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Abstract.    This paper presents a theoretical algorithm for constructing the mode shapes of a bridge from 
the dynamic responses of a test vehicle moving over the bridge. In comparison with those approaches that 
utilize a limited number of sensors deployed on the bridge, the present approach can offer much more spatial 
information, as well as higher resolution in mode shapes, since the test vehicle can receive the vibration 
characteristics of each point during its passage on the bridge. Basically only one or few sensors are required 
to be installed on the test vehicle. Factors that affect the accuracy of the present approach for constructing 
the bridge mode shapes are studied, including the vehicle speed, random traffic, and road surface roughness. 
Through numerical simulations, the present approach is verified to be feasible under the condition of 
constant and low vehicle speeds. 
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1. Introduction 
 

Measuring the mode shapes of a bridge is a crucial task in bridge engineering, since the 
measured mode shapes serve as useful indexes for many applications related to bridges, such as 
numerical model calibration and updating (Brownjohn et al. 2001, Jaishi and Ren 2005, Altunisik 
et al. 2012), structural health monitoring and damage detection (Doebling et al. 1998, Farrar et al. 
2001, Chang et al. 2003, Carden and Fanning 2004, Chrysostomou et al. 2008), and so on. 
Conventionally, to measure the mode shapes of a bridge, quite a number of sensors should be 
mounted on the bridge deck to record the dynamic responses of the bridge under certain sources of 
vibration. Then, the mode shapes of the bridge can be identified by performing system 
identification and/or data processing techniques on the recorded bridge responses, as well as the 
vibration source histories in some cases where they are available. Details for such modal 
identification approaches are available in many references, e.g., the books by Ewins (2000) and 
Wenzel and Pichler (2005) and the papers by Farrar and James (1997) and Huang et al. (1999).The 
number and locations of the sensors may vary from case to case, depending upon the engineers’ 
judgment on the trade-off between the spatial resolution and experiment cost. Generally, to 
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guarantee higher spatial resolution for mode shapes requires a larger number of sensors to be 
mounted, which is accompanied by higher consumption of cost, time, and labor.  

Yang et al. (2004) presented a novel idea for extracting the dynamic characteristics of a bridge 
indirectly from the dynamic response of a test vehicle during its passage over a bridge, rather than 
from the dynamic response of the bridge. This approach requires only few sensors to be installed 
on the moving vehicle, but no sensors on the bridge, showing its relative advantage for fast 
scanning the bridge dynamic characteristics. Such an approach has been referred to as the indirect 
approach, in comparison with the conventional approaches that are regarded as the direct 
approach. Recently, the indirect approaches have been extended to various applications related to 
bridges, such as frequency extraction (Yang and Lin 2005, Yang and Chang 2009),damage 
detection (Bu et al. 2006, McGetrick et al. 2009), and other relevant issues (Yin and Tang 2011). 

Recently, Zhang et al. (2012) attempted to extend the indirect approach to extraction of 
mode-shape-related dynamic characteristics of a bridge and verified its feasibility numerically and 
experimentally. They utilized a passing vehicle equipped with tapping devices to extract the 
approximate mode shape squares of the bridge, for the purpose of damage detection. Contradiction 
was induced between the frequency and spatial resolutions, namely, better result is obtained for the 
former using longer analysis time intervals, but not for the latter, due to the use of short-time 
Fourier transform as their major data processing tool. Such an attempt is encouraging in that it 
reveals an additional advantage of the indirect approach: high spatial resolution in the extracted 
mode shapes. The passing vehicle, which is also designated as the test vehicle, can receive the 
vibration characteristics of every point it has traveled over the bridge. In comparison with the 
direct approaches that have a limited number of sensors deployed on the bridge, the indirect 
approach can offer more spatial information, as well as higher resolution in mode shapes. 

The objective of this paper is to present an indirect approach for extracting the mode shapes of 
a bridge with high spatial resolutions from the dynamic response of a passing test vehicle. To 
reduce the contradiction mentioned above, while achieving the highest resolution in the 
longitudinal spatial domain, the concept of instantaneous amplitudes, obtained as a result of the 
Hilbert transform, will be introduced in the following section. Then, the theoretical formulation for 
the present approach will be given in detail, followed by its operating algorithms and constraints. 
Through four numerical cases, the feasibility of the present approach is illustrated and the factors 
that affect the accuracy of the extracted mode shapes are studied. 

