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Abstract. Aluminium Foam Sandwich (AFS) panels are becoming always more attractive in transportation 
applications thanks to the excellent combination of mechanical properties, high strength and stiffness, with 
functional ones, thermo-acoustic isolation and vibration damping. These properties strongly depend on the 
density of the foam, the morphology of the pores, the type (open or closed cells) and the size of the gas 
bubbles enclosed in the solid material. In this paper, the vibrational performances of two classes of sandwich 
panels with an Alulight®  foam core are studied. Experimental tests, in terms of frequency response function 
and modal analysis, are performed in order to investigate the effect of different percentage of porosity in the 
foam, as well as the effect of the random distribution of the gas bubbles. Experimental results are used as a 
reference for developing numerical models using finite element approach. Firstly, a sensitivity analysis is 
performed in order to obtain a limit-but-bounded dynamic response, modelling the foam core as a 
homogeneous one. The experimental-numerical correlation is evaluated in terms of natural frequencies and 
mode shapes. Afterwards, an update of the previous numerical model is presented, in which the core is not 
longer modelled as homogeneous. Mass and stiffness are randomly distributed in the core volume, exploring 
the space of the eigenvectors. 
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1. Introduction 
 

The growing demand for vehicles, aircraft and trains having very high acoustic comfort and 

safety requirements leads to an increase of the structural weight, particularly in the automotive 

industry. On the other hand, the demand for lower fuel consumption vehicles requires lightweight 

structures. In order to meet all the requirements of the modern transportation engineering, new 

materials need to be developed, having low specific weight, high stiffness and strength, good 

capability of sound impact energy absorption. Highly porous materials with a cellular structure 

have interesting combination of physical and mechanical properties. Nature frequently uses 
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cellular material for load-bearing or functional purposes (i.e., wood, bones)(Gibson and Ashby 

1999). Among the porous materials, the polymeric foams are currently the most used in several 

fields, but their impact energy absorption capability is poor to guarantee a high level of passive 

safety. Even metals and alloy can be foamed, by letting the liquid solidify but preserving the 

morphology of the foam. Usually, metal foam have uniformly distributed gas pores in solid metal 

with volume fraction in the range of 40 – 98%. The properties of the foam strongly depend on its 

porosity and the cell type; there are three most common cell structures: open cell, closed 

cell(Gibson and Ashby 1999)and a combination of the two (Stöbener et al. 2005). The type of cell 

determines the field of application of the metal foam, as shown in Fig. 1 (Banhart 2001). Metallic 

foams possess an excellent and unique combination of properties, which arise from the metallic 

nature of matrix and the porosity behaviour: 

 low specific weight; 

 high stiffness to weight ratio; 

 high energy absorption capacity; 

 reduced thermal and electrical conductivity 

 good mechanical and acoustic damping; 

 not inflammable; 

 recyclable; 

 good machinability. 

 

For this reason, in the last few years the interest in metallic foam has increased considerably, 

especially made of aluminium alloys(Banhart and Baumeister 1998), which has brought to a large 

extension of the literature about them, wherein the books by Gibson and Ashby(1999), by Ashby et 

al.(2000), Degischer and Kriszt (2002) and the extensive work of Banhart and others (Banhart et 

al. 1996, Baumeister et al. 1997, Lehmhus and Banhart 2003, Banhart 2005, Matijasevic and 

Banhart 2006, Banhart and Seeliger 2008, Jiménez et al. 2009, Mukherjee et al. 2010, Saadatfar et 

al. 2012) play a key role. 

 

 

 

Fig. 1 Application of cellular metals grouped according to the type of porosity needed and the type of 

application (functional or structural) (Banhart 2001) 
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Modelling of aluminium foam sandwich panels 

 

Despite metal foams are finding applications in several engineering fields as bare component 

(impact energy absorbers, silencers, etc.), the excellent properties of aluminium foams make them 

attractive for use as sandwich core (the so-called Aluminium Foam Sandwich or AFS panels). 

Sandwich panels, consisting of a foamed metal core and two metal skins, can be obtained by 

bonding the face sheets to a foam with adhesives; alternatively, in order to avoid the degrade of the 

adhesive with time or heat (in applications in which the temperature are very high), it is possible to 

obtain a pure metallic bonding by roll-cladding sheets of metal to a sheet of foamable precursor 

material. The resulting composite can be deformed in a successive step in order to get 3-D shaped 

panels. The final heat treatment, in which only the foaming agent uniformly dispersed in the 

precursor decomposes (releasing gas and forming the foam) and the face sheets remain dense, 

leads to a sandwich panel (Banhart 2001). At the moment there are not large-scale industrial 

applications for AFS panels, but many prototypes and studies show their great potential in the 

automotive (Banhart 2001), aerospace (Schwingel et al. 2007), railway (Casavola et al. 2007) and 

ships (Crupi et al. 2011) fields. Some examples are shown in Fig. 2. For their characteristics, 

Aluminium Foam Sandwich are one of the most promising structure configurations for the new 

generation of smart vehicles, in which each material need to be multifunctional (Kaiser et al. 2008) 

and should allow the integration of actuation or sensing mechanisms which is essential for 

structural morphing. Furthermore, a recent study has also investigated the possibility to use metal 

foam to store magnetorheological fluids in semi-active control dampers (Yan et al. 2013). 

