). Some 

challenges in the design of wireless sensor units, such as the trade-off between the functionality 

and the power consumption, and also attempts for minimizing the cost, cause limitations in their 

architecture. Literature shows research efforts which present validation of the performance of 

WSNs through implementations in SHM (Lu et al. 2005, 2006, Wang et al. 2006, Cho et al. 2008). 

It is however very important to assess the performance of WSNs through comparison of results in 

SHM applications. In this study, by installing the two wired and wireless sensor networks on the 
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specimen for simultaneous data collection, direct comparison of result is possible which provides 

the opportunity to investigate the effects of sensing quality on the performance of the proposed 

algorithm. 

During the tests, data was collected using two previously described sensor networks (wireless 

and wired). Measured data from each sensor network was analyzed independently. Since the two 

data acquisition systems worked separately, the data was not automatically synchronized; however, 

the two sensing networks start measurement at an approximately the same time. By collecting data 

simultaneously, differences in results due to changes in environmental factors and noise between 

the two datasets are avoided. Therefore, any differences that appear between the two sets can be 

attributed to sensing network quality (i.e., performance comparison will reflect the differences 

corresponding to sensing systems and not different environmental conditions). 

 

 

 

Fig. 7 Comparison of wired versus wireless data in both the time and frequency domains 

 

 

 

 

Fig. 8 Comparison of relative change of coefficients between wireless and wired sensor data 
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Fig. 9 Comparison of Bayesian Testing Results, wired vs. wireless networks 

 

 

As the first step for comparison of the performance of the two sensor networks, the collected 

data from the two are compared in time and frequency domains. Acceleration signals (10,000 

samples) are collected at 280 Hz and 250 Hz with the wireless and wired sensors, respectively.  

Fig. 7 shows a comparison of the data collected at node 9, the node with the largest recorded 

amplitude. Both wired and wireless signals show the harmonic response due to the harmonic 

excitation clearly with low visible noise. The frequency content of each sensor type is also 

comparable; both show a dominant peak at the forcing frequency of 15 Hz. However the wireless 

data contains more noise at high frequencies as well as at very low frequencies. Note that in 

creating these plots no digital post-processing (filtering) was performed and the figures show the 

calibrated recorded signals with the two systems. 

Fig. 8 also shows the relative change for selected nodal pairs of the WSN and wired datasets. 

The changes at α85, α82, and α52 of the WSN are comparable to the changes expected from the 

wired results. The change at 𝛼89from the WSN is a bit larger than that of the wired, but still on par 

with other nodal pairs of its type (beam-beam within damage). On the other hand, a notable 

inconsistency is seen in two of the column-column nodal pairs, 𝛼12 and α56. The WSN shows 

significantly larger changes, almost 10 times larger than those seen in the wired results. This 

drastic variation can be explained by the 𝐸𝐴 and 𝛾 values of these two coefficients having 

significantly lower accuracies (less than 0.9) compared to the other four WSN values and the 

wired values. Lower accuracy correlates to lower reliability. Consequently, these coefficients 

would not be considered as trusted damage indicators.  

A further verification of the algorithm, when using wireless sensors, is obtained via inspection 

of the hypothesis testing results. The corresponding result for pair-wise coefficient 8-2 and 5-2 is 

presented in Fig. 9. The first observation from these plots is that the wired sensor system is the 

first system that identifies the occurrence of damage. This is reasonable based on the higher 

accuracy associated with wired system compared with this particular WSN in all the results. Fig. 

10 shows a direct comparison of influence coefficients α82 and α52 and their corresponding 

evaluation accuracy and estimation errors. While both sensor networks reflect the change in the 

influence coefficients (i.e., indicate the damage), the accuracy of wired sensor results is higher. 

The performance of wireless sensors, however, is still acceptable since it does detect the damage 

with 95% confidence level, according to the hypothesis tests, even though this is detected after its 

detection by the wired system. Based on the presented comparison points it can be seen that the 
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WSN, while exhibiting higher noise than the wired network, is still effective in localizing the onset 

of damage. Considering the higher level of noise in the collected data from the wireless sensors 

(which can be seen in the specification presented in Table 2), the lower accuracy observed in the 

results of the WSN is reasonable. However, the higher noise in this case could be a worthwhile 

tradeoff when considering the drastic difference in the cost and implementation difficulties 

between the two networks.  

 

 

  

Fig. 10 Comparison of influence coefficient changes, evaluation accuracies and estimation error for two 

pair-wise nodes (8-2 and 5-2), wired vs. wireless networks 

 

 

5. Conclusions 

 

An influence-based damage detection algorithm (IDDA) is presented in this paper which is 

based on regression of the structural response at different locations. The algorithm is integrated 

with accuracy indicators and a statistical framework to enable evaluation of the significance of the 

damage as well as estimation of its location, when the damage is detected. To validate IDDA, it is 

implemented on analytical and experimental models and its performance is evaluated. For the 

experimental validation, harmonic excitation is selected. However, random excitations for this 

implementation should be considered in future studies. It is illustrated that the selected damage 

indicators effectively reflect the structural damage which were simulated in analytical and 

experimental models. During the implementation of the algorithm on the experimental model, two 

different networks of wired and wireless sensors with different noise characteristics were utilized. 

While validating the performance of IDDA, the damage detection resulted from data from each of 

the two sensor networks were compared and the sensitivity of the algorithm to the sensor 

characteristics was investigated. The result showed that both sensor networks are able to reflect the 

change in the influence coefficients and detect damage. However, the accuracy of the wired sensor 

results was higher, as the noise level of the utilized sensors was lower. The performance of 

wireless sensors, however, was acceptable as it detected the damage with 95% confidence level, 

even though it did so later than the wired sensors.  

As IDDA is shown to be effective in detecting damage and its location, the future study will be 

devoted to further investigation of its performance through implementation on large-scale models. 

Additionally, the embedded processors of the wireless sensors allows for on-board computation 
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which enables operation of the algorithm on the wireless sensors and providing an automated 

damage detection system; this task is left for the future work.  
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