 
 

2. Hilbert transform (HT) 
 

Given a time series s(t), the Hilbert transform (HT) of s(t) is defined as (Bandat and Piersol 
1986) 

       1
ˆ

s
s t s t d

t




 



 

Η PV           (1) 

where PV denotes the Cauchy principal value. The HT of s(t) can be interpreted as the convolution 
of s(t) with a unit impulse function of t1 , thus it preserves most local information of s(t). Then, 

s(t) and ŝ (t) can form an analytical function z(t) as 

      ˆz t s t is t     (2) 
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Fig. 1 Mathematical model of a test vehicle moving on a bridge 
 
 
Mapping z(t) from the complex Cartesian coordinates to polar coordinates yields 

      i tz t A t e     (3) 

where  

     2 2ˆA t s t s t  ,    
 

ˆ
arctan

s t
t

s t


 
   

 
                (4, 5) 

The time-dependent function A(t) is referred to as the instantaneous amplitude function of the 
original function s(t), and θ(t) as the instantaneous phase function. In addition, the instantaneous 
amplitude function A(t) can be regarded as the envelope function of s(t). The above definitions for 
the instantaneous amplitude and phase functions are physically meaningful only when the time 
series is “mono-component” or “narrow-band” (Huang et al. 1998, Huang et al. 1999). 

 
 

3. Theoretical formulation 
 

Fig. 1 shows the mathematical model of a test vehicle moving on a simple bridge. In this model, 
the vehicle is simplified as a moving sprung mass mv, supported by a spring of stiffness kv; the 
bridge is a simply-supported beam of length L, constant mass density m* per unit length, and 
constant bending rigidity EI. To focus on the physical meanings of the vehicle response, the 
following assumptions are adopted without losing the generality of the problem: (1) Road surface 
roughness is ignored in the derivation, but will be included in one of the numerical cases studied 
later on to evaluate its impact. (2) Vehicle mass is negligibly small in comparison with the bridge 
mass. (3) Before the arrival of the test vehicle, the bridge remains at rest, i.e., zero initial 
conditions are assumed for the bridge. This assumption is reasonable because the bridge vibrations 
caused by ambient excitations are generally small enough to be ignored in comparison with those 
by moving vehicular loads. (4) Damping is neglected for both the vehicle and bridge. This 
assumption is also reasonable because the vibrations of both the vehicle and bridge under the 
moving vehicle action are forced vibrations, for which the role of damping is insignificant. (5) The 
test vehicle travels at constant speed v during its passage over the bridge. 

The equations of motion can be written for the vehicle and bridge as follows 

799



 
 
 
 
 
 

Y.B. Yang, Y.C. Li and K.C. Chang 

 m
v
q

v
(t)  k

v
(q

v
(t)  u(x,t)

xvt
)  0  (6) 

 m*u(x,t)  EI u (x,t)  f
c
(t) (x  vt)  (7) 

where u(x,t) denotes the vertical displacement of the bridge, qv(t) the vertical displacement of the 
vehicle, measured from its static equilibrium position, and a dot and a prime represents the 
derivative with respect to time t and longitudinal coordinate x, respectively. The contact force fc(t) 
can be expressed as 

       ,c v v v x vt
f t m g k q t u x t


     (8) 

where g is the gravitational acceleration.  
Using the modal superposition method, i.e., expressing the bridge displacement response u(x,t) 

in terms of modal shapes sin(nx/L) and generalized coordinates qb,n(t), 

    ,
1

, sin b n
n

n x
u x t q t

L





     (9) 

one can obtain the solution of the displacement response of the test vehicle as (Yang and Lin 2005, 
Yang and Chang 2009) 

       1, 2, 3,
1

1 1
{ cos cos cosv n n n v

n

n v n v
q t A t A t A t

L L

 






    
     

   
  

 4, , 5, ,cos cos }n b n n b n

n v n v
A t A t

L L

           
   