Aluminium Foam Sandwich Panels present a strongly randomised core since the manufacturing 

process is not controlled. In previous works of the authors (Franco et al. 2007, D'Alessandro 2010, 

Polito et al. 2010, Franco et al. 2011), it is demonstrated that the randomisation of the distribution 

of a mechanical parameter, such as the stiffness, leads to an improvement of the vibro-acoustic 

behaviour of a sandwich panel subjected to a distributed pressure load. 

 

 
(a) Section of a railway carriage roof (Casavola et al. 2007) 

 
 

(b) Ariane 5 cone 3936 (Schwingel et al. 2007) (c) Karmann car (Banhart 2001) 

Fig. 2 Prototypes using Aluminium Foam Sandwich panels 
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In the present work the dynamic characteristics of Aluminium Foam Sandwich panels are 

investigated experimentally and numerically in order to provide useful data for the preliminary 

design using AFS panels. The experimental results are used as a reference to develop Finite 

Element models. The first approach consists in modelling the core as a homogeneous material in 

order to perform a sensitivity analysis. In the second one, the effect of a random distribution of the 

mass and the stiffness in the core model is investigated and the space of the eigenvectors is 

explored by means of different Gaussian's distributions of the mass. An overview on the 

mechanical properties of aluminium foam is reported in Section 2. In Section 3 the description and 

the results of the experimental tests are presented. In Section 4, a sensitivity analysis is performed 

in order to obtain a limited-but-bounded response which takes into account the uncertainties on the 

elastic modulus, and then Section 5 presents the correlation between numerical and experimental 

results. The results of the correlation suggests an update of the numerical model, reported in 

Section 6, and finally in Section 7 some concluding remarks are highlighted.
 

 

 

2. Mechanical properties of aluminium foam 
 

The mechanical properties of metal foams depend strongly on those of the material they are 

made of and on their relative density, i.e., their percentage of porosity. The higher is the relative 

density, the higher are the mechanical properties. One of the attractive aspects of such materials is 

that a desired profile of properties can be achieved by selecting the appropriate material to be 

foamed with the appropriate percentage of porosity. Many suppliers offer a variety of density and, 

correspondingly, of properties, documented in several works (Gibson and Ashby 1999, Ashby et al. 

2000, Casavola et al. 2007). In particular, Banhart (2001) presents a fundamental collection of 

works about the characterization of metal foams. 

The relationship between the relative foam density and the many relative mechanical properties 

obeys to a power law of the type (Baumeister et al. 1997) 

 

Mr ρ
r
 =c∙ρ

r
n (1) 

where 

 Mr= Mf Ms  is the relative mechanical property of interest (e.g., Young's modulus), obtained 

as the ratio of the mechanical property of the foam 𝑀𝑓  and the mechanical property of the solid 

material of which the foam is made 𝑀𝑠; 

 ρ
r
= ρ

f
ρ

s
  is the relative foam density, in which 𝜌𝑓  and 𝜌𝑠  are the foam density and the 

solid material density, respectively; 

 c is a constant; 

 nis an exponent (which is usually in the range 1.5 – 2.2). 

The constant c and the exponent n mostly depend on the cell type (open or closed) and on the 

imperfection in the cell structure, such as corrugation and curvature of cell walls and cell edges. 

Other structural parameters, like cell size, cell shape and their variation have a minor influence on 

the properties. 

However, since the structural parameters are not easily controllable during the manufacturing 

process, the mechanical properties can change into a wide range because of the imperfection listed 

before. 
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Modelling of aluminium foam sandwich panels 

2.1 Young’s modulus 
 
The relative foam density 𝜌𝑟  has the largest influence on the Young's modulus. For lower 

density foam (ρr< 0.2), Gibson and Ashby (1999) have applied a simple bending strut model to a 

cubic foam structure and found the following relation between Young's modulus and density valid 

for closed-cell foam 

Ef

Es

= C1ϕ
2
ρ

r
2+C2(1-ϕ)ρ

r
 (2) 

where: 

 ϕ is the fraction of solid contained in the cell edges; 

 (1-ϕ) the fraction contained in the cell face; 

 C1, C2are constants of proportionality. 

 

This equation describes the combined effect of cell-edge bending term C1ϕ
2
ρ

r
2, and cell-face 

stretching one C2(1-ϕ)ρ
r
. It remains to be determined the constants of proportionality, which 

contain the effect of the imperfection in the cell structure. Simone and Gibson(1998) performed a 

finite element analysis of periodic, closed tetrakaidecahedral cells with faces of uniform thickness, 

finding the following relation 

Ef

Es

= 0.32(ρ
r
2+ρ

r
) (3) 

for relative densities less than 0.2, which is identical to Eq. (2) withC1=0.69, C2=1,  ϕ=0.68. Eq. 

(2) is valid as long as the main deformation mechanism is bending of cell edges. 

