
 
 
 
 
 
 
 

Smart Structures and Systems, Vol. 13, No. 2 (2014) 319-341 
DOI: http://dx.doi.org/10.12989/sss.2014.13.2.319                                                319 

Copyright © 2014 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=sss&subpage=8         ISSN: 1738-1584 (Print), 1738-1991 (Online) 
 
 

 

 
 
 
 

Family of smart tuned mass dampers with variable frequency 
under harmonic excitations and ground motions: closed-form 

evaluation 
 

C. Sun1, S. Nagarajaiah1,2 and A.J. Dick2 
 

1Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, USA 
2 Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas 77005, USA 

 
(Received December 19, 2013, Revised January 7, 2014, Accepted January 9, 2014) 

 
Abstract.    A family of smart tuned mass dampers (STMDs) with variable frequency and damping 
properties is analyzed under harmonic excitations and ground motions. Two types of STMDs are studied: 
one is realized by a semi-active independently variable stiffness (SAIVS) device and the other is realized by 
a pendulum with an adjustable length. Based on the feedback signal, the angle of the SAIVS device or the 
length of the pendulum is adjusted by using a servomotor such that the frequency of the STMD matches the 
dominant excitation frequency in real-time. Closed-form solutions are derived for the two types of STMDs 
under harmonic excitations and ground motions. Results indicate that a small damping ratio (zero damping 
is the best theoretically) and an appropriate mass ratio can produce significant reduction when compared to 
the case with no tuned mass damper. Experiments are conducted to verify the theoretical result of the smart 
pendulum TMD (SPTMD). Frequency tuning of the SPTMD is implemented through tracking and 
analyzing the signal of the excitation using a short time Fourier transformation (STFT) based control 
algorithm. It is found that the theoretical model can predict the structural responses well. Both the SAIVS 
STMD and the SPTMD can significantly attenuate the structural responses and outperform the conventional 
passive TMDs. 
 

Keywords:  smart tuned mass dampers (STMDs); harmonic excitation and ground motion; frequency 
tracking; closed-form solutions; experimental verification 

 
 
1. Introduction 
 

In the community of structural vibration control, Tuned Mass Dampers (TMDs), as effective 
approaches to reduce structural dynamic responses, are well understood and have been deployed in 
many buildings and bridges. When tuned to the fundamental frequency of the structure, TMDs can 
minimize the structural response at its resonant frequency. The idea of the TMD was proposed and 
patented by Frahm in 1911. Then in 1928, Ormondroyd and Den Hartog theoretically investigated 
the TMD in an undamped single-degree-of-freedom (SDOF) system subjected to harmonic 
loadings (Ormondroyd and Den Hartog 1928). Optimum design parameters for TMDs are 
presented in the textbook (Den Hartog 1956). Since then, TMDs have been widely studied and 
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many new types of TMDs have been developed and evaluated (Housner et al. 1997, Spencer and 
Nagarajaiah 2003). However, the narrow effective bandwidth of TMDs in the frequency domain 
can cause the malfunction of TMDs when the natural frequency of the primary structure shifts due 
to structural degradation or other reasons. 

In order to overcome the drawbacks of conventional TMDs, researchers proposed Semi-active 
Tuned Mass Dampers (STMDs) which are realized by variable damping or stiffness devices. Since 
the 1980s, STMDs have been studied and shown more effective than their equivalent passive 
counterparts and more reliable than their equivalent active counterparts. In addition, no stability 
issues would arise in the case of STMDs since they do not apply direct forces to structures 
(Housner et al. 1997 ). Hrovat et al. evaluated the performance of an STMD in reducing 
wind-induced vibrations of tall buildings (Hrovat et al. 1983). They varied the damping ratio of the 
STMD based on the feedback and the associated control algorithm. Their findings showed that the 
STMD could provide a reduction effect comparable to that of its equivalent active counterparts 
and outperform its equivalent passive counterparts. Abe and Igusa established closed-form 
solutions for the optimum initial displacement and variable damping ratio of an STMD to control 
transient responses (Abe and Igusa 1996). Abe further examined the performance of the STMD to 
protect civil structures during earthquakes (Abe 1996). Their findings indicated that the STMD 
with an optimum initial displacement and variable damping ratio can produce better reduction than 
the passive TMDs.  

Since then, many variable damping devices have been developed and used in STMDs, 
including the magnetorheological (MR) dampers, the variable orifice dampers and the 
electrorheological (ER) dampers (Spencer and Nagarajaiah 2003). Meanwhile, the active variable 
stiffness (AVS) system was pioneered by Kobori and implemented in a full-scale structure in 
Tokyo, Japan (Kobori et al. 1993). It was found that the AVS system could influence the structure 
into a non-resonant state against earthquake excitations, thereby suppressing the structural 
responses. However, it was observed in (Yamada and Kobori 1995) that the abrupt switching of the 
system could influence its performance in controlling vibrations. 

 
 

Fig. 1 Semi-Active and Independently Variable Stiffness (SAIVS) device and STMD (Nagarajaiah 2000)
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In comparison, Nagarajaiah and Mate (1998), Nagarajaiah (2000) developed a semi-active 
continuously and independently variable-stiffness (SAIVS) device as shown in Fig. 1. Based on 
the SAIVS device, a new type of smart Tuned Mass Damper (STMD) with variable stiffness and 
damping property is proposed and examined (Varadarajan and Nagarajaiah 2004, Nagarajaiah and 
Varadarajan 2005, Nagarajaiah and Sonmez 2007, Nagarajaiah 2009, Sun and Nagarajaiah 2013).  