                (10) 

where the coefficient of each term is 

      

2
,

1,
2 1 1

2 1

st n v
n

n v v

A
n v n v

S
L L


 

 




   
    

  

 (11) 

      

2
,

2,
2 1 1

2 1

st n v
n

n v v

A
n v n v

S
L L


 

 




   
    

  

 (12) 

800



 
 
 
 
 
 

Constructing the mode shapes of a bridge from a passing vehicle: a theoretical study 

         
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n v v v v

v
n

L
A

n v n v n v n v
S

L L L L



   
   

   
 

       
        

    

 

2
, ,

, , , ,

2 st n n v b n

v b n v b n v b n v b n

n v
S

L
n v n v n v n v

L L L L

 

          

   
 

               
    

 (13) 

  

2
,

4,
2

, ,2 1

n st n v
n

n v b n v b n

S
A

n v n v
S

L L


    

 


        
  

 (14) 

  

2
,

5,
2

, ,2 1

n st n v
n

n v b n v b n

S
A

n v n v
S

L L


    




        
  

 (15) 

and the vehicle frequency ωv, bridge frequency ωb,n, vehicle-induced static deflection Δst,n of the 
bridge, and the speed parameter Sn, of the n-th mode are defined as  

 v
v

v

k

m
   (16) 

 
2 2

, 2 *b n

n EI

L m

   (17) 

 
3

, 4 4

2 v
st n

m gL

n EI


   (18) 

 
,

n
b n

n v
S

L




  (19) 

The bridge response can also be solved in a similar manner (Yang and Lin 2005, Yang and 
Chang 2009). However, it won’t be presented herein since it is not of concern in this study.  

Taking the derivative of the vehicle displacement response twice, one can obtain the vehicle 
acceleration response as 

 q
v

t   {
n1



 A
1,n

cos
n 1 v

L









 t  A

2,n
cos

n 1 v

L









 t  A

3,n
cos 

v
t   

 4, , 5, ,cos cos }n b n n b n

n v n v
A t A t

L L

           
   

 (20) 
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with the coefficients as  

  2

1, 1,

1
n n

n v
A A

L

 
   

 
, 

  2

2, 2,

1
n n

n v
A A

L

 
   

 
, 2

3, 3,n v nA A   , 

 
2

4, , 4,n b n n

n v
A A

L

     
 

, 
2

5, , 5,n b n n

n v
A A

L

     
 

 (21) 

Clearly, the vehicle response is dominated by five frequencies, i.e., the left-shifted driving 
frequency (n-1)πv/L, right-shifted driving frequency (n+1)πv/L, vehicle frequency ωv, left-shifted 
bridge frequency ωb,n-nπv/L, and right-shifted bridge frequency ωb,n+nπv/L. 

To extract the mode shapes of the bridge, the component response corresponding to the bridge 
frequency of the n-th mode should be singled out from the vehicle response by a feasible filtering 
technique. According to Eq. (20), the extracted bridge component response Rb associated with the 
n-th mode is  

 , ,cos cosb l b n r b n

n v n v
R A t A t

L L

           
   

                (22) 

where the coefficients Al and Ar corresponding to the left- and right-shifted bridge frequencies are 

  

2 2
,

4, ,
2

, ,2 1

n st n v
l n b n

n v b n v b n

Sn v
A A

n v n vL S
L L


    

                
   

      (23) 

  

2 2
,

5, ,
2

, ,2 1

n st n v
r n b n

n v b n v b n

Sn v
A A

n v n vL S
L L


    

                
  

     (24) 

The bridge component response Rb is a narrow-band time series and thus can be processed by 
the HT to yield its transform pair, 

     , ,
ˆ sin sinb b l b n r b n

n v n v
R t R t A t A t

L L

                   
H           (25) 

From Eq. (4), the instantaneous amplitude of Rb can be obtained as 

 

     

 

2 2

2 2

2 2

ˆ

2
2 cos

4 sin

b b

l r l r

l r l r

A t R t R t

n vt
A A A A

L

n vt
A A A A

L





 

     
 

  