For higher density foam, extension and compression of cell edges become more important and 

therefore a deviation from these relations should be observed. 

Ashby et al. (2000) propose other laws to evaluate the Young's modulus. For our purpose, one 

of the simplest equations which allows to take easily into account the uncertainties due to the cell 

structure is the following 

Ef

Es
= γ(0.5ρ

r
2+0.3ρ

r
)                                                                   (4) 

where the parameter γ varies in the range 0.1 – 1. 

Furthermore, for design purposes, it is helpful to know that the tensile modulus of metal foams 

is not the same as that in compression; the tensile modulus is greater than compression modulus, 

typically, by 10%. 

 

2.2 Shear modulus and Poisson’s ratio 
 

The shear modulus of a closed-cell foam can be calculated in a similar way (Gibson and Ashby 

1999) 

 

Gf

Es

= C3ϕ
2
ρ

r
2+C4(1-ϕ)ρ

r
 (5) 
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Since the Poisson's ratio is the negative ratio of the lateral to the axial strain, it depends only on 

the details of the cell shape but not on the relative density, as demonstrated by experimental 

tests(Gibson and Ashby 1999). For closed-cell foam, an average value of the Poisson's ratio 

is𝜈f=0.31. 

It is possible to evaluate, with good approximation, the shear modulus by applying the 

relationship for a material that is linear-elastic and isotropic 

Gf= 
Ef

2(1+νf)
 (6) 

2.3 Damping 
 

Metal foams have higher mechanical damping than the solid material of which they are made. 

The structural damping is highly influenced by the percentage of porosity in the foam, i.e., the 

relative density. Ashby et al. (2000) propose a scaling law for the loss factor 

𝜂𝑓

𝜂𝑠
≈ 

(0.95-1.05)

ρ
r

 (7) 

which well agrees with the experimental results available in literature (Banhart et al. 1996). 

 

 

3. Experimental investigation 
 

Some experimental investigations were performed in order to determine the dynamic 

characteristics of Aluminium Foam Sandwich (AFS) panels since they are still a new class of 

sandwich. These are aimed to determine the basic modal properties such as the mode shapes and 

natural frequencies, and then to evaluate the different behaviours of the investigated specimens.  

 

3.1 Description of the test specimens 
 

The Aluminium Foam Sandwich (AFS) panels consist in a three-layer composite comprising a 

foamable (containing TiH2 as a blowing agent) aluminium alloy sheet as a core layer and two face 

sheets still in aluminium alloy on both sides. The AFS panels tested are designed and 

manufactured by the Austrian company Mepura Metallpulver GmbH. The manufacturing process 

uses the decomposition of foaming agents into semisolids (Banhart 2001; Degischer and Kriszt 

2002) the metal foam so obtained is called Alulight® .  

Two classes of aluminium foam sandwich panels are analysed. Panels characteristics and 

dimensions are listed in Tables 1 and 2; for sake of comprehension, class A and B are also called 

the heaviest and the lightest, respectively. All the specimens have the same in-plane dimensions, 

but with different thickness of both skins and core. The density of the foam, i.e., the percentage of 

porosity, constitutes the main difference: the panels of the class B have much more gas bubbles 

dispersed in the core than those dispersed in the class A foam. For each class, two nominally 

identical panels are examined, designed by means of the letter of the class and a progressive 

number (for instance, A1, A2 and so on). 
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Modelling of aluminium foam sandwich panels 

Table 1 Attributes of the sandwich panels investigated 

Class 
Weight 

[kg] 
Skins Alloy Foam Alloy 

Foam Density 

[kg/m
3
] 

Relative Foam 

Density 

A 3.2 EN AW 6082 AlMg3Si6 600 0.222 

B 1.9 EN AW 6082 AlMg3Si6 390 0.144 

 

 
Table 2 Dimensions of the sandwich panels investigated 

Class 
Width 

a [m] 

Length 

b [m] 

Total thickness 

t [m] 

Skin thickness 

ts [m] 

Foam thickness 

tf [m] 

A 0.476 0.656 0.010 0.001 0.008 

B 0.476 0.656 0.0086 0.0006 0.0074 

 

 

  
 (a) Point of excitation (b) Experimental mesh 

Fig. 3 Experimental setup 

 

 

3.2 Experimental setup 
 

The determination of the modal parameters were performed by using the so-called roving 

accelerometer technique (or fixed hammer). An ENDEVCO Modal Hammer 2302 was used to 

excite the node 23 of the experimental mesh (Fig. 3(a)). Three accelerometers PCB 333B32 were 

used to measure the response over the surface of the panel, changing their position along the 48 

points of the experimental mesh (Fig. 3(b)). The accelerometers were well spaced, in order to 

avoid an accumulation of mass onto a limited area of the panel. For each of the 16 different 

configurations of the position of the accelerometers, three different Frequency Response Functions 

were measured. Because an impact test is not replicable (unless a mechanical device is used to hit 

the panel with the hammer), each measurement was obtained as the spectrum averaging of the 

responses of five different impacts, ensuring a coherence as much as possible close to the unity. 