It was found that the SAIVS device can provide reliably and smoothly variable stiffness such 
that the frequency of the STMD can be tuned in real-time. The capability of the STMD to 
attenuate structural responses was validated analytically and experimentally for both stationary and 
non-stationary excitations. The authors found that the SAIVS STMD performs comparably to an 
active TMD but requires an order of magnitude less power. Recently, Sun et al. evaluated the 
performance of the SAIVS STMD in parallel with a nonlinear TMD (NTMD) to control a Düffing 
system (Sun et al. 2013). Their results indicated that the combination of an STMD and an NTMD 
in parallel can effectively attenuate the structural responses: both the transient and the steady-state 
responses. Eason et al. studied the behavior of the SAIVS STMD and an NTMD in series to 
control a linear primary structure (Eason et al. 2013). They found that an STMD with a mass four 
orders of magnitude smaller than the primary structure is able to greatly reduce the amplitude of 
the structural response. 

In addition to the conventional TMDs, the pendulum TMD (PTMD) consisting of a cable and a 
mass suspended at the top part of a building has received popularity in the community of vibration 
control in recent years. Mehdi et al. used the PTMD to control excessive floor vibrations due to 
human movements (Yamada et al. 2006). Their results indicated that a properly-tuned PTMD can 
effectively control the floor vibrations while an off-tuned PTMD may not function effectively. In 
order to overcome the off-tuning of PTMD, Nagaragaiah proposed the concept of an 
adaptive-length pendulum TMD (APL-PTMD) (Nagarajaiah 2009). It was shown experimentally 
that the APL-PTMD can significantly reduce the structural responses and outperforms its 
equivalent passive counterpart. Recently, Sun et al. studied the performance of an adaptive 
pendulum TMD (APTMD) in parallel with a nonlinear TMD used to attenuate the responses of a 
primary a Düffing system (Sun et al. 2013). The authors demonstrated that the APTMD can 
effectively attenuate the hazardous high amplitude detached resonance of the primary structure 
(Eason et al. 2013). However, closed-form solutions of SAIVS-STMD and APL-PTMD are still 
needed to study a more general family/class of the two types of STMD, which is the focus of this 
study.  

Motivated by the work described above, two types of smart tuned mass damper (STMD) with 
variable frequency properties are studied theoretically and experimentally in the present study. The 
two types of STMD are realized by the semi-active independently variable stiffness (SAIVS) 
device and a pendulum with adjustable length. The performance of both the SAIVS STMD and the 
smart pendulum TMD (SPTMD) is analyzed. Equations of motion of the dynamic system are 
established. Closed-form solutions of the structure STMD (or SPTMD) two degrees-of-freedom 
system which is essentially a time variant system are derived, providing insight into the dynamic 
system. In the case of SPTMD, an approximate simplification is used to linearize the essentially 
nonlinear equations, thereby making it solvable directly. It is shown that the solution is appropriate 
when excitation and ground motion amplitude is relatively small. Experimental data with respect 
to the SPTMD is presented to verify the theoretical model showing that the simplified linear model 
can predict the performance of the SPTMD well. 

The paper is structured as follows. The next section describes two configurations of the 
dynamic system coupled with an STMD and an SPTMD. Section 3 presents the relevant equations 
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of motion of the dynamic system and the solutions to the equations are derived. The performance 
of the STMD and the SPTMD under harmonic excitations and ground motions are presented in 
Section 4. Section 5 presents the experimental verification of the SPTMD. Concluding remarks are 
discussed in the final section. 

 
 
 

 

Fig. 2 Illustration of the dynamic system coupled with an STMD under harmonic excitation (a) and 
ground motion (b) 

 
 
 

 

Fig. 3 Illustration of the smart pendulum tuned mass damper and the SDOF 
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2. Description of the models 
 

In this section, the configuration of a single degree-of-freedom (SDOF) primary structure with 
two types of STMD, i.e., the SAIVS STMD and the smart pendulum TMD (SPTMD), are 
illustrated and described in the following subsections respectively. 

 
2.1. Configuration of the primary system with an SAIVS STMD 
 
The dynamic system consisting of a linear structure and a SAIVS STMD (STMD) excited 

harmonically are presented in Fig. 2 where the structure is subjected to harmonic loadings in Fig. 
2(a) and to harmonic ground motions in Fig. 2(b). The natural frequency of the STMD is 
controlled through varying the angle  of the SAIVS device by using a linear electro-mechanical 
motor.  

 
2.2. Configuration of the primary system with a pendulum STMD 
 
The dynamic system consisting of a linear structure and a pendulum STMD (SPTMD) excited 

harmonically are presented in Fig. 3 where the structure is subjected to harmonic excitations in Fig. 
3(a) and to harmonic ground motions in Fig. 3(b). The natural frequency of the SPTMD is 
controlled through varying the length sl of the pendulum using a linear electro-mechanical motor. 