            (26) 
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In general, the driving frequency nv/L is much smaller than the bridge frequency ωb,n. 
Accordingly, the coefficients Al and Ar in Eqs. (23) and (24)reduce to the following: 

      
2

2 ,
, 2

, ,2 1
n st n v

l b n

n v b n v b n

S
A

S




   



  

 (27) 

      
2

2 ,
, 2

, ,2 1
n st n v

r b n

n v b n v b n

S
A

S




   


 
  

          (28) 

As can be seen, the two coefficients Al and Ar are equal in magnitude, but opposite in sign, i.e., Al + 
Ar=0. Hence, Eq. (26) reduces to 

   24 sin sinl r m

n vt n vt
A t A A A

L L

 
    (29) 

where  

  
2 2
, ,

2 2 2
,

4
1

b n n st n v
m l r

n v b n

S
A A A

S

 
 


  
 

 (30) 

Replacing x with vt in Eq. (29) yields   

 sinm

x n x
A A

v L

   
 

      (31) 

The preceding equation shows that the instantaneous amplitude history A(x/v) of the extracted 
component response is the mode shape functions sin (nx/L) of the bridge (in absolute value) 
multiplied by a coefficient Am. A closer look at Am given in Eq. (30) reveals that it is a function of 
the speed parameter Sn, static deflection st,n, vehicle frequency ωv, and bridge frequency ωb,n. All 
these variables are constants, so is Am a constant. Particularly, the product of the mode shape 
function and any constant is known to remain a mode shape. The implication here is that, once the 
component response corresponding to the bridge frequency of a certain mode can be decomposed 
from the response of the test vehicle during its passage over the bridge, the instantaneous 
amplitude history of the decomposed component response is representative of the mode shape of 
concern of the bridge. Theoretically, the mode shapes of the bridge can be extracted with a very 
high resolution since each point of the bridge has been traveled by the test vehicle. 

 
 

4. Algorithms and constraints 
 
Substituting Eqs. (22) and (25) into Eq. (5), the instantaneous phase (t) can be derived as 
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   
   ,

,

ˆ
arctan arctan cot

2

b
b n

b

b n

R t
t t

R t

t

 



 
    

 

 

 (32) 

By substituting the expressions for the instantaneous amplitude in Eq. (29) and instantaneous 
phase in Eq. (32) into Eq. (3), the analytical function can be expressed as follows 

      

   
,

2 2
, , 2
2 2 2

,

sin
1

b ni t
i t b n n st n v

n v b n

S n vt
z t A t e e

LS

   
 

  
 

 
   

   
 (33) 

The preceding equation indicates that, in the dynamic response of the test vehicle during its 
passage over the bridge, the component response of the bridge frequency ωb,n of the n-th mode 
oscillates with a varying amplitude, but with a shape identical to that of the n-th mode shape of the 
bridge in sinusoidal form. Therefore, the bridge component response will oscillate within the 
envelope formed by the mode shape of the bridge. To sketch the envelope of the bridge component 
response is equivalent to calculating the instantaneous amplitude.  

 
 

 

Fig. 2 Flow chart 
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The procedural steps proposed for extracting the bridge mode shape from the dynamic response 
of a test vehicle are as follows (see Fig. 2): 

Step 1: To record the vibration response R(t) of the test vehicle during its passage over the 
bridge. In practice, the acceleration response of the test vehicle can be measured using the 
accelerometers (say for seismic use) mounted on the vehicle. The recording interval should cover 
the whole duration of passage of the test vehicle, i.e., from the instant of entrance to the instant of 
departure from the bridge. The passing speed should be made as low as possible. 

Step 2: To identify the vibration frequency ωb,n of the bridge from the recorded vehicle response 
R(t). This step can be carried out using any feasible means of identification technique, such as the 
Fourier transform (Yang et al. 2004, McGetrick et al. 2009), Fourier transform collaborating with 
the empirical mode decomposition (EMD) pre-processing technique (Yang and Chang 2009), and 
so on. 