The mesh consisted of eight points along x-axis and six along the y-axis, equally spaced. As a 
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rule of thumb, 2nw+1 grid points are required to describe nw half-waves, which means that the 

used mesh allowed to describe three half-waves along the longest side and two half-waves along 

the shortest one.  

The data were recorded using the acquisition system LMS SCADAS III, in the bandwidth0 – 

4000 Hz with a frequency resolution1 Hz; thus, data were analysed by means of the software LMS 

Test.Lab 8.B and Matlab tools. 

The panels were assumed to be not constrained to overcome any kind of problems arising from 

the boundary conditions. Thus, the panels were suspended by using bungee cords in order to 

simulate free boundary conditions on all sides.  

 

3.3 Experimental results 
 

3.3.1 Frequency response function 
By using the modal hammer and the set of three accelerometers, the global dynamic responses 

of the panels investigated were measured. For each point of the experimental mesh, the Frequency 

Response Function (FRF) in terms of accelerance (De Silva 2000) 

A(f)= 
a(f)

F(f)
  (8) 

was evaluated in the range0 – 4000 Hz, where a(f)is the acceleration, F(f)the force applied and f 

the frequency. In order to obtain a global response of the panels, the Root Mean Square 

Accelerance (RMSA) was calculated over the points of the experimental mesh. In Fig.4 the RMSA 

of all the panels investigated is represented. 

A good way to compare the response of specimens having different weight and thickness is 

representing a dimensionless form. It is possible defining a Root Mean Square of the 

Dimensionless Accelerance RMSA
*
 by multiplying Eq. (8) by the mass m of the panel under 

investigation 

A*(f)= 
a(f)

F(f)
∙m (9)  

 

 

 

Fig. 4 Root Mean Square Accelerance VS. Frequency. — A1; — A2; — B1; — B2 
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Modelling of aluminium foam sandwich panels 

In the same way, a dimensionless frequency (or structural reduced frequency) can be obtained 

by dividing the frequency f by the fundamental frequency f1of the panel under investigation: 

f
*
=

f

f
1

 (10)  

By representing the RMSA
*
 as a function of f

*
, it is thus possible to compare the different 

panels, as shown in Fig. 5 

 

 

 

Fig. 4 Root Mean Square Accelerance VS. Frequency. — A1; — A2; — B1; — B2 

 

 

 

Fig. 5 Root Mean Square of Dimensionless Accelerance VS. Frequency.—A1; —A2; —B1; —B2 

 

 

It is possible to highlight that: 

 for both classes, in the low frequency region the behaviour of nominally identical panels is 

quite similar, whilst in the high frequency region the curves move away from each other, as shown 

in Fig. 4. 

 From Fig. 5, furthermore, it is clear that in low frequency region the response is governed by 

global parameters, i.e. the mass and the stiffness, and the small differences, in the response of 

panels belonging to the same class, are due to the damping. Starting from f
*
=10, the responses do 
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not depend from global parameters, and hence the random configuration of the core influence the 

dynamic behaviour (zoom of high frequency range represented in Fig. 6).  

 By comparing the responses of all four panels in Fig. 4, the lightest panels show a higher 

dynamic response up to f = 2.500 Hz than those of the heaviest ones, as expected; at higher 

frequency, instead, all the curves coalesce. This is much more evident in the dimensionless 

representation, in which in the high frequency range the panels of the class B have a lower 

dynamic response, as highlighted in Fig. 6. This behaviour is due to the different percentage 

porosity of the cores, which leads to a higher damping in the lightest panels at high frequencies. 

 

 

3.3.2 Experimental modal analysis 
By the analysis of the FRFs, the modal parameters such as natural frequencies, mode shapes 

and modal damping were extracted. In Tables 3 and 4the first fourteen natural frequencies are 

listed for the heaviest and the lightest panels, respectively. The number of the investigated modes 

depended on the experimental mesh. 

The frequencies of the panels A are quite similar; instead, there are substantial differences for 

the panels of the class B, highlighting a different behaviour of the two lightest panels (which are 

nominally identical). 

This difference is even more evident by looking at the Modal Assurance Criterion matrices. The 

Modal Assurance Criterion (MAC) is a mathematical tool(Heylen et al. 1998) used to compare 

different sets of estimated mode shapes (or to investigate the validity of the estimated modes 

within one set). It is based on the orthogonality condition of the mode shapes. Given  Ψr  and 
 Ψs  the estimates of two mode shapes, the Modal Assurance Criterion between these two mode 

shapes is defined as 

MAC  Ψr , Ψs  =
  Ψr 

*t Ψs  
2

  Ψr *t Ψr    Ψs *t Ψs  
 (11) 

where the superscript *tmeans transposed and conjugated. If Ψr  and  Ψr  are estimates of the 

same mode shape (i.e., r≡s), then the modal assurance criterion approach unity (or 100%).The 

MAC matrix is obtained by calculating the MAC between two different sets of mode shapes. 

The MAC matrix calculated between the estimated mode shapes of panels A1 and A2 is shown 

in Fig. 7. It is diagonal, which means that the order of the eigenvectors is preserved, and the 

diagonal values approach 100%, i.e., the eigenvectors of the two panels are estimates of the same 

mode shapes. 