It is noted that the damping coefficient of the SAIVS-STMD in Fig. 2 is denoted as sc

whose unit is　  msN /  and the damping coefficient of the SPTMD shown in Fig. 3 is denoted 
as spc whose unit is msN / .  

 
 

3. Closed-form solutions of the dynamic system with STMD and SPTMD 
 

In this section, the closed-form solutions of the dynamic system with STMD and SPTMD are 
derived. In order to perform this analysis, a complex form is assumed for the excitation, the 
ground motion, and the response terms. The harmonic loading is assumed to take the form 

i tf Fe  where F  is the forcing amplitude and   is the frequency; the ground motion is 
i t

g gx X e  where gX and   are the ground motion amplitude and frequency, respectively. For 

the sake of clarification, the subscript s is used to denote the result in the case of STMD and the 
subscript sp is used in the case of the SPTMD. The STMD case is referred as Model I and the 
SPTMD is referred as Model II for convenience. 

 
3.1 Dynamic system with STMD 

 
This section presents the equations of motion of Model I. Solutions are then derived for the two 

models under both harmonic excitation and harmonic ground motion. 
 
3.1.1 Under harmonic excitations 
The equations of motion of Model I under harmonic loading as shown in Fig. 2(a) are derived 
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using the Euler-Lagrange equation and shown in Eq. (1). Details regarding the derivation of the 
equation are illustrated in the Appendix. 

( ) ( )

( ) ( ) 0

i t
p p p p p p s p s s p s

s s s s p s s p

M x c x k x c x x k x x Fe

m x c x x k x x

      

    

   

  
                (1) 

where pM  is a variable representing the mass of the primary structure, and sm is the mass of the 

STMD. Variables ,  p sc c denote the viscous damping coefficient of the primary structure and the 

STMD. Stiffness coefficients corresponding to the primary structure and the STMD are pk  and 

sk  respectively. Variables px  and sx  denote the position of the two degree of freedom system. 

An over-dot (˙) indicates the derivative with respect to time. 
In order to express the equations of motion in terms of the design parameters, Eqs. (2) and (3) 

are utilized. 

, , , , ,
2 2

p ps s s
p s s p s

p s p p p s s

k ck c

M m M m


   

  
                    (2) 

, , , .s
s pst p

p p p

m F
X t

M k
   




                          (3) 

Non-dimensionalizing Eq. (1) with respect to time results in 
2

2

2 2 ( ) ( ) ,

2 ( ) ( ) 0

i
p p p p s s s p s s s p s pst

s s s s p s s p

x x x x x x x X e

x x x x x

   



        

     

   

  
               (4) 

The general forms of the steady-state solutions of the dynamical system can be written as 

   ,i i
p p s sx A e x A e                               (5) 

where parameters pA  and sA are complex numbers which contain the amplitude and phase angle 

of the responses. 
Substituting Eq. (5) into Eq. (4) and rewriting the equation in matrix form yields 

2 2 2

2 2 2

2 2 1 2

02 2
p pstp s s s s s s s s s s

ss s s s s s

A Xi i i

Ai i

         
   

               
              

          (6) 

Solving Eq. (6) for pA  and sA  yields the transfer functions 

22 21( ) , ( )p s
p s

pst pst

A AA A
H i H i

X D X D
                           (7) 

where 
2 2

22

2
21

2 2 2 2 2 2

2 ,

2 ,

( 2 2 1)( 2 ) ( 2 )( 2 )

s s s

s s s

s s p s s s s s s s s s s s s s s

A i

A i

D i i i

  

 

              

    

  

                  
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Separating the real and imaginary parts of pH and 　 sH gives　  

 
,p p p

s s s

H c id

H c id

 

 
                                (8) 

where ,  ,  ,  p s p sc c d d  are the real parts and the imaginary parts of ,  p sH H and the associated 

formulas are listed in the Appendix.  
Based on Eq. (8), the magnitude and phase angle of pH and 　 sH are derived as　  

2 2 2 2| | , | |p p p s s sH c d H c d                               (9) 

, , | |p p s p ss
p s r

p s p s p s

d d c c dd
arctan arctan arctan

c c d d c c
  

    
               

              (10) 

where ,p s   and r  are the phase angles of the primary structure, the STMD, and the phase 

difference between the structure and the STMD. 
Multiplying the steady-state response of the displacement by 2  yields the transfer functions 

of the acceleration listed as follows 

2 2 2

2 2 2

| | ,

| |

pacce p p

sacce s s

H c d

H c d





 

 
                               (11) 

 
3.1.2 Under ground motions 
Similarly, the equations of motion of Model I under harmonic ground motions are derived as 

( ) ( )

( ) ( )

,p rp p rp p rp s rp s s rp rs p g

s rs s rs rp s s rp s g

M x c x k x c x x k x x M x

m x c x x k x x m x

       

     

    

   
                (12) 

where rpx  and rsx denote the relative displacement of the primary structure and the STMD to the 

base. 
Non-dimensionalizing Eq. (12) produces 

2 2

2 2

2 2 ( ) ( ) ,

2 ( ) ( )

i
p p p p s s s p s s s p s g

i
s s s s p s s p g

x x x x x x x X e

x x x x x X e





    

 

         

      

   

  
             (13) 