Step 3: To extract the component response associated with a bridge frequency from the test 
vehicle response. After the bridge frequency ωb,n is made available, one can extract the bridge 
component response Rb,n(t) associated with ωb,n from the test vehicle response R(t), by any feasible 
signal processing tools, such as the band-pass filters, singular spectrum analysis, and so on.  

Step 4: To obtain the instantaneous amplitude history of the bridge component response for the 
particular mode. Performing the Hilbert transform, as defined in Eq. (1), to the decomposed bridge 

component response Rb,n(t) yields its transform pair  ,
ˆ

b nR t . Then, one can obtain the 

instantaneous amplitude history An(t) of the bridge component response using Eq. (4).  
Step 5: To recover the mode shape of the bridge from the instantaneous amplitude history. The 

curve of the instantaneous amplitude function An(t) is representative of the mode shape of the 
bridge in absolute value. The sign of the mode shape can be decided according to engineers’ 
judgment or experience (Fang and Perera 2009). Note that a discontinuity may appear at common 
nodes where the signs at both sides of the nodes are forced to be opposite. Finally, the mode shape 
of the bridge obtained can be normalized or smoothed for any further engineering applications, in 
a way similar to those processed by other approaches.  

With the procedural steps outlined above, the present approach for extracting the mode shape of 
a bridge is subject to some restraints. One is imposed by the requirement of constant vehicle speed. 
If the vehicle speed is not constant, the coefficient Am in Eq. (30) for the instantaneous amplitude 
history will not remain constant anymore. Consequently, the instantaneous amplitude will deviate 
from the theoretical mode shape of the bridge in those non-constant speed intervals. The level of 
deviation will be explored quantitatively as follows.  

Suppose that the vehicle speed deviates from the original constant speed with a ratio of  at a 
certain instant, and so does the speed parameter Sn, the coefficient Am accordingly will vary as 
follows: 
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                       (34) 

The ratio RA of the varying coefficient Am() to the original constant coefficient Am(1) can be 
computed as 
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Fig. 3 Coefficient ratio RA vs. speed ratio α 
 
 
Fig. 3 shows the coefficient ratio RA with respect to the speed ratio  for the speed parameters 

Sn =0.01, 0.05, 0.10, 0.15, and 0.20. It is observed that, for small Sn values, say less than 0.15, RA is 
approximately equal to  within the interval of small speed variation, say  = 0.6-1.3. For this case, 
when the varying vehicle speed is  times the original constant speed, the coefficient Am is 
approximately equal to  times the theoretical value of the mode shape at that point. Such an 
observation is useful in retrieving the mode shape from a deviated mode shape, once the varying 
speed history is recorded as well. Thus, the restraint on the constant vehicle speed can be relaxed 
and a slightly non-constant vehicle speed is allowed. 

Another restraint is imposed by the assumption that the driving frequency nv/L is negligibly 
smaller than the bridge frequency ωb,n. If the above assumption is violated, the instantaneous 
amplitude history given in Eq. (26) cannot be reduced to Eq. (29), accompanied by the fact that the 
instantaneous amplitude history is not a representative mode shape anymore. To evaluate the range 
of restraint quantitatively, the assumption is removed herein and Eq. (26) is re-derived into a form 
similar to Eq. (29) as follows: 

 

   

 

2 2

2

2

2

4 sin

1 4 sin
sin

sin

l r l r

l r
l

l r

m m

n vt
A t A A A A

L

A A n vt
A A

n vt LA A
L

n vt
R A

L








  


  



 (36) 

0.4

0.6

0.8

1

1.2

1.4

1.6

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

C
oe

ff
ic

ie
nt

 R
at

io
 R

A

Speed Ratio α

Sn=0.01 Sn=0.05
Sn=0.10 Sn=0.15
Sn=0.20

806



 
 
 
 
 
 

Constructing the mode shapes of a bridge from a passing vehicle: a theoretical study 

where Am has been defined in Eq. (30) and Rm is the amplification factor of the instantaneous 
amplitude history, given as 

 
 2

2

1
sin

l r
m

l r

A A
R

n vt
A A

L



   (37) 

If the assumption of Al + Ar=0 is valid, the amplification factor Rm will reduce to unity and the 
instantaneous amplitude history is a representative mode shape of the bridge, which is the case 
discussed in Sec.3. If the assumption is invalid, Rm can be derived by substituting the expression of 
Al and Ar in Eqs. (27) and (28) into Eq. (38), namely 
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Fig. 4 Amplification factor Rm vs. speed parameter Sn. 
 
