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Abstract.  In this work, we address the so-called sensor reachback problem for Wireless Sensor Networks, 
which consists in collecting the measurements acquired by a large number of sensor nodes into a sink node 
which has major computational and power capabilities. Focused on applications such as Structural Health 
Monitoring, we propose a cooperative communication protocol that exploits the spatio-temporal correlations 
of the sensor measurements in order to save energy when transmitting the information to the sink node in a 
non-stationary environment. In addition to cooperative communications, the protocol is based on two 
well-studied adaptive filtering techniques, Least Mean Squares and Recursive Least Squares, which trade off 
computational complexity and reduction in the number of transmissions to the sink node. Finally, 
experiments with real acceleration measurements, obtained from the Canton Tower in China, are included to 
show the effectiveness of the proposed method. 
 

Keywords:  spatio-temporal correlated data; sensor reachback; adaptive predictor; wireless sensor network; 

structural health monitoring 

 
 
1. Introduction 
 

Recent advances in microelectronics and wireless communications have enabled the 

development of low cost, low power devices that integrate sensing, processing and wireless 

communication capabilities. These devices, named sensor nodes, implement Wireless Sensor 

Networks (WSNs) which, as an alternative to the conventional wired systems, provide accurate 

and continuous monitoring of a phenomenon over some specific territory or structure. Typical 

applications of WSNs range from medical to military, and from home to industry. Within our 

interests, one outstanding application is Structural Health Monitoring (SHM), which consists in 

monitoring the behavior of civil structures, such as buildings, bridges, aircrafts and ships, during 

forced vibration testing or natural excitation (e.g. earthquakes, winds, live loading), as described 

by Lynch (2006). 
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When accomplishing monitoring tasks such as SHM, one of the most fundamental issues is the 

so-called sensor reachback problem, which has received considerable attention (Barros et al. 2004). 

In more detail, the sensor reachback problem is related to the several difficulties appearing when 

transmitting the acquired sensor observations to a data-collecting node, often called sink node, 

which has increased processing and power consumption capabilities as compared to the sensor 

nodes. Firstly, the amount of data generated by the sensor nodes is immense, due to the fact that 

structural monitoring applications need to transfer relatively large amounts of dynamic response 

measurement data with sampling frequencies as high as 1000 Hz (Nagayama et al. 2010). Also, the 

number of sensor nodes may be very large. Next, the assumption that all sensors have direct, 

line-of-sight link to the sink does not hold in the case of these structures. Radio communication on 

and around structures made of concrete or steel components is usually complicated due to radio 

wave reflection, absorption, and other phenomena that result in poor received signal quality. 

Moreover, sensor nodes are frequently installed in partially- or completely- obscured areas, such as 

between girders. As a result, not all sensors may always have a channel to the sink of good enough 

quality and therefore, direct communication between each sensor node and the sink would 

consume all the energy stored in the batteries of the sensor nodes very quickly. 

The problem of the limited energy that the sensor nodes can afford for data transmission can be 

alleviated by relying on recent advances in the field of cooperative communications. To reduce the 

amount of data required to be transmitted to the sink node, and therefore, to handle the problem 

associated with the massive data generated at the sensor nodes, the correlation among 

measurements by neighboring sensors can be leveraged (Barros and Servetto 2006). For instance, 

the data collected by the sensors on each span of a bridge are correlated since they are measuring 

the vibration of the same part of the physical structure. In addition, in some cases of bridge design, 

two adjacent spans are connected to a common anchorage, resulting in the data across the two 

spans to be correlated. Similarly, in the case of large buildings, it is natural to group the sensors of 

the several distinct parts of the building (e.g., floors). In all these cases, data compression 

approaches exploiting the correlation of the data, such as the Slepian-Wolf coding, offer the 

potential to greatly reduce the amount of information that needs to be transmitted (Stankovic et al. 

2010). However, the Slepian-Wolf coding gives only information-theoretical bounds for data 

compression and it is quite difficult to be incorporated into a practical system. 

In this work, we extend the work of Ampeliotis et al. (2012) and develop a communication 

protocol which, based on a Time Division Multiple Access (TDMA) strategy and adaptive filtering 

techniques such as Least Mean Squares (LMS) and Recursive Least Squares (RLS), aims at 

overcoming the difficulties associated with the sensor reachback problem. To do so, the protocol 

allows the sink node to keep an exact replica of the adaptive filters that, at each node, exploit the 

spatial and temporal correlations among sensor measurements to predict the current measurement 

from their own past measurements as well as past measurements obtained by their neighbors. 