For the panels belonging to the class B, the MAC matrix represented in Fig. 8 is not diagonal: 

the cross-terms MAC34 and MAC43 approach 100%, and hence the third eigenvector of the panel 

B1 is quite similar to the fourth eigenvector of the panel B2, and vice versa. The switch of the 

eigenvectors is confirmed by looking at the estimated mode shapes, depicted in Fig. 9: it is clear 

that the 3rd mode of panel B1 (Fig. 9(a)) is the same of the 4th of panel B2 (Fig. 9(b)). 

Furthermore, the mode shapes represented are very different from the well-known corresponding 

modes of a sandwich panel with homogeneous core in free boundary conditions (D'Alessandro et 

al. 2012). The difference is probably due to the not-well controlled manufacturing process, 

resulting into not-uniform mass distribution inside the foam core. 
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Table 3 Natural frequencies of Panels A 

Mode EMA A1 EMA A2 A1-A2 

# [Hz] [Hz] % 

1 124.75 123.67 0.87 

2 146.36 145.78 0.40 

3 292.30 290.28 0.69 

4 296.87 293.47 1.14 

5 363.17 358.03 1.42 

6 434.96 433.76 0.28 

7 548.12 547.09 0.19 

8 598.68 592.02 1.11 

9 786.94 784.19 0.35 

10 805.67 807.65 -0.25 

11 867.51 863.15 0.50 

12 897.97 890.76 0.80 

13 924.48 924.76 -0.03 

14 1096.7 1090.29 0.59 

 

 

 

 

Fig. 7 MAC A1 VS A2 
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Table 4 Natural frequencies of Panels B 

Mode EMA B1 EMA B2 B1-B2 

# [Hz] [Hz] % 

1 110.99 110.47 0.47 

2 126.96 126.64 0.25 

3 255.11 253.57 0.60 

4 259.47 254.97 1.74 

5 313.31 308.55 1.52 

6 374.99 373.58 0.38 

7 483.06 473.93 1.88 

8 513.87 504.20 1.88 

9 681.99 674.05 1.16 

10 699.08 694.58 0.64 

11 751.02 740.25 1.43 

12 774.01 759.92 1.82 

13 808.62 802.27 0.78 

14 948.18 930.55 1.86 

 

 

 

 

Fig. 8 MAC B1 VS B2 
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4. Numerical investigation 
 

Numerical simulations were conducted, in terms of modal analysis and frequency response 

function, using the commercial finite element solver MSC/Nastran 2008, focusing on the low 

frequency region where panels belonging to the same class have a quite similar behaviour. A 3-D 

model was realised, according to Laird (2010): the face sheets were modelled using 4-nodes 

quadrilateral (CQUAD4) elements and the core using 8-nodes solid (CHEXA) elements. 

The numerical mesh consisted of 48×32nodes along the in plane-directions and 4 nodes along 

the thickness of the core. The panel was not constrained along its edges, as assumed in the 

experimental tests. A unit force is applied on the numerical node corresponding to the point 23of 

the experimental mesh, in order to compare the frequency response functions. Once the model was 

built, first of all a modal analysis was performed in order to identify the first fourteen modes 

parameters; thus, the frequency response function was evaluated based on the modal frequencies. 

 

4.1 Sensitivity analysis 
 

The mechanical properties of the skins are well defined since they are made of aluminium alloy 

EN AW6082: Young's modulus Es = 71 GPa, Poisson's ratio𝜈s = 0.33, structural damping𝜂s = 2 × 

10
-4

. 

As explained in Section 2, no detailed information about the Young's modulus Ef and damping 

𝜂f  aluminium foam are available.  

In order to provide a limited-but-bounded response which can help the designer in the 

preliminary design using AFS panels, the parameter γ in Ashby's law (Eq. (4)) was changed in the 

range 0.1 – 1, using a step Δγ = 0.05. The structural damping was calculated by assuming a unit 

numerator in Eq. (7), which leads to𝜂fA = 1 × 10
-3

 and 𝜂fB = 1.4 × 10
-3

. The Poisson's ratio was 

assumed to be𝜈s = 0.31. 

 

  
(a) 3rd mode of panel B1 (f=255.11 Hz) (b) 4th mode of panel B1 (f=259.47 Hz) 

  
(c) 3rd mode of panel B2 (f=253.57 Hz) (d) 4th mode of panel B2 (f=254.97 Hz) 

Fig. 9 3rd and 4th mode shapes of panels B1 and B2 
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The comparison of numerical and experimental RMSA is reported in Figs. 10 and 11 for the 

heaviest and the lightest panels, respectively, in the frequency range 0 – 1000 Hz. The grey 

coloured areas represent the bounded responses obtained by changing γ (i.e., the Young's modulus). 

The averages of the experimental measurements are comprised in the corresponding bounded 

responses, as expected (see next Section for a more detailed analysis). However, it seems that a 

more detailed knowledge is required in terms of damping because the numerical dynamic range is 

not always similar to the experimental one. Some experimental investigations are being made for 

this purpose. 