 

Fig. 4 shows the amplification factor Rm with respect to the speed parameter Sn for the values of 
sin(nv/L) = 0.2, 0.4, 0.6, 0.8, and 1.0. For the general case with Sn approaching 0, as is the case 
implied by the assumption that the driving frequency nv/L is much smaller than the bridge 
frequency ωb,n, Rm approximately equals unity. As Sn increases, Rm increases monotonously and 
therefore deviates from unity, indicating that the instantaneous amplitude history may deviate more 
from the theoretical mode shape of the bridge as the vehicle speed becomes larger. Moreover, the 
smaller the value of sin(nv/L), the more the Rm factor deviates from unity, given the same Sn value. 
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This means that the Rm factor is sensitive in small sin(nv/L) intervals, say in the vicinity of nodal 
points, and non-sensitive in large sin(nv/L) intervals, say in the vicinity of peaks or troughs of the 
mode shape. For the purpose of accuracy, it is suggested that the test vehicle be allowed to move at 
low speeds. If the low speed condition is not met, one can also retrieve the theoretical mode shape 
from the deviated mode shape making use of the calculated amplification factor. 

 
 

5. Case studies 
 
In order to verify the feasibility of and to understand the restraints of the present approach for 

extracting the mode shapes of a bridge from the dynamic responses of the passing test vehicle, 
four numerical cases are studied herein using the finite element simulations. The finite element 
simulating algorithm utilized in this study is a well-developed vehicle-bridge interaction algorithm 
(Yang and Yau 1997, Yang et al. 2004b). For the cases considered, the following properties are 
adopted for the simply supported bridge: length L = 30 m, Young’s modulus E= 27.5 GPa, moment 
of inertia I = 0.175 m4, and mass density m* = 1000 kg/m; and the following for the test vehicle: 
mass mv = 1000 kg and stiffness kv = 170 kN/m. The bridge is discretized into 20 identical beam 
elements, and the time step is selected as 0.001 sec. 

In the following, the acceleration responses generated of the test vehicle during its passage over 
the bridge will be processed with the procedural steps outlined previously to extract the mode 
shapes of the bridge. The accuracy of the extracted mode shapes is evaluated by the modal 
assurance criteria (MAC) defined as 

 MAC
T
e t

e t

 
 

  (39) 

where e  and t  denote the extracted and theoretical mode shapes, respectively. Several factors, 

such as the test vehicle speed, random traffic, and road surface roughness, will be studied as well. 
 

 

 

Fig. 5 Acceleration response of the test vehicle 
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Fig. 6 Acceleration spectrum of the test vehicle 

 
 
 
5.1. Test vehicle passing through a bridge with smooth road surface 
 
The first case is to illustrate the present algorithm for extracting the mode shape of the bridge, 

while verifying its feasibility. In this case, a smooth road surface is considered for the bridge. In 
the first step, the acceleration response of the test vehicle during its passage of the bridge is 
generated, as shown in Fig. 5. In the second step, the vehicle response is processed by the fast 
Fourier transform (FFT) to yield the frequency spectrum as shown in Fig. 6. From this figure, the 
first three frequencies of the bridge can be identified as 3.87, 15.27, and 34.40 Hz. In the third step, 
by the conventional band-pass filters, the component responses that correspond to the identified 
bridge frequencies are decomposed from the test vehicle response, as shown in Fig. 7. It is 
observed that the component responses oscillate with varying amplitudes that are similar to the 
respective mode shapes of the bridge. In the fourth step, the Hilbert transform is performed to the 
bridge component responses to obtain the instantaneous amplitude histories. Finally, one can 
determine the signs of the mode shapes based on engineering experiences, and obtain the mode 
shapes of the bridge as in Fig. 8. In comparison with the theoretical mode shapes, the mode shapes 
identified herein show a high level of accuracy for the case studied.  