Specifically, in the designed protocol each node is assigned a time slot that is divided into two 

sub-slots. During the first sub-slot, each sensor acquires a new measurement and computes the 

prediction error of its associated adaptive filter. If the prediction error is small enough (i.e., below 

a predefined threshold), then during the first sub-slot the considered sensor node sends the output 

of its filter to its neighbors, so that they can use this value as input for the prediction filters they 

operate. In the opposite case, i.e., when the prediction error is not that small, the node updates its 

filter (i.e., using an LMS or RLS update step) and sends its actual measurement to its neighbors. 

Afterwards, if the prediction is not accurate, since a Multiple Input Single Output (MISO) channel 

is known to result in energy savings as compared to the Single Input Single Output (SISO) case 
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(Cui et al. 2004), all the nodes which collaborated during the first sub-slot will form a MISO 

channel to simultaneously transmit the current measurement to the sink node. This way, with the 

aim of having an exact replica of all the filters implemented by the cooperating sensor nodes, the 

sink node is able to incorporate the transmitted measurement to the input of the aforementioned 

filters and update the filter associated with the considered sensor node.  

After deriving the communication protocol, both LMS-type and RLS-type implementations of 

the new technique have been tested extensively via real acceleration measurements from the 

Canton Tower. For both kinds of implementations, it turns out that the proposed strategy may offer 

considerable savings in transmitted energy, especially if an appropriate selection of the cooperating 

sensor nodes has been undertaken. Depending on the adaptive filtering technique, LMS or RLS, it 

has been shown that different tradeoffs between computational complexity and savings in 

transmitted energy can be achieved. 

The remainder of this paper is organized as follows. Section 2 is devoted to problem 

formulation. The proposed protocol is explained in more detail in Section 3. The results obtained 

by applying the protocol on real acceleration measurements from the Canton Tower in China 

during an earthquake are presented in Section 4. Section 5 concludes the paper and provides a 

discussion about possible future extensions. 

 

 

2. Formulation of the problem 
 

Let us consider a dense wireless sensor network consisting of   nodes, deployed on a civil 

structure that we wish to monitor. Consider also that node   (        ) has   neighbors, in 

the sense that they are close enough to node   so that wireless communication with low power 

can be accomplished. We will denote the neighbors of node   as                 . Each sensor 

node  , at some discrete time instant  , acquires the measurement      which is related to an event 

that takes place in the area where the wireless sensor network has been deployed. As an example, 

     may represent an acceleration measurement, that captures oscillations of the structure. Let us 

define the vectors of   past measurements of each sensor node   as 

 

     [                   ]  

            

      (1) 

Also, let us define the stacked vectors  

 
     [    

        
        

         
 ]

 
 

            

      (2) 

which represent the past   measurements of all sensor nodes in the neighborhood of node  . 

Consider now the correlation matrices defined as  

    [        
 ]                                         (3) 

Clearly, if matrices    are diagonal, the sensor measurements within all neighborhoods are 

correlated, neither in time nor in space. In contrast, if the matrices    are only block-diagonal 
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with block size  , the measurements are correlated in time but spatially uncorrelated. In this work, 

we will focus on the general case where    are of a general form, implying that the sensor 

measurements are correlated both in time and in space. 

Thus, we are interested in deriving a network protocol able to transmit the sensor 

measurements to the data-collecting node in an energy-efficient way. Such a protocol should take 

advantage of the aforementioned correlations, in order to reduce the number of transmissions 

toward the sink. Furthermore, the protocol should provide accuracy guarantees for the received 

data. 

 

 

3. A TDMA based cooperative protocol 

 
3.1 Predictors and correlation of measurements 
 

As mentioned in the previous section, we are interested in deriving an energy-efficient protocol 

for the transmission of the measurements to the data-collecting node. To this end, if we were able 

to reduce the number of information bits that need to be transmitted, this would have a 

considerable effect on the energy spent by the data-gathering process. Such a reduction in the 

number of information bits that need to be transmitted can be accomplished if we take advantage 

of the correlations among the measurements. In particular, if we are able to identify and send only 

the "new" information that lies in the measurements, then significant energy savings would emerge. 

A way for identifying such "new information" employs the notion of signal predictors. 

