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Abstract.    The axisymmetric dynamic instability of polar orthotropic sandwich annular plate combined 
with electrorheological (ER) fluid core layer and constraining layer are studied in this paper. And, the ER 
core layer and constraining layer are used to improve the stability of the annular plate system. The 
boundaries of instability regions for the polar orthotropic sandwich annular plate system are obtained by 
discrete layer annular finite element and the harmonic balance method. The rheological property of an 
electrorheological material, such as viscosity, plasticity, and elasticity can be controlled by applying different 
electric field strength. Thus, the damping characteristics of the sandwich system are more effective when the 
electric field is applied on the sandwich structure. Additionally, variations of the instability regions for the 
polar orthotropic sandwich annular plate with different applying electric field strength, thickness of ER layer 
and some designed parameters are investigated and discussed in this study. 
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1. Introduction 
 

The dynamic instability may occur when the structure is applying periodic loads or under a 
range of excitation frequency. Thus, the induced violent vibration is called the dynamic instability 
or parametric resonance. In the recent years, the dynamic behaviors for the mechanical system 
were received a great deal of attentions. Bolotin (1964) presented a series of studies on the 
dynamic instability problems due to the periodic in-plane loads. 

The investigations for the dynamic instability or parametric resonance problems of the single 
circular and annular plate due to the periodic loads were studied and discussed by many 
researchers. Dumir and Shingal (1985) investigated the axisymmetric postbuckling of polar 
orthotropic thick annular plates. Then, Chen and Hwang (1988) studied the axisymmetric dynamic 
instability problem of isotropic and polar orthotropic circular plate by employing Galerkin and 
finite element methods. Lin and Tseng (1998) studied the free vibration problems of polar 
orthotropic circular and annular plates. The vibration and dynamic instability of the viscoelastic 
plate was discussed by Ilyasov and Akoz (2000). The dynamic instability problem of the annular 
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plate system with constraining damping treatment by using the finite element method was obtained 
by Chen and Chen (2004). Then, the buckling of simply-supported rectangular Reissner–Mindlin 
plates subjected to linearly varying in-plane loading was discussed by Zhong and Gu (2006).  
And, Wang et al. (2006) presented the accurate buckling load problems of thin rectangular plates 
under parabolic edge compressions by the differential quadrature method. The dynamic behaviors 
of axially moving viscoelastic plate with varying thickness were studied by Zhou and Wang (2009).  
Pawlus (2011) studied the solution to the problem of axisymmetric and asymmetric dynamic 
instability of three-layered annular plates. After that, the dynamic instability of composite plates 
subjected to non-uniform in-plane loads can be obtained and discussed by Ramachandra and 
Panda (2012). 

Recent developments in smart materials and the potential structural applications had resulted in 
significant improvements in vibration control systems. Electrorheological (ER) fluid is one of the 
active smart materials and with controllable rheological properties when an electric field is applied 
to these fluids. The ER fluid deformed within the small strain range was assumed to be a linearly 
viscoelastic material with field-dependent complex modulus in the work by Lee (1992). Roy and 
Ganesan (1993) presented the finite element method to calculate the vibration and damping 
analysis of circular plate with constrained layer treatment. The vibration characteristics of the 
sandwich beam system with ER fluid core layer and the variations of the modal loss factors with 
different designed parameters of the sandwich system were calculated and discussed by Yalcintas 
and Coulter (1995). Then, Don and Coulter (1995) investigated the analytical and experimental 
results of the ER material based adaptive beam system. Oyadiji (1996) presented that the modal 
parameters were more dependent on the location and also discussed the effect of the size of the ER 
fluid treatment for an aluminum plate. The passive and active damping characteristics of the ER 
composite beams and the flexural vibration of laminated composite ER sandwich beams to 
maximize the possible damping capacity was calculated and discussed by Kang et al. (2001).  
Phani and Venkatraman (2003) presented the numerical and experimental results of the sandwich 
beam using ER fluid. After that, the dynamic characteristics and damping effects of the sandwich 
isotropic and orthotropic circular plate structures were presented by Yeh (2007) and Yeh et al. 
(2009). And, then Yeh (2011) presented the parametric resonance analysis of axisymmetric 
sandwich annular plate with ER core layer.  