 
5.2 Effect of vehicle speed 
 
In this case, the effect of the vehicle speed on the extracted mode shapes of the bridge is studied 

for three different vehicle speeds: v = 2, 4, and 8 m/s. The bridge remains identical to that studied 
previously. By following the same procedure, the mode shapes of the bridge can be extracted for 
each vehicle speed, as shown in Fig. 9. Table 1 lists the MAC values between the extracted mode 
shapes and theoretical ones. The effect of vehicle speed on the extracted mode shapes can be 
clearly observed from Fig. 9 and Table 1. 
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(a) 

 
(b) 

 
(c) 

Fig. 7 Component responses of the bridge frequencies: (a) 1st mode, (b) 2nd mode and (c) 3rd mode 
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(a) 

 
(b) 

 
(c) 

Fig. 8 Mode shapes of the bridge obtained by the present approach and theoretical formulae: (a) 1st mode, 
(b) 2nd mode and (c) 3rd mode 
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(a) 

 
(b) 

 
(c) 

Fig. 9 Mode shapes of the bridge obtained for different vehicle speed: (a) 1st mode, (b) 2nd mode and (c) 
3rd mode 
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Table 1 MAC of the first three modes for different vehicle speeds 

Speed (m/s) 1st mode 2nd mode 3rd mode 

2 0.9984 0.9999 0.9981 

4 0.9998 0.9955 0.8858 

8 0.9997 0.9790 0.6824 

 
 
If the vehicle moves at a low speed, say 2 m/s, the three extracted mode shapes match very well 

with the theoretical ones, generally with MAC values over 0.998. As the vehicle speed is doubled 
to 4 m/s or twice doubled to 8 m/s, the 1st extracted mode shapes show little deviation from the 
theoretical ones, still with MAC values over 0.998. However, the 2nd extracted mode shapes show 
slight deviations, with larger deviations concentrated at the end nodes, and the MAC value 
decreases as the vehicle speed increases. The 3rd mode shapes show obvious deviations, also with 
decreasing MAC values as the vehicle speed increases. It is concluded herein that a lower vehicle 
speed guarantees higher accuracy of the extracted mode shapes of a bridge, which is especially 
true for the higher modes. Such a conclusion is consistent with the suggestion made in the 
previous section. In addition, the larger discrepancy in identified mode shapes at the supports is 
also consistent with the discussion in the previous section: the theoretical amplification factor Rm is 
sensitive in the vicinity of nodal points, and non-sensitive in the vicinity of peaks or troughs of the 
mode shape. 

 
 

Table 2 Properties of random traffic 

Vehicle Number 
Mass 
(kg) 

Stiffness 
(N/m) 

Speed 
(m/s) 

Initial spacing 
(m)* 

Remark 

1 1000 170000 2 0 Test Vehicle 

2 1000 170000 random 1  

3 1000 170000 random 3  

4 1000 170000 random 5  

Note: *Initial spacing denotes the spacing between the accompanying vehicle and test vehicle at the instant 
when the test vehicle enters the bridge 

 
 
 
5.3 Test vehicle traveling along with random traffic 

Except for the test vehicle, three accompanying vehicles moving at random speeds are 
considered to simulate the effect of random traffic, whose dynamic properties have been assigned, 
as listed in Table 2.  
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(a) 

 
(b) 

 
(c) 

Fig. 10 Mode shapes of the bridge obtained from a test vehicle traveling with random traffic: (a) 1st mode, 
(b) 2nd mode and (c) 3rd mode 
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The first three extracted mode shapes of the bridge for this case are shown in Fig. 10. In 
comparison with the theoretical mode shapes, the extracted ones show high accuracy, with an 
MAC value of 0.9990 for the 1st mode, 0.999 for the 2nd mode, and 0.9994 for the 3rd mode. It is 
observed that the random traffic of the pattern presented in this section can hardly affect the 
accuracy of the extracted mode shapes of the bridge, possibly because the mass of the vehicles are 
too small to affect the bridge mode shapes. 