The nature of the observed phenomenon makes the measurements      predictable, at least to 

some extent. In particular, if the data-collecting node had knowledge of previous measurements 

acquired by sensor   (and possibly previous measurements of other nodes in the vicinity of node 

 ) , then it could compute an estimate of     . This estimate, of course, corresponds to information 

already known to the data-collecting node. In principle, we can distinguish between two different 

types of prediction functions, namely, (a) one that does not change with time, which implies that 

the correlation mechanism is constant or stationary, and (b) a time-varying prediction function, 

implying that the statistics of the signals measured by the nodes of the network have a dynamic 

behavior. Assuming the process to be stationary, the prediction function can be realized as a linear 

filter with coefficients obtained by minimizing the mean-squared error between the measurements 

     and their predicted values. 

 

 

 

Fig. 1 Each of the sensors is assigned its own time-slot to transmit, in a TDMA fashion. Furthermore, each 

time-slot is divided into two sub-slots. During the first sub-slot of duration 𝑇𝐴, each sensor   

transmits to its    neighbors. During the second sub-slot of duration 𝑇𝐵 , node   and its 

neighbors transmit to the sink node in a cooperative fashion 
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However, in most real world applications the observation processes are non-stationary since 

their statistical characteristics are changing in time. As a result, the optimal coefficients of the 

predictor are changing in time as well. In order to track these changes, a practical approach is to 

iteratively estimate them by updating previous filter coefficients as it is done in adaptive filters 

(Sayed 2008). Such an approach offers the additional benefit that the data-collecting node does not 

need to know the statistics of the underlying process. Rather these statistics are in effect estimated 

by the adaptive filter. 

 

3.2 A simple cooperative TDMA protocol 
 

As already mentioned in the introduction, another approach for reducing the energy required to 

transmit data relies on the concept of cooperative communications. In particular, in cooperative 

communications, a number of accurately synchronized nodes transmit data concurrently so that the 

system resembles a transmitter with multiple antennas. During the previous phase, the nodes have 

agreed upon the data that will be sent. In effect, benefits similar to Multiple Input Multiple Output 

(MIMO) systems can be achieved (Cui et al. 2004), hence the terms virtual MIMO or distributed 

MIMO are often used alternatively to denote cooperative communication systems.  

For illustration purposes, let us consider now a straightforward cooperative communication 

protocol for the problem at hand, in which correlation among the measurements acquired by the 

nodes of the network is not taken into account. According to this protocol, each sensor node is 

assigned its own time-slot in order to transmit information, in a Time Division Multiple Access 

(TDMA) fashion. Cooperative communications can be incorporated into this protocol, by dividing 

each time-slot into two sub-slots as depicted in Fig. 1. During the first sub-slot of duration 𝑇𝐴, 

each sensor   transmits its estimated (or observed) value to its   neighbors. During the second 

sub-slot of duration 𝑇𝐵, node   and its neighbors transmit to the sink node in a cooperative 

fashion. In such a scenario, both the Amplify and Forward (AF) as well as the Decode and 

Forward (DF) methods (Hong et al. 2007) can be adopted. 

 

3.3 Cooperative TDMA exploiting correlation 
 

Consider now an extension of the aforementioned protocol, where the correlation of the 

measurements is taken into account. Since the measurements may be correlated both in time and in 

space, the idea of using past measurements acquired by node   as well as past measurements 

from nearby sensor nodes in order to predict new measurements of node   seems well justified. 

This fact can be used to save a noticeable percentage of the transmissions to the sink node, in the 

case where the sink node can itself predict the required measurements within some predefined 

accuracy. Thus, let each sensor node   keep a time varying prediction filter      as well as a data 

vector  

                    ̃    [ ̃   
  ̃      

  ̃      
   ̃      

 ]
 
  (4) 

so that the output of the filter, defined as  

  ̂        
 ⋅  ̃    (5) 

is an approximation of the actual measurement      obtained by sensor   at time  . In particular, 

 ̂    is a prediction of the actual measurement     . In the above expressions, we have used the 
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vectors  

 

 ̃    [ ̃      ̃       ̃     ]  

            

 (6) 

to represent approximate versions of the past   measurements obtained by sensor  . Thus, 

vectors  ̃    and      have dimensions  ⋅    . Let us now define a binary variable      

according to the prediction error, as  

      { 

      ̂           

      ̂           
  (7) 

where   denotes a small positive constant. The approximate measurements  ̃    are defined as,  

  ̃    { 

 ̂            

             
  (8) 