The general forms of the steady-state solutions of Eq. (13) can be written as 

,i
rp rp

i
rs rs

x A e

x A e








                              (14) 

Substituting Eq. (14) into Eq. (13) yields the transfer functions listed in the following equations 

2 2
12 22 21 11( ) ( )

,rp rs
pg sg

g g

A AA A A A
H A

X D X D

  
                    (15) 
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2 2
12 22 21 11( ) ( )

1, 1pgacce sgacce

A A A A
H A

D D

  
                       (16) 

where ,  pg sgH H  denote the relative displacement transfer function, and ,  pgacce sgacceH H denote the 

absolute acceleration transfer function corresponding to ground motions; 
2 2

11 2 2 1,p s s s s sA i i             2
12 2 ,s s s s sA i        2 2

22 2 s s sA i        

 
3.2. Dynamical system with SPTMD 

 
3.2.1 Under harmonic excitations 
The equations of motion of Model II under harmonic excitation are shown in Eq. (17). Details 

of the derivation of the equations are illustrated in the Appendix. 
2

2

(

0

,) ( ) i t
p s p p p p p s s

s s p s s sp s s

M m x c x k x m l cos sin Fe

m l cos x m l c m gl sin

   

   

     

   

  

 
                (17) 

In addition to Eqs. (2) and (3), the following equations are utilized to define the equations of 
motion in terms of the design parameters for Model II. 

2
, ,

2
sp sp

sp sp sp
s p s s sp

cg

l m l


 

 
                           (18) 

where g  is the acceleration due to gravity. 
Non-dimensionalizing Eq. (17) using Eqs. (2) and (3) and Eq. (18) yields 

2

2

(1 ) 2 ( )

2 0

,i
s p p p p s s pst

p s sp sp
s

x x x l cos sin X e

cos
x sin

l

      

      

     

   

  

 
                  (19) 

When the excitation amplitude F  is small, the response of the system will be small, i.e., 
0 1 � . Then the nonlinear term 2sin   in Eq. (19) is small and thus can be neglected; in 

addition, sin  , and 1cos  . Therefore, the original nonlinear ordinary differential equation 
Eq. (19) becomes linear ODEs which can be solved directly. 

The general form of the steady-state solutions of Eq. (19) can be written as 

,i
p sp

i
ss

x A e

A e








                                (20) 

where the subscripts sp and ss denote the primary structure and the pendulum in Model II, 
respectively. 

Substituting Eq. (20) into Eq. (19) and rewriting the equation in matrix form yields 

2 2

2 2 2

(1 ) 2 1

0/ 2
sp psts p s s

sss s s s

A Xi l

Al i

    
  

         
            

              (21) 

Solving Eq. (21) for spA and 　 ssA and the tran　 sfer functions are presented as  
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2 2

2 2 2 4

2
( )

[ (1 ) 2 1][ 2 ]
s s s

sp
s p s s s s

i
H i

i i

  


       
   


        

               (22) 

2

2 2 2 4
( )

[ (1 ) 2 1][ 2 ]
s s

ss
s p s s s s

l
H i

i i

 


       


        
              (23) 

where ( )spH i and ( )ssH i are the transfer functions of the primary structure and the smart 

pendulum TMD, respectively. 
Based on Eqs. (22) and (23), the acceleration transfer functions are obtained and shown as 

4 3 2 2

2 2 2 4

2
( )

[ (1 ) 2 1][ 2 ]
s s s

spacce
s p s s s s

i
H i

i i

   


       
   


        

             (24) 

4

2 2 2 4
( )

[ (1 ) 2 1][ 2 ]
s s

ssacce
s p s s s s

l
H i

i i

 


       



        

             (25) 

where the subscript space and ssacce refer to acceleration of the primary structure and the smart 
pendulum TMD. 
 

3.2.2 Solution of the system under harmonic ground motions 
Similarly, the equation of motion of Model II under ground motion gx as shown in Fig. 2(b) is 

derived as 
2

2

( ) ( ,) ( )p s rp p rp p rp s s p s g

s s rp s s s s s s s g

M m x c x k x m l cos sin M m x

m l cos x m l c m gl sin m l cos x

   

    

       

    

   

  
             (26) 

where rpx  is the relative displacement of the primary structure to the base. 

By using the Eqs. (2) and (3) and Eq. (18), Eq. (26) can be non-dimensionalized as 

    

2

2

(1 ) 2 (    ) (1 ) ( ),

  
2  ( )

s rp p rp rp s s s g
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s s
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l l

        

       

       

    

   

  

                 

       (27) 

Based on the small angle approximation: 2 0,sin   ,sin  1,cos  Eq. (27) can be linearizd 
and solved directly. The general forms of the steady-state solutions of Eq. (27) are written as 

,i
rp sp

i
ss

x A e

A e








                             (28) 

Substituting Eq. (28) into Eq. (27) and solving for spA and 　 ssA yields the transfer 　

functions of the dynamic system under ground motions 

2 2 2

2 2 2 4

[ 2 (1 ) (1 ) ]
( )

[ (1 ) 2 1][ 2 ]
s s s s s

spg
s p s s s s

i
H i

i i

     


       
      


        

               (29) 
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            (32) 

where spgH  and ssgH denote the relative displacement transfer functions, 　 spgacceH and ssgacceH

denote the absolute acceleration transfer functions corresponding to the ground motion. 
 