It is worth to remark that the discontinuities in the numerical frequency responses in the low 

frequency range are due to the modal numerical solution adopted: eleven points was chosen 

around each natural frequency, for a frequency band spread of 10%. 

The variation of the natural frequencies with the parameter γ was also investigated 

(Modarreszadeh 2005), as shown in Tables 5 and 6. 

 

 

 

Fig. 10 Root Mean Square Accelerance VS. Frequency – Panels A.—Numerical RMSA obtained b

y changing γ; —Average of the experimental RMSA 

 

 

 

Fig. 11 Root Mean Square Accelerance VS. Frequency – Panels A.—Numerical RMSA obtained b

y changing γ; —Average of the experimental RMSA 
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Table 5 Variation of Natural Frequencies of Panels A with γ 

Mode fmin  fmax  ∆f EMA A1 EMA A2 

# [Hz] [Hz] % [Hz] [Hz] 

1 112.8 122.83 8.89 124.75 123.67 

2 137.18 145.11 5.78 146.36 145.78 

3 259.21 288.11 11.15 292.3 290.28 

4 268.25 288.21 7.44 296.87 293.47 

5 323.9 357.99 10.53 363.17 358.03 

6 385.52 427.27 10.82 434.96 433.76 

7 475.35 543.7 14.38 548.12 547.09 

8 508.74 588.72 15.72 598.68 592.02 

9 669.78 771.86 15.24 786.94 784.19 

10 687.56 801.72 16.6 805.67 807.65 

11 727.23 853.77 17.4 867.51 863.15 

12 738.75 889.56 20.41 897.97 890.76 

13 772.07 922.37 19.47 924.48 924.76 

14 885.17 1080.66 22.09 1096.71 1090.29 

 

 

 
Table 6 Variation of Natural Frequencies of Panels B with γ 

Mode fmin  fmax  ∆f EMA B1 EMA B2 

# [Hz] [Hz] % [Hz] [Hz] 

1 99.86 108.50 8.65 110.99 110.47 

2 121.30 128.08 5.59 126.96 126.64 

3 229.80 254.48 10.74 255.11 253.57 

4 237.47 254.57 7.20 259.47 254.97 

5 287.13 316.27 10.15 313.32 308.55 

6 341.95 377.41 10.37 374.99 373.58 

7 422.25 480.60 13.82 483.06 473.96 

8 452.14 520.56 15.13 513.87 504.20 

9 595.56 682.22 14.55 681.99 674.05 

10 611.77 708.68 15.84 699.08 694.58 

11 647.22 754.94 16.64 751.02 740.25 

12 658.09 787.13 19.61 774.01 759.92 

13 687.70 815.87 18.64 808.62 802.28 

14 789.31 956.37 21.17 948.18 930.55 
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5. Experimental-numerical correlation 
 

From the sensitivity analysis performed in Section 4, it is possible to determine the parameter γ 

allowing the best fitting with experimental results, and then to evaluate the experimental-numerical 

correlation in terms of natural frequencies and mode shapes. Hereinafter, the modal shapes are 

described by the number of nodal lines along the two in-plane directions of the panel (x,y). 

 

5.1 Heaviest panels (A) 
 

The average of the experimental measurements of the panels belonging to the class A lies on 

the upper bound of the grey area in Fig. 10, as well as highlighted in Table 5. This indicates that 

the best experimental-numerical fitting for the class A is achieved by using γ = 1 in the whole 

frequency range, i.e., a Young's modulus EA = 6.48 GPa. In Table 7 numerical and experimental 

natural frequencies are listed, together with the percentage difference and the Modal Assurance 

Criterion between the numerical and experimental eigenvectors. The correlation is promising for 

both heaviest panels A1 and A2, since the percentage differences on the natural frequencies are 

less than two percent and the MACs are greater than ninety percent for all the fourteen modes 

considered. 

 

 
Table 7 FEA-EMA correlation for the heaviest panels (A) 

Mode FEA EMA A1 FEA-A1 FEA-A1 EMA A2 FEA-A2 FEA-A2 

Name [Hz] [Hz] Diff. % MAC % [Hz] Diff. % MAC % 

(1,1) 122.83 124.75 -1.53 99.7 123.67 -0.67 99.4 

(0,2) 145.11 146.36 -0.86 99.4 145.78 -0.46 95.0 

(1,2) 288.11 292.30 -1.43 98.4 290.28 -0.75 93.5 

(2,0) 288.22 296.87 -2.91 98.1 293.47 -1.79 91.4 

(2,1) 357.99 363.17 -1.43 98.2 358.03 -0.01 95.9 

(0,3) 427.27 434.96 -1.77 99.0 433.76 -1.49 98.5 

(1,3) 543.70 548.12 -0.81 99.3 547.09 -0.62 98.4 

(2,2) 588.72 598.68 -1.66 99.4 592.02 -0.56 92.6 

(3,0) 771.86 786.94 -1.92 98.0 784.19 -1.57 97.9 

(0,4) 801.72 805.67 -0.49 98.7 807.65 -0.73 98.8 

(3,1) 853.77 867.51 -1.58 98.2 863.15 -1.09 97.0 

(2,3) 889.56 897.97 -0.94 98.2 890.76 -0.13 96.3 

(1,4) 922.37 924.48 -0.23 99.1 924.76 -0.26 97.8 

(3,2) 1080.66 1096.71 -1.46 99.1 1090.29 -0.88 98.2 

 