Based on the above definitions, the protocol of each sensor node   can be seen in Table 1. At 

a time instant  , each sensor acquires its new measurement      and starts a synchronized loop to 

track the   time-slots that will follow. As seen from Table 1, node   is active in two cases: (a) 

when the current slot index   is equal to  , and (b) when the current slot index   is equal to the 

index of any of its neighbors. In case (a), the node computes the output of its prediction filter and 

compares it to the actual measurement     . Thus, it computes the binary variable      that 

determines whether the prediction was accurate or not. In the case where the prediction was not 

accurate, the prediction filter is updated using an adaptive algorithm. Table 1 summarizes the steps 

followed in order to perform the update of the filter, for the cases of the LMS and the RLS update 

algorithms. As a general rule, the LMS algorithm should be used when reduced computational 

complexity is required. On the other hand, one should opt for the RLS algorithm in the case where 

the statistics of the measurements change abruptly with time, given that the computational 

complexity requirements can be met. Also, as it will be shown in the experiments’ section, RLS 

performs better when adaptation stalls and restarts very often during operations, as it is the case 

with the suggested technique. Regardless of the algorithm used for the update,      is used as a 

desired response signal. Then, the sensor node   computes  ̃   , which is either the output of the 

prediction filter (accurate prediction) or the actual measurement (inaccurate prediction). Thus, 

sensor   updates its input vector  ̃      and sends  ̃    and      to its neighbors. Finally,  ̃    

is sent to the sink node only if the prediction was inaccurate, otherwise the sink node is able to 

compute  ̃    using a prediction filter. In case (b), i.e. when a neighbor of   is active, node   

listens for the transmitted values  ̃    and     . It then updates its input vector  ̃      with the 

received value  ̃    and, in the sequel, helps its neighbor transmit to the sink by relaying  ̃    if 

     was 1. 

The protocol followed by the sink node is depicted in Table 2. At each time instant, the sink 

node also executes a loop so as to track the   time-slots, in a synchronized fashion. For the first 

𝑇𝐴 seconds of each slot, the sink node is inactive because sensor-to-sensor communication takes 

place. At the following 𝑇𝐵 seconds however, the sink node is receiving the measurement  ̃    of 
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the node assigned to the current slot. Of course, in the case where the prediction at node   was 

accurate, such a message will not be transmitted. Thus, the sink node must implement a procedure 

to detect such “empty” messages. The result of the detection process is a binary variable  ̂    

which will be equal to      in the case where the detection is correct. In the sequel, the sink node 

is able to compute  ̃   
   

, (that is, a copy of  ̃    at the sink) either as the output of a local 

prediction filter, i.e. 

  ̃   
   

     
    

⋅  ̃   
   

   (9) 

in the case where  ̂      (accurate prediction) or by setting it equal to the received measurement 

 ̃    (inaccurate prediction). In the case of inaccurate prediction, the sink node must use the same 

adaptive algorithm as the sensor   to update its local prediction filter for sensor  , so that the two 

filters are equal (of course, if all channels are error free). Finally, the sink node must update the 

input vectors of all the prediction filters affected by  ̃   , that is the prediction filter for node   

and the local prediction filters of all its neighbors.  

It can be verified by the above description of the proposed data collection protocol, that in the 

case where all channels are error-free, the reconstructed sequences  ̃   
   

 at the sink node satisfy 

the distortion criterion 

    
   

  ̃   
   

           (10) 

In fact, the maximum allowed distortion parameter   offers a trade-off between accurate 

reconstruction of the measurements by the sink node, and the number of transmissions required. 

Also, some other factors, such as the degree to which the measured signals can be predicted and 

the specific characteristics of the adaptive algorithm used to update the coefficients of the 

prediction filters, may influence the performance of the proposed protocol. 
 

3.4 Cooperative neighborhood selection 
 
Firstly, let us analyze the merits and drawbacks of having cooperation among the sensor nodes. 

For a given node  , cooperation with   neighbors actually requires   additional transmissions 

to these neighbors at each time instant. Although the energy cost of the additional inter-node 

transmissions can be low due to their proximity, one should also take into account the channel 

quality between the cooperating nodes which may introduce additional distortion to the data being 

sent. 