 

 

Fig. 4 Frequency response with various damping ratios under harmonic excitations: (a) response surface 
and (b) contour of the response surface. Mass ratio 1%s ò . 

 
 

 
Fig. 5 Frequency response with various damping ratios under ground motions: (a) response surface and 

(b) contour of the response surface. Mass ratio 1%s ò  

 
 
4. Results of the dynamic system with STMD/SPTMD 
 

The closed-form results of the structural response with respect to both the STMD and SPTMD 
are presented in this section. An important parameter when studying these systems is the damping 
ratio of the structure. The typical damping ratio values for structures are in the range of 
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[0.01 0.05] , see (Newmark and Hall 1982). In the present study, 0.02p  is adopted for the 　

primary structure. 
 

4.1. Results of the SAIVS STMD 
 

In order to absorb the energy of the primary structure effectively, two strategies are often used 
to tune the frequency of an STMD (Nagarajaiah 2009). The first is to tune the STMD such that its 
fundamental frequency matches the dominant response frequency of the primary structure, 
typically near its first natural frequency. The second is to tune the natural frequency of an STMD 
to the dominant excitation frequency, i.e., s   . In the present study, the second tuning method is 
used and thus the natural frequency of the STMD/SPTMD is time dependent. The control 
procedure can be described as follows: first, the excitation signal is tracked and analyzed to 
provide the dominant frequency of the excitation; then the natural frequency of the 
STMD/SPTMD is tuned to match the dominant excitation frequency by means of changing the 
angle of the SAIVS device in the case of the SAIVS STMD or adjusting the length of the 
pendulum in the case of the SPTMD. Because the tracking and analyzing with respect to the signal 
is not the focus of the current study, details are not illustrated here. In the case of the SAIVS 
STMD, the damping coefficient sc  is tuned in terms of s  such that the damping ratio s  

remains constant; similarly, the damping coefficient spc  is tuned in terms of sp  such that the 

damping ratio sp  remains constant. In this section, the reduction effect with respect to different 

damping ratios and mass ratios are presented. In addition, the sensitivity of the tuning frequency 
ratio /s   is analyzed with various damping ratios and mass ratios. 

 
4.1.1 Study on STMD damping ratio 
The frequency response surface and the associated contour plot for the primary structure for 

variation of the damping ratio of the STMD s  under harmonic excitation are illustrated in Figs. 
4(a) and 4(b). In order to show the variation of the peak response clearly, a truncated contour plot 
where the frequency ratio [0.5 1.5]   is presented in Fig. 4(b). It is shown in both Figs. 4(a) and 

4(b) that the peak response decreases as the damping ratio s  decreases. Figs. 5(a) and 5(b) 

illustrate the results for variation of damping ratio s  under ground motions where similar 
conclusions can be drawn. 

In order to explain this conclusion, the phase angle p  of the primary structure, s  of the 

STMD, and the difference in phase between the structure and the STMD r are presented in Figs. 

6(a) - 6(c). Fig. 6(a) indicates that varying the value of the damping ratio s can change the phase 

angle of the structure. Decreasing the value of s is equivalent to increasing the damping ratio of 

the structure p  because similar result can be obtained for an SDOF structure when increasing its 

damping ratio (Chopra Anil 2066). Fig. 6(b) illustrates that as the damping ratio s decreases, the 

phase angle of the STMD s is approaching  near the resonant frequency, signaling that the 

STMD oscillates more out of phase with the excitation as s  decreases. In Fig. 6(c), the 

difference in phase r  approaches / 2  throughout when the damping ratio s  decreases, 
indicating maximum energy flow and dissipation. It is so because the relative acceleration of the 
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STMD is in phase with the velocity response of the primary structure. Hence, the power flow is 
equivalent to an effective dissipative power which increases the total effective damping of the 
primary structural system. In other words, as s  decreases, the force applied by the STMD to the 

primary structure is more out of phase to the excitation force i tFe  , thereby reducing the structural 
responses more effectively. 
 
 

 

Fig. 6 Phase angle curves for various s : (a) Phase angle p of the structure; (b) Phase angle s  of the 

STMD and (c) phase angle difference r  between the structure and the STMD. Mass ratio 1%s ò

 
 
 

 

Fig. 7 Structural response with the variation of mass ratio sò under harmonic excitations: (a) frequency 

response surface and (b) contour plot of the response surface. Damping ratio 1%s   
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Fig. 8 Structural response with the variation of mass ratio sò  under ground motions: (a) frequency 

response surface and (b) contour plot of the response surface. Damping ratio 1%s   

 
 
 

 

Fig. 9 Phase angle curves for various sò : (a) Phase angle p of the structure, (b) Phase angle s  of the 

STMD and (c) phase angle difference r  between the structure and the STMD. Damping ratio

1%s   
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4.1.2 Study on STMD mass ratio 
Based on the results presented in the previous subsection, 1%s   is adopted in this 

subsection. Figs. 7(a) and 7(b) illustrate the frequency response surface and the contour plot of the 
response surface under harmonic excitations as sò is varied. Fig. 7(a) indicates that the peak 
response decreases as the mass ratio increases; however, little benefit is achieved when increasing 

sò  beyond 2.75%s ò  as denoted through a bright dot in Fig. 7(b). It is noted that the critical 

value of the mass ratio 2.75%s ò  is obtained through sensitivity analysis with respect to the 

change in the gradient of pH  with respect to sò . Similar analysis is performed to obtain the 

critical values of sò  in other cases. 
The results with respect to the variation of the mass ratio under ground motions are shown in 

Figs. 8(a) and 8(b) where similar conclusions can be drawn as described in Fig. 7. As denoted in 
Fig. 8(b), the critical value of the mass ratio is 3%s ò  in the case of harmonic ground motion. 