 
 

 
(a) 

 
(b) 

Fig. 11 Road surface roughness profile: (a) full span and (b) a close-up in the interval of 15-16 m 
 
 
5.4 Effect of road surface roughness 
 
In this case, the effect of road surface roughness is studied by letting the test vehicle pass 

through a bridge with rough road surface. The road surface roughness is generated according to the 
power spectrum density (PSD) curve of class A presented by International Organization for 
Standardization (1995). Fig. 11 shows the generated road surface roughness profile that is adopted 
in this case. 
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(a) 

 
(b) 

 
(c) 

Fig. 12 Mode shapes of the bridge obtained from a test vehicle traveling on rough road surface: (a) 1st 
mode, (b) 2nd mode and (c) 3rd mode 
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Letting the test vehicle pass over the bridge with surface roughness of the above profile and 
then processing the dynamic responses of the test vehicle with the present algorithm, one can 
extract the mode shapes of the bridge as shown in Fig. 12. As can be seen, obvious distortions 
appear in the extracted mode shapes, especially for the 2nd and 3rd modes. The MAC value between 
the extracted mode shape and corresponding theoretical one is 0.9980 for the 1st mode, 0.9858 for 
the 2nd mode, and 0.7957 for the 3rd mode, all of which are smaller than those for the case with 
smooth road surface. Therefore, it is concluded that the existence of road surface roughness has 
negative impact on extracting the mode shapes of the bridge by the present approach, especially 
for the higher modes. In addition, discontinuity occurs at the nodes, as can be observed from the 
values for the same nodes with different signs.  

The reasons for the negative impact of road surface roughness on the extraction of mode shapes 
can be given as follows. Firstly, the present approach for extracting the mode shapes of the bridge 
is based on the assumption that the bridge frequencies have been identified from the dynamic 
response of the test vehicle. The latter is known to be negatively impacted by the existence of road 
surface roughness (Chang et al. 2010). It follows that the former is also impacted. Secondly, 
during its passage over the bridge, the test vehicle is excited by both the vibrations of the bridge 
and the road surface roughness. The bridge vibrates with fixed modal frequencies and shapes, 
while the road surface roughness injects a wide range of spatial frequency into the vehicle 
response. Clearly, the mode shapes of the vibrating bridge mingle with the surface roughness 
profile of the frequency identical or close to the bridge frequency of interest. The mingled mode 
shapes and surface roughness profile are hardly to be separated by the frequency-domain filtering 
techniques, thereby making the extracted mode shapes distorted. Thirdly, such a distortion is more 
severe for higher modes since the amplitudes of higher modes are generally smaller than those of 
lower modes and thus easier to mingle with surface roughness profiles.  

 
 

6. Conclusions 
 

This study presents an indirect approach for extracting the mode shapes of a bridge from a 
passing test vehicle. Based on the theoretical formulation, it is observed that in the vibration 
response of the test vehicle during its passage over the bridge, the component response of the 
bridge frequency of certain mode oscillates with a varying amplitude that is identical to the mode 
shape of the bridge of the mode of concern. Therefore, once a bridge frequency is identified and its 
corresponding component response is separated from the vehicle response, the instantaneous 
amplitude history of the extracted component response can be regarded as a representative of the 
mode shape of the bridge. Theoretically, the mode shapes can be extracted with a high resolution 
in space since each point of the bridge is passed through by the test vehicle. 

Through numerical case study, the present approach is verified to be feasible under the 
constraint that the vehicle speed is constant and low, say as low as 2 m/s. Also, the impact of the 
following factors on the accuracy of the extracted mode shapes is evaluated. (1) Vehicle speed: 
Lower vehicle speeds generally guarantee higher accuracy of the mode shapes, which is especially 
true for the second and third modes. (2) Random traffic: it can hardly affect the accuracy of the 
mode shapes. (3) Road surface roughness: The existence of road surface roughness has negative 
impact on extracting the mode shapes, especially for the higher modes. 

The conclusions drawn herein are based on analytical derivations and numerical simulations, 
which should be further verified with experiments in field or laboratories before practical 
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applications. Future research should continue on techniques to remove the constraint on the 
constant and low vehicle speed, and the negative impact of road surface roughness on the extracted 
mode shapes.  
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