On the other hand, the gains can overcome the cooperation costs in case that the number of 

transmissions toward the sink is reduced due to the exploitation of high spatial correlation among 

the measurements in the cooperating neighborhood. Certainly, the cooperation gains are not the 

same for all the nodes. In fact, the relation between the values of temporal correlation among the 

measurements of node   on one side, and the values of their spatial correlation with the 

measurements of the cooperating nodes should determine how beneficial the cooperation may be. 

Furthermore, an additional benefit can be obtained once the transmissions toward the sink are 

required. As previously explained, the cooperating nodes may simultaneously transmit to the sink 

node; thus forming MISO channel and improving energy-efficiency. 
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Table 1 The protocol executed by sensor node n 

Initialize    0,  ̃  0 and    

Initialize 𝜇  (If LMS update is used) 

Initialize 𝜆 𝐏𝐧  𝟏  δ
  𝐈 (If RLS update is used) 

For     to +∞  

  Acquire the measurement      

 For     to    

  If     then  

    ̂        
  ̃     

        {

      ̂           

      ̂           
  

    ̃    {

 ̂            

             
  

   If         

                + 𝜇 (      ̂      ̃    (LMS Update) 

OR  

    𝐤𝐧 𝐭  
λ
− 𝐏n t−  ̃  𝑡

  𝜆−  ̃𝐧 𝐭
𝐓 𝐏  𝑡−  ̃𝐧 𝐭

 

    𝜉          ̂    

                + 𝐤𝐧 𝐭𝜉    

    𝐏𝐧 𝐭  λ
  𝐏𝐧 𝐭 𝟏  λ

  𝐤𝐧 𝐭 ̃𝐧 𝐭
𝐓 𝐏      

(RLS Update) 

   End  

   Update  ̃      using  ̃     

   Send  ̃    and      to the neighbors (𝑇𝐴 sub-slot)  

   If         

    Send  ̃    to the sink (𝑇𝐵 sub-slot)  

   End  

  Elseif  ∈ {                }  

   Listen for  ̃    and      (𝑇𝐴 sub-slot)  

   Update  ̃      using  ̃     

   If         

    Send  ̃    to the sink (𝑇𝐵 sub-slot)  

   End  

  Else  

   Sleep (𝑇𝐴 + 𝑇𝐵 seconds)  

  End  

 End  

End  
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Table 2 The protocol executed by the sink node 

Initialize    0
   

,  ̃  0
   

 (         ) 

Initialize 𝜇   (If  LMS update is used) 

Initialize 𝜆 𝐏𝐬  𝟏                ) (If  RLS update is used) 

For     to +∞  

 For     to    

  Sleep (𝑇𝐴 seconds)  

  Listen for  ̃    (𝑇𝐵 sub-slot)  

   ̂    {

     ̃    w s not detected

     ̃    w s detected
  

  If  ̂       

    ̃   
   

     
    

 ̃   
   

  

    𝐬 𝐭 𝟏
   

   𝐬 𝐭
   

 

  Else  

    ̃   
   

  ̃     

    𝐬 𝐭 𝟏
   

   𝐬 𝐭
   

+ 𝜇 ( ̃        
    

 ̃   
   

  ̃   
   

 (LMS Update) 

OR  

   𝐤𝐬 𝐭  
λ
− 𝐏s t−  ̃𝑠 𝑡

 𝑆 

  𝜆−  ̃𝑠 𝑡
 𝑆  

𝐏𝑠 𝑡−  ̃𝑠 𝑡
 𝑆 

 

   𝜉     ̃        
    

 ̃   
   

 

    𝐬 𝐭 𝟏
   

   𝐬 𝐭
   

+ 𝐤𝐬 𝐭𝜉    

   𝐏𝐬 𝐭  λ
  𝐏𝐬 𝐭 𝟏  λ

  𝐤𝐬 𝐭 ̃   
    

𝐏      

(RLS Update) 

  End  

  Update  ̃     
   

 using  ̃   
   

  

  For 𝑖=1 to    

   Update  ̃ 𝑠 𝑖     using  ̃   
   

  

  End  

 End  

End  

 

 

Not surprisingly, in the simulation section it turns out that choosing the suitable cooperating 

neighborhood, in terms of its size and the actual nodes involved, plays a significant role in 

enhancing the performance of the protocol. Therefore, the optimization of the cooperating 

neighborhood requires (a) the knowledge of all channels among the nodes (including the sink) and 