 

5.1 Lightest panels (B) 
 

For the lightest panels, i.e., class B, it seems there is not a single value of γ which allows a 

perfect correlation in the whole frequency range; however, the best fitting is achieved by means of 

γ = 0.95, i.e. a Young's modulus EB = 3.43 GPa, as can be observed by Fig. 11 and Table 6.  
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Table 8 FEA-EMA correlation for the lightest panels (B) 

Mode FEA EMA B1 FEA-B1 FEA-B1 EMA B2 FEA-B2 FEA-B2 

Name [Hz] [Hz] Diff. % MAC % [Hz] Diff. % MAC % 

(1,1) 107.92 110.99 -2.76 98.9 110.47 -2.31 99.0 

(0,2) 127.51 126.96 0.44 99.5 126.64 0.69 99.2 

(1,2) 253.16 259.47 -2.43 64.0 253.57 -0.17 79.7 

(2,0) 253.29 255.11 -0.71 58.4 254.97 -0.66 81.2 

(2,1) 314.58 313.31 0.40 98.4 308.55 1.95 97.9 

(0,3) 375.49 374.99 0.13 99.0 373.58 0.51 98.3 

(1,3) 477.78 483.06 -1.09 98.9 473.96 0.81 96.4 

(2,2) 517.34 513.87 0.68 98.0 504.20 2.61 96.5 

(3,0) 678.37 681.99 -0.53 92.9 674.05 0.64 94.4 

(0,4) 704.57 699.08 0.78 95.0 694.58 1.44 93.0 

(3,1) 750.36 751.02 -0.09 93.4 740.25 1.37 91.2 

(2,3) 781.78 774.01 1.00 93.2 759.92 2.88 91.7 

(1,4) 810.62 808.62 0.25 97.7 802.27 1.04 93.4 

(3,2) 949.81 948.18 0.17 98.5 930.55 2.07 96.4 

 

 

  
(a) Mode (1,2): 3rd FEA-4th EMA B1 (MAC 

58.4%) 

(b) Mode (2,0): 4th FEA-3rd EMA B1 (MAC 

64.0%) 

  
(c) Mode (1,2): 3rd FEA-3th EMA B2 (MAC 

79.7%) 

(d) Mode (2,0): 4th FEA-4th EMA B2 (MAC 

81.2%) 

Fig. 12 Numerical-Experimental correlation of mode shapes (1,2) and (2,0) of panels B1 and B2. — FEA; 

— EMA 
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A comparison of experimental and numerical results is summarised in Table 8. Despite 

numerical natural frequencies are well correlated with the experimental ones, the MAC presents 

very low values for the third and fourth modes of both B1 and B2, as expected (Fig. 9). The 

mismatch between the experimental eigenvectors and the numerical ones is evident, as shown in 

Fig. 12. Since the core is modelled as a homogeneous material, the numerical model leads to a 

torsional flexural (1,2) third mode shape and a purely flexural (2,0) fourth mode shape. As 

previously represented in Fig. 9, the corresponding experimental mode shapes are not well defined 

since flexural and torsional deformations coexist in both eigenvectors, especially for those of the 

panel B1. This leads to a poor correlation in terms of MAC, highlighting that a finite element 

model using a homogeneous core is not always able to describe the deformations of an AFS panel 

because of the possible not uniform distribution of the mass inside the foam core. 

 

 

6. Random spatial distribution of the core mass 

 

As shown in the previous section, nominally identical AFS panels have a different dynamic 

behaviour, which is also quite different from sandwich panels with homogeneous core. This lack 

of homogeneity can lead to an improvement of the vibro-acoustic behaviour when the sandwich 

panel is subject to a distributed pressure load (Franco et al. 2007, D'Alessandro 2010, Polito et al. 

2010, Franco et al. 2011). In order to understand the possible effect of a random spatial 

distribution of the core mass over the dynamic response and modal parameters of the panels 

investigated, finite element models having not-homogeneous cores were developed. 

For each class of AFS panels, twenty Gaussian's distributions (with a number of samples equal 

to the number of solid elements in the core, i.e., 3906 CHEXA) of the core density were generated, 

having as parameters: 

 μA = 600 kg/m
3
 and σA = 100 kg/m

3
 for panels A; 

 μB = 390 kg/m
3
 and σB = 65 kg/m

3
 for panels B. 

μ and σ are the main value and the standard deviation of Gaussian's distributions, respectively.  