The reduction related to the mass ratio sò can also be explained through the variation of the phase 

angles p , s  and r as illustrated in Figs. 9(a) - 9(c). 

 
4.1.3 Sensitivity to frequency mistuning 
It is assumed in the previous subsections that the STMD can be tuned exactly to the frequency 

of the excitation, i.e., / 1s   . However, there are inevitably small deviations that could occur 
from data sensing and processing in real world applications. In order to study the effects of the 
tuning accuracy, a tuning parameter /s    is defined. An investigation is performed on the 

sensitivity of the tuning parameter  . Results for variations of the damping ratio and mass ratio 
are illustrated in Figs. 10(a) and 10(b). The peak primary structure response is plotted for a range 
of mistuning levels for different values of sò . 

It is shown in Fig. 10(a) where 1%s ò  that the sensitivity increases when s  decreases. 

Taking 1%s  as an example, a deviation of 　 5%  off 1.0  causes the peak to increase more 

than eight times. Similar conclusions can be drawn in Fig. 10(b) where 5%s ò . In addition, it is 

observed in Fig. 10 (b) that it is less sensitive when 1.0  than when 1.0  . By comparing the 

case of　 1%s ò  in Fig. 10(a) and that of 5%s ò  in Fig. 10(b), it is indicated that the 

performance becomes more robust to the mistuning  as the mass ratio 　 sò increases. It is 　

noteworthy to point out that the results in Fig. 10 are obtained in the case of harmonic excitations. 
Similar results are obtained in the case of harmonic ground motion which are not shown here due 
to the limitation of space. 

As a summary of this section, it can be concluded that both the mass ratio sò and the 　

damping ratio s  of the STMD can affect the attenuation of the structural response. In order to 

achieve a satisfactory reduction effect, a small damping ratio ( 1%s  is recommended) and an 　

appropriate mass ratio, for example, 2.75%s ò  in the case of harmonic excitations and 3%s ò  
in the case of ground motions are preferable. In the following sections, the results associated with 
Model II will be presented and discussed. 
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]   

Fig. 10 Sensitivity analysis on the tuning parameter  . Mass ratio 1%s ò  in (a) and 5%s ò  in (b) 

 
 

 

Fig. 11 Verification of the closed-form solution (a) under harmonic loadings  and (b) under ground 
motions. Parameter values: 3%,  1%,  6%,  0.98,  0.1s s t tf F     ò in (a) and 

8%,  0.98,  0.05t t gf X    in (b) 

 

 

4.2. Results of the SPTMD 
 
This section illustrates the results of Model II which is represented by approximate linear ODEs. 

In order to show the accuracy of the closed-form solutions, numerical results are computed and 
presented for comparison. In addition, attenuation with respect to the variation of mass ratios and 
damping ratios are illustrated. 

 
4.2.1. Comparison with numerical results 
Fig. 11 illustrate the comparison between the closed-form solutions and the numerical results 

obtained using numerical integration method. A PTMD is included in the verification. In order to 
minimize the peak of | |spH  and | |spgH  in the case of PTMD, the value of the damping ratio is 

set to 6%t   in Figs. 11(a) and 8%t   in Fig. 11(b) based on (Gerges et al. 2005) the 

frequency ratio tf is set to 0.98tf   in both Figs. 11(a) and 11(b). Fig. 11(a) shows the results 
under harmonic excitations and Fig. 11(b) shows the case of harmonic ground motion. In Fig. 
11(a), it is indicated that the closed-form solution is in good agreement with the numerical result in 
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the case of the PTMD when the amplitude of the harmonic excitation is relatively small; in the 
case of the SPTMD, the closed-form solution agrees well with the numerical result despite the 
slight difference. A similar conclusion can be drawn in Fig. 11(b) in the case of harmonic ground 
motion.  

In order to show the attenuation effectiveness of the SPTMD and the PTMD, magnitude of the 
transfer function of the primary structure under excitations with no TMD, with PTMD, and with 
SPTMD are illustrated in Fig. 12. 

Fig. 12 indicates that the PTMD can effectively attenuate the structural response; in comparison, 
the SPTMD can further improve the reduction of the structural responses. 

Figs. 13(a) and 13(b) illustrate the frequency response surface and the associated contour plot 
for variation of the damping ratio sp under harmonic excitation. It is shown in Fig　 s. 13(a) and 

13(b) that the peak of the response surface decreases as the damping ratio sp decreases. Similar 　

conclusions can be drawn in the case of ground motions as shown in Figs. 14(a) and 14(b). 
Actually, the variation of the damping ratio of the SPTMD do influence the phase angle of the 
primary structure p and also the phase difference 　 r  in a similar way described in Fig. 4. Due 

to the similarities, plots of this data are not shown here. 
 