(b) the knowledge of the auto- and cross- correlation functions of all nodes. Regarding the former 

issue, in a practical system, all the involved channels may be estimated during a training period in 

which all nodes participate. Initially, all the nodes would send the training sequence to the sink and 

all other nodes. Afterwards, the nodes would also transmit to the sink the sequences that are 

received from all other nodes. Consequently, the sink could estimate all the involved channels in a 

centralized manner. However, here we focus on the criterion (b). Hence, in Section 4.2., we show a 

simple neighborhood selection procedure based on the correlation functions of all the nodes. 
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Fig. 2 The distribution of accelerometers along the tower 

 

 

4. Numerical results 
 

In order to demonstrate the effectiveness of the proposed algorithms, we have performed 

extensive experiments with real data. Although the dataset has not been designed for our protocol, 

the experiments show certain performance benefits of cooperation among the nodes. In particular, 

the acceleration measurements from the Canton Tower obtained during an earthquake have been 

used in order to present these cooperation gains. Toward this aim, we examine the number of 

transmissions toward the sink as a function of the maximum allowed absolute distortion, i.e., the 

value of the parameter  .  

 

4.1 The Canton tower monitoring system 
 

The Canton Tower (the Guangzhou TV and Sightseeing Tower) was constructed in 2010 in 

Guangzhou, China. It has already attracted the interest of several researchers (Casciati et al. 2009). 

It is a super-tall structure with a height of 610 m. On the top level of the tower at height of 454 m 

an antennary mast is mounted with 164 m height (see Fig. 2). 

The tower is a tube-in-tube structure; the outer tube is made of steel and the inner one is a 

reinforced concrete tube. The two tubes are linked together by 36 floors and 4 levels of connection 

girders. The underground part of the tower is 10 m height and consists of 2 floors with plan 

dimensions of 167 m by 176 m. The outer tube is shaped by concrete-filled-tube (CFT) columns, 

spaced in an oval shape, inclined vertically, and connected by hollow steel rings and braces. The 

oval shape dimensions varies from 60 m by 80 m at the underground level (altitude of -10 m) to 

their minimum values of 20.65 m by 27.5 m at the altitude of 280 m, and then they increase again 

to 40.5 m by 54 m at the top level of the tube (altitude of 450 m). The oval shape of the top level is 

rotated 45 degrees horizontally relative to that of the bottom level. The top level plan is also 
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inclined 15.5 degrees to the horizontal plane. The inner tube shape is an oval with constant 

dimensions along its height (14 m by 17 m), and its centroid is not that of the outer tube. The 

thickness of the tube varies from 1m at the bottom to 0.4 m at the top (Ni et al. 2009). 

The tower was instrumented with an SHM system comprised of 600 sensors. The system was 

designed and implemented by the Hong Kong Polytechnic University for both in-construction and 

in-service real-time monitoring of the tower (Ni et al. 2008). Note that Fig. 2 indicates the 

locations of accelerometers along the tower height as well as the axes being measured. The 

dynamical response of the tower to an earthquake was recorded by 17 sensors measuring two 

different axes. The measured acceleration data sequences obtained from several sensors are 

demonstrated in Fig. 3 for six minutes of response during an earthquake. The sampling frequency 

of the signal was 50 Hz. 

 
4.2 Numerical results 
 

In this subsection, we analyze the gains that may be achieved by applying the two schemes 

described in Section 3.3, for different cooperation scenarios. Due to the fact that the LMS-based 

algorithm has been examined in the conference companion of this paper (Ampeliotis et al. 2012), 

here we mostly focus on the performance of the RLS-based protocol. It has been concluded that 

for a given distortion, the number of required transmissions from a certain node toward the sink 

varies with reference to (a) the number of the filter coefficients of a sensor node, (b) the size of 

cooperating neighborhood and (c) which node(s) are selected for cooperation. To perform a fair 

comparison among different cooperation scenarios, we assume the same filter lengths. For instance, 

for the filter length of 18, a non-cooperative node exploits its 18 past measurements. On the 

contrary, by cooperating with one neighbor, a node exploits 9 of its own past measurements and 9 

of the neighbor’s. 
 