The axisymmetric dynamic instability characteristics and effects of damping properties for 
polar orthotropic sandwich annular plate with an ER fluid core and constraining layer are 
presented in the study. To the author’s knowledge, no prior work has addressed the axisymmetric 
dynamic instability problem of polar orthotropic sandwich annular plate with ER fluid core layer.  
The discrete layer annular finite element and the harmonic balance method are utilized to calculate 
and obtain the instability regions of polar orthotropic sandwich annular plate system. And, the 
complex problems of the sandwich annular plate system are solved by using the complex modulus 
representation of the ER fluid. The effects of the ER layer, applying electric field strength and 
some designed parameters on the instability regions for the sandwich annular plate system are also 
investigated and discussed in this paper. In this study, the significant effects on the axisymmetric 
dynamic characteristics of polar orthotropic sandwich annular plate with ER core layer can be 
seen. 

 
 

2. Analytical model formulation 
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In Fig. 1, the polar orthotropic sandwich annular plate with ER core layer and constraining 
layer subjected to the uniform radial stress is demonstrated. As shown in the figure, layer 1 is a 
pure elastic, isotropic constraining layer and the ER fluid core layer is designed as layer 2 and the 
properties of the ER material can be changed and controlled by applying different electric field 
strength. Layer 3 is the annular plate with an inner radius a  and outer radius b  and assumed to 
be elastic, undamped and polar orthotropic.  And, the thicknesses of the three layers of the 
sandwich annular plate system are 1h , 2h , and 3h , respectively. Additionally, the following 

assumptions should be mentioned in order to simplify present problems. It is assumed that there 
are no slipping between the elastic and ER layers. Besides, the transverse displacements, w, of all 
points on any cross-section of the sandwich annular plate are constant.   

 
 

Fig. 1 Axisymmetric polar orthotropic sandwich annular plate with ER layer and constraining layer 
treatment and subjected to the uniform radial stress 

 

Fig. 2 The discrete layer annular finite element for three-layer element 
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In Fig. 2, the discrete layer annular finite element is utilized to formulate the problems of 
sandwich plate system. As shown in Fig. 1, the strain-displacement relation of the elastic layer can 
be expressed in terms of the in-plane displacements of the adjacent layer interfaces and the 
transverse displacement by considering the geometry of the sandwich annular plate system 


























 

),(

),(

),(

)(
),,(

),,(
1,1

trW

trU

trU

zH
tzrw

tzru
d i

i

i
i

i
i                        (1) 

where 












 


100

0)
2

1
()

2

1
(

)(,1 iii h

z

h

z
zH  is the transverse thickness interpolation matrix for 

ith layer, iu  is the displacement for ith layer and iw  is the transverse displacement for ith layer, 

respectively. Then, the displacements of the interfaces for two-layer can be expressed in terms of 
the nodal degrees of freedom as following equation by using the interpolation in r-direction and 
the circumferential wave number m 
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vector of the nodal displacements of the element and )(2 rH  is the interpolation matrix. 
Then, the strain-displacement relation for the ith layer of the system can be expressed as the 

following equation 
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where iε  is the strain vector and D is the differential operator matrix. 

And, the stress-strain relation can be obtained and can be shown as follows 
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in which, i , iε , and i  are external load stress vector, non-linear strain vector, and the mass 

density of the ith layer, respectively and listed in detail in Appendix. Besides, the second term in 
Eq. (5) is additional strain energy due to external in-plane loads.   

Then, the Hamilton’s principle is used to derive element dynamic equilibrium equation and the 
following element differential equation can be express as follows by substituting Eqs. (1)-(4) into 
Eqs. (5) and (6) 
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where e
iM , e

iK , and e
iG  are element mass matrix, element stiffness matrix, and element 

geometric stiffness matrix due to the external in-plane load, respectively. 
The following relations must be obtained first in order to combine the elemental matrices into 

the global stiffness and mass matrices 
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where U  and e
iTr  are the global nodal co-ordinate vector and transformation matrix, 

respectively. Then, the equation of motion for the sandwich system can be express as follows by 
assembling the contribution of all elements of the system 
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where M, K, G are global mass, global stiffness, and global geometric stiffness matrix due to the 
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where iN  is the element number of the ith layer. 