Several techniques are described in literature to experimentally characterise the density 

distribution of the cellular foam, such as X-ray techniques (radiography, radioscopy and 

tomography) and eddy-current sensoring (Banhart 2001). However, in this work the standard 

deviation is assumed to be 17% of the nominal density, whereas the mean value is equal to the 

nominal one. Then, for each distribution, a different density was randomly assigned to each solid 

element of the core model, as well as different Young's modulus calculated by means of Ashby's 

law (Eq. (4)). An example of a random spatial distribution of the core mass for the panels A is 

shown in Fig. 13: the scale on the right of the picture represents the range in which the foam 

density changes, from a minimum value 208.4 kg/m
3
(in violet colour) to a maximum one 938.5 

kg/m
3
(in red colour). 

In Fig. 14, for each class of panels the average of the measured experimental RMSA is 

compared to the calculated ones for the twenty models having a random mass distribution of the 

core. As can be observed by the overlapping of the numerical curves, the local variations of mass 

and stiffness do not all affect the global response (the Root Mean Square Acceleration is calculated 

over all the points of the mesh), both for the heaviest (Fig. 14(a)) and the lightest (Fig. 14(b)) 

panels. This means that the global frequency response function of the dynamic system is not 

influenced by the change of local parameters and hence a model with a homogeneous core can be 
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used to achieve the same results. 

Despite the eigenvalues remain quite constant, the eigenvectors strongly change by 

randomising the spatial distribution of the core property, obtaining a reshaping of the modal 

deformation. In Section 5, it is shown that the numerical model of a sandwich panel with 

homogeneous core is not always able to simulate the mode shapes of a AFS panel, as summarised 

in Table 8 for the lightest panels, which exhibit low MACs for the modes (1,2) and (2,0). Thanks 

to the randomization of the core properties, it is possible exploring the space of the eigenvectors, 

achieving a general very good accordance.  

 

 

 

Fig. 13 Isometric view of the numerical model of a foam core with random spatial distribution of mass 

 

 
(a) Panels A: —Numerical RMSA calculated obtained by randomly distributing the core properties;

— Average of the experimental RMSA 

 
(b) Panels B: —Numerical RMSA calculated obtained by randomly distributing the core properties; 

 — Average of the experimental RMSA 

Fig. 14 Comparison of the experimental RMSA and twenty numerical RMSA calculated with random 

distribution of the core density 
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For instance, in Table 9 some correlation results are summarised in terms of Modal Assurance 

Criterion. In particular, the experimental mode shapes of panel B1 are compared to the numerical 

ones obtained by considering the homogeneous core (the original one), the random mass core 

which gives the worst MACs and the random mass core which leads to the best correlation. 

In Fig. 15 the best correlation obtained by randomising the core properties is shown for the 

modes (1,2) and (2,0) of panel B1. The reshaping of these eigenvectors using this mass distribution 

leads to very high values of MAC and furthermore, differently from the case in which the core was 

modelled as homogeneous, there is no switch of the order of the modes. 

 

 
Table 9 MAC between experimental mode shapes and numerical ones calculated using different core models 

Mode 

Name 
MAC Homogeneous MAC Worst 

MAC 

Best 

 % % % 

(1,1) 98.9 98.9 98.9 

(0,2) 99.5 99.5 99.6 

(1,2) 64.0 52.6 97.4 

(2,0) 58.4 49.1 98.2 

(2,1) 98.4 98.3 98.4 

(0,3) 99.0 99.0 99.0 

(1,3) 98.9 98.9 98.9 

(2,2) 98.0 98.1 98.1 

(3,0) 92.9 91.4 92.7 

(0,4) 95.0 93.3 94.5 

(3,1) 93.4 94.1 93.3 

(2,3) 93.2 93.9 93.1 

(1,4) 97.7 97.5 97.9 

(3,2) 98.5 98.4 98.5 

 

 

  
(a) Mode (1,2): 3rd FEA–3rd EMA B1 (MAC 

97.4%) 

(b) Mode (2,0): 4th FEA–4th EMA B1 (MAC 

98.2%) 

Fig. 15 Numerical-Experimental correlation of mode shapes (1,2) and (2,0) of panels B1. — FEA; — 

EMA 
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7. Conclusions 

 
Experimental and numerical analysis of two classes of Aluminium Foam Sandwich panels are 

described. The experimental results show that the present manufacturing process is not repeatable 

yet because nominally identical panels have different dynamic behaviour, mostly in high frequency 

region. However, in the low-frequency region the response is governed only by global parameters, 

such as mass, stiffness and damping.  

A sensitivity analysis by using a finite element model allows the identification of a bounded 

response by changing the elastic modulus of the metal foam core, according to the Ashby's laws.  

The value of the elastic modulus, which guarantees the best numerical-experimental fitting, is 

used to compare the calculated and measured modal parameters. The comparison of numerical and 

experimental mode shapes highlights that a model with a homogeneous core is not always able to 

describe correctly the eigenvectors of the panels because of the not uniform distribution of the 

mass in the foam core. 

A model having a random spatial distribution of the core density is developed and studied: the 

numerical-experimental correlation shows that the local variation of the core properties (mass and 

stiffness) does not affect the dynamic response, but only the eigenvectors. This could lead to an 

improvement of the vibro-acoustic response when the panel is subjected to a distributed load, as 

demonstrate by previous works. 
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