 

 

Fig. 3 The measured acceleration data sequences 
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(a) Number of filter coefficients=6 (b) Number of filter coefficients=12 

Fig. 4 Performance comparison between the LMS-based and RLS-based schemes for sensor 10 
 
 
In Fig. 4(a), we compare the LMS-based and RLS-based schemes for sensor node 10, which is 

located in the middle of the tower, for a filter length equal to 6. In both schemes, we analyze a 

cooperative scenario, i.e., cooperation with sensor 9, and non-cooperative, where node 10 relies 

only on its own measurements. It can be seen that for both protocols there is a benefit due to 

cooperation. Not surprisingly, for correlated input signals, the RLS-type implementation generally 

performs better due to the faster convergence speed and better ability to adapt in a fast 

time-varying environment. Also, RLS performs better when adaptation stalls and restarts very 

often during operations. Of course, such performance gains come at an increased computational 

complexity over the LMS-type implementation. In Fig. 4(b), for the same simulation setting we 

use a greater filter length, and the cooperation gain seems to be smaller (yet still existing).  

 

 

 

Fig. 5 The averaged performance for 6 nodes 
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Table 3 The crosscorrelation coefficients between the data of sensor 10 and other sensors 

Correlation coefficient Sensor number 
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(a) Number of filter coefficients=18 (b) Number of filter coefficients=36 

Fig. 6 Performance of the RLS-based scheme for different cooperating neighborhoods for sensor 10 
 

 

 

In the following, we focus on the RLS-based scheme. Let us analyze how the performance 

changes as the cooperating neighborhood size grows, for greater filter lengths. The results for 

sensor 10 demonstrate that, in general, the performance can be improved by increasing the number 

of cooperating nodes. However, in order to maximize the gains, one should carefully select 

suitable cooperating neighbors; see Fig. 6(a). 

A simple, yet effective, way to determine a suitable cooperating neighborhood is to analyze the 

correlation coefficients for each node at the zero-th lag. Note that in this setting, we do not take 

into account the criterion of channel quality among the nodes. Thus, after ordering the absolute 

values of correlation coefficients, for a neighborhood size of 6, one should just select the best 5 

nodes ordered by this criterion. In Table 3, we order 10 nodes according to their relevance to node 
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10. For the signals considered in these experiments, this simple approach provides good results 

due to the fact that the crosscorrelation functions are wide enough, so the zero-th lag correlation 

coefficients gives enough information even for longer filter lengths. The autocorrelation function 

of node 10 and its crosscorrelation with several sensors are plotted in Fig. 5. Note that the 

cooperation gain for each sensor is dependent on the relation between the values of its auto- and 
cross- correlations at the different lags. In case that its autocorrelation at the limit lags, defined by 

the filter length, is greater than the crosscorrelation close to the zero-th lag, then for this node the  
cooperation will not be useful. On the other hand, when the crosscorrelation have greater values, 

then the neighbors add new information, so the predictor learns better the process. Furthermore, 

observe that the performance of the protocol may deteriorate by randomly adding nodes into the 

previously selected neighborhood. In Fig. 6(b), we illustrate this by plotting the curve obtained for 

a neighborhood consisting of 12 nodes (including node 10 itself). In fact, in addition to the group 

of 6 nodes performing well (solid line), we added 6 other nodes which seemed to be less relevant 

to sensor 10. Actually, five of these less relevant nodes measure a different axis than node 10 (see 

Fig. 2). Due to the adaptive nature of the protocol, they actually reduced the cooperation gains 

with respect to the scenario with properly selected cooperation neighborhood. 
Finally, in Fig. 7 we plot the averaged performance of 6 sensors where in the cooperative case 

all of them cooperate with their best 5 neighbors. Although not all of them experience cooperation 

benefits to the same extent, there is an average performance improvement as compared to the 

non-cooperative case. 

To conclude, the power consumption of a sensor node may be reduced by leveraging 

spatio-temporal correlations among sensor nodes. To this end, a crucial issue to be considered is 

the selection of an optimal cooperating neighborhood in terms of both its size and the nodes 

involved. 

 

 

 

Fig. 7 The averaged performance for 6 nodes 
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5. Conclusions  

 
The proposed spatio-temporal data gathering protocol reduces the power consumption by 

reducing the number of measurements transmitted to a sink node, within some prescribed 

distortion. Additionally, the protocol leverages the idea of cooperative communication in order to 

reduce the required transmission power. The experiments with real acceleration measurements 

demonstrate its efficiency and indicate savings in transmitted energy. 

As it was presented in the simulation section, one of the major factors that influence the 

performance of the proposed protocol is the determination of the cooperating neighborhoods used 

for prediction. Thus, the development of a method to select such neighborhoods in an optimal 

manner would be highly desirable. Furthermore, a dynamic version of such an algorithm, able to 

modify these coalitions in an on-line fashion would also be very important. 
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