Fig. 12 Frequency response of the cases with no TMD, with a PTMD and with a SPTMD, respectively. 
Values of parameters:　 3%,  1%,  6%,  0.98s sp t tf    ò  

 

Fig. 13 Frequency response of the primary structure with the variation of the damping ratio sp  under 

harmonic excitations: (a) frequency response surface (b) contour of the response surface. 
Parameter value: 1%s ò  
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Fig. 14 Frequency response with the variation of damping ratio sp  under ground motions: (a) frequency 

response surface (b) contour of the response surface. Parameter value: 1%s ò  

 

 

Fig. 15 Frequency response surface of the primary structure with the variation of mass ratio sò  under 

harmonic excitation: (a) frequency response surface (b) contour of the response surface. 
Parameter value: %1sp  

 

 

Fig. 16 Frequency response surface of the primary structure with the variation of mass ratio sò  under 

ground motions: (a) frequency response surface (b) contour of the response surface. Parameter 
value: 1%sp   
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4.2.3 Study on SPTMD mass ratio 
Figs. 15(a) and 15(b) show the frequency response surface and the contour plot for variation of 

the mass ratio sò . Fig. 15(a) indicates that the peak of the response surface decreases as the mass 

ratio sò increases. 　  

However, little reduction is produced if sò increases after 　 3%s ò  as denoted through a 
bright dot. A similar conclusion is obtained from Figs. 16(a) and 16(b) in the case of ground 
motions. 

Sensitivity of the attenuation with respect to the variation of the tuning parameter  is also 　

performed for the SPTMD. Similar conclusions as these discussed in Section 4.1.3 are obtained, 
i.e., as the mass ratio increases, the attenuation with the PSTMD becomes more robust. Due to the 
similarities, plots of this data are not shown here. 

In order to summarize the results presented in this section, closed-form results show that the 
SPTMD can produce significant attenuation of the structural responses with appropriate values for 
the damping ratio and mass ratio. In order to verify the results shown in this section, experimental 
results are presented in the next section. 

 
 

5. Experimental verification  
 

This section presents the experimental result for the SPTMD under harmonic ground motion. 
The scheme and the actual experimental setup of the SPTMD and the primary structure is shown 
in Fig. 17 where the SPTMD is attached to the top storey. The primary structure is a two 
degrees-of-freedom system constructed of 1/ 8 2 inch  aluminum columns and 1/ 2 2 inch  steel 

floors assumed to be rigidly fixed by threaded screw joint connections in a 3: 4  (floor:column) 
ratio. The system is excited at its base by a shaking table driven by a linear actuator controlled by 
DSPACE digital hardware and computer input. A laser displacement sensor is placed at the floor 
levels to capture the system response from base excitation. 

Displacement of the top storey and the acceleration of each of the storeys are recorded in the 
experiment. When the structure reaches steady-state, the length of the SPTMD is adjusted in terms 
of the feedback frequency tracked with the STFT control algorithm (Nagarajaiah 2009). In 
addition to the case of a SPTMD, a passive PTMD whose length is not adjusted in real time is used 
for comparison. 

It is identified in the experiment that the frequencies of the two-storey structure are 1 2.5f Hz
and　 2 7.0f Hz . The two modal damping ratios are 1 2%   for the first mode and 2 2%   for 

the second mode. The mass ratio is　 0.10s ò . The frequency of the ground motion is set to 

2.5Hz  . Experimental results are shown in Figs. 18 and 19. 
Fig. 18(a) illustrates the displacement time history for three cases: no TMD, PTMD, and 

SPTMD. The pendulum length in the case of the PTMD is initially set to 1.3  ( 25 )in t s  when 

steady-state is reached and finally set to the optimal length1.5  ( 50 )in t s . In the case of the 

SPTMD, the length is set to 1.5sl in ( 10t s ) once steady　 -state is reached. In Fig. 18(a), it is 
indicated that the real-time tuned SPTMD will significantly reduce the structural response when 
compared to the case with no TMD and with the PTMD. Fig. 18(b) illustrates that the simulation 
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results agrees well with the experimental data presented in Fig. 18(a). 
Fig. 19(a) shows the transfer function of the acceleration recorded at the top storey in the 

experiment. It is illustrated in Fig. 19(a) that both the PTMD and the SPTMD can reduce the 
acceleration of the top floor significantly; in comparison with the PTMD, the SPTMD is more 
effective. Fig. 19(b) shows the theoretical results calculated from Eq. (25). By comparing Figs. 
19(a) and 19(b), it is indicated that the theoretical model can predict the structural responses well. 

  
 
 

Fig. 17 Experimental setup: (a): Schematic model and (b): actual model 
 
 

6. Conclusions 
 
This paper studies two types of STMDs with variable frequency properties which are realized 

by the SAIVS device and a pendulum with an adjustable length. It is found theoretically and 
experimentally in the present study that the variable frequency smart TMDs (both the SAIVS 
STMD and the SPTMD) can produce significant reduction of structural responses under harmonic 
excitations and ground motions. Based on the results presented and discussed in the paper, the 
following conclusions can be drawn. 
1. The closed-form solutions of the dynamic system (Model I and Model II) provide insight into 
the two degrees-of-freedom system with STMD: the variation of the damping ratio and the mass 
ratio can affect attenuation through influencing the phase angle of the structure, the phase angle of 
the STMD, and the phase difference between the structure and the STMDs. 
2. Theoretically, a zero damping ratio for the STMD produces the best attenuation; however, 

1%s   is recommended to prevent undue sensitivity to tuning parameter  . 
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3. There exists a critical value of the mass ratio for both Model I and Model II to achieve 
desirable reduction. When 1%s  , the critical value 2.75%s ò  under harmonic excitation and 

3%s ò  under harmonic ground motion are preferable for Model I; the value 2.5%s ò  is 

preferable in the two cases for Model II. As a summary, 3%s ò  is recommended for all the cases. 
4. Reduction with the STMD (or SPTMD) is sensitive to the accuracy of the tuning when the 
mass ratio and the damping ratio are small. However, the robustness to mistuning increases as the 
mass ratio sò and the damping ratio 　 sò increase.　  
5. Experimental results agree well with the closed-form results, indicating that the approximate 
simplification of the equations of motion of Model II is appropriate when the amplitudes of the 
excitations (or the ground motions) are relatively small. 

Further study will investigate the stability of Model II when the nonlinearity of the pendulum is 
taken into consideration if the pendulum experiences large displacement. 

 
 

Fig. 18 Displacement time history of the top floor: (a) experimental result and (b) theoretical result. 
Length of the SPTMD is set to 1.5sl in at 10t s ; length of the PTMD is set to 1.3l in at 

25t s and adjusted to 1.5l in at 50t s  

 

Fig. 19 Acceleration frequency transfer function (a) experimental result and (b) simulation result 
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Appendix 

 

The kinetic energy sT  and the potential energy sV  of Model I are expressed as 
 

 
2 21 1

2 2s p p s sT M x m x                            (33) 

 2 21 1

2 2s p p s sV k x k x                            (34) 

The Lagrangian sL is 

2 2 2 21 1 1 1

2 2 2 2s s s p p s s p p s sL T V M x m x k x k x                      (35) 

For a non-conservative dynamic system, the Euler-Lagrange equation is represented as 

( ) i
i i

d L L
Q

dt q q

 
 

 
                            (36) 

where ,i iq q  are the generalized displacement and velocity of the thi degree　 -of-freedom and iQ

is the corresponding generalized force.　  
The generalized force of Model II under harmonic excitation is 

{ ( ), ( )}i T
s p p s p s s s pQ Fe c x c x x c x x          . Substituting Eqs. (33) and (34) into Eqs. (35) and (36) 

produces the equation of motion of Model I under harmonic excitation as shown in Eq. (1):  
For Model II under harmonic excitation, the kinetic energy T and the potential energy 　 V of 

the system are 

2 2 2 21 1
( 2 )

2 2p p p p s p sT M x M x l x cos l                             (37) 

21
(1 )

2 p p sV K x mgl cos  
 

                 (38) 

The Lagrangian sL  is 

2 2 2 2 21 1 1
( 2 ) (1 )

2 2 2p p p p s p s p p sL T V M x M x l x cos l K x mgl cos                 (39) 

The generalized force of Model II under harmonic excitation is 
{ ( ), ( )}i T

p p s p s s s pQ Fe c x c x x c x x          . Substituting Eq. (39) into Eq. (36) yields the equations 

of motion of Model II under harmonic excitation as illustrated in Eq. (17) 　  
Parameters , , ,p p s sc d c d   in the present paper are 

,

,

p p
p p

s s
s s

C D
c d

D D
C D

c d
D D

 

 
              (40) 
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The expressions of , , ,p p s sC D C D are listed as follows 

6 4 4 2 2 2 2 4 4 3 3 5

4 2 2 2 2 2

 (2 ) 2 (1 ) 4 4

4(1 ) 4

p s s s s s s s s s s s s

s s s s s

C             

    

               

    
    (41) 

5 3 2 4 5 3 3 5 2 4 2
1 1 1

3 2 2 3 3 3

 2 4 2 2 4 4 8

8 16

p s s s s s s s s s s s s s s

s p s s s s

D                  

     

             

   
   (42) 

4 2 2 2 2 4 2 4 4 5 3 3 3 3 3

3 5 2 3 2 4 2 3 2 2 3 3 3

 ( 2 2 2 2

2 4 4 16 8 16 )

s s s s s s s s s s s s s s s s s

s s s s s s p s s s s s p s s s s

C               

                

                

           
  (43) 

3 2 4 3 3 3 3 3 5 4

2 3 4 2 2 4 2 2 2 2 2 2 4 2

 (2 2 2 2 2 4 4

4 4 4 4 8 )

s s s p s p s s s s s s s s s s s p s

s p s s s s s s s s s s s

D                  

            

             

         
   

 (44) 

2 2 2 2 2 2 2 2 2

2 2 2

  [(2 )( 1 ) ( )(2 2 )] [( )( 1 )

( 2 ) 2 (2 2 )]

s s s s s p s s s s s s

s s s s s s p s s s

D            

       

                 

       
 (45) 
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