After that, the external load stress, )(tP , is assumed to be a periodic radial stress and presented 
as follows 

tPPtP t  cos)( 0                            (13) 

where 0P , tP , and   are static load factor, dynamic load factor, and the disturbance frequency, 

respectively. Additionally, the geometric stiffness matrix can be rewritten as the following form 
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tt  cosGGG 0                            (14) 

in which, 0G  is the static geometric stiffness matrix and tG  is dynamic geometric stiffness 

matrix. Then, the equation can be expressed as the following form called Mathieu-Hill equation 

0U)cosGGK(UM t0  t                     (15) 

In this study, the boundary of the dynamic instability can be calculated and obtained by using 
Bolotin’s method (Bolotin 1964). The boundary of the dynamic instability of the sandwich system 
is formed according to the periodic solutions of the T )/2(   and 2T )/4(  . The boundary 
of the primary instability region with period 2T is of practical important in mechanical applications 
and the solution can be expressed as follows 
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where }{ 1a , }{ 2a , }{ 1b and }{ 2b  are undetermined constants.   
Then, substituting Eqs. (16), (17) into Eq. (15) and rewriting the equations, the following 

non-trivial solution of the sandwich annular plate system can be obtained as the follows 
for the solutions with a period 2T 
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where the superscripts r and j denote the real and imaginary part of the matrices, respectively. Eqs. 
(18) and (19) are the equations of the boundary frequencies for the sandwich annular plate system.  
Then, the primary and secondary stability-instability boundaries of the polar orthotropic sandwich 
annular plate system with ER core treatment can be calculated and obtained by solving the 
complex equations. 
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Fig. 3 The primary and secondary instability regions of the polar orthotropic sandwich annular plate 

system with ER core layer.  ( 10.a~  , 201 .h
~
 , 502 .h

~
 , 11 E

~
, 513 .E

~  , 1oK ) 

 
 
3. Results and discussions 

 
The dynamic instability analysis of the sandwich annular plate with ER fluid core and 

constraining layer are presented in this study.  And, the following non-dimensional parameters 
and some geometrical parameters are introduced for convenience: 
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 .  Additionally, *  is the natural frequency 

of the sandwich annular plate with the parameters 10.a~  , 101 .h
~
 , 502 .h

~
 , mm.h  503  , 

0 to KK , and subjected to electric filed mm/kV.E*  50  in the following discussions of the 
figures. On the other hand, damping effects of the sandwich system are provided by the ER fluid 
and only the electric field dependence of ER fluid needed to consider based on the existing model 
of ER material. Therefore, the complex modulus of ER fluid can be simplified into the following 
equation, which was experimentally measured by Don (1993) 

GjGEG )( *2                            (17) 

where *E  is the applied electric field strength in kV/mm, G  is the shear storage modulus 

( 215000 *EG  ), G   is the loss modulus ( 6900G ) and 1j , respectively.   
The numerical results are compared with those results in order to validate present algorithm and 

calculations obtained in this study. Tables 1 and 2 show the numerical results compared with the 
results of polar orthotropic laminated annular plates (Lin and Tseng 1998) and full coverage 
sandwich annular plate (Roy and Ganesan 1993). It can be seen that numerical solutions solved by 
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present model are shown to have a good agreement and accuracy from the tables. 
The effect of dynamic in-plane load tK  on primary and secondary instability regions of polar 

orthotropic annular plate system for C-F and S-S boundary conditions can be observed and shown 
in Figs. 3 (a) and 3(b), respectively. And, it can be seen that the tendency of the plate system are 
similar for different applying electric field strength according to the results. The primary and 
secondary instability regions of the polar orthotropic sandwich annular plate system with various 
applying electric field strength ( *E =0.5, 0.8, 1.5 kV/mm) are plotted in Fig. 4. Figs. 4(a) and 4(b) 
show the numerical results for C-f and S-S boundary conditions, respectively. The instability 
regions for polar orthotropic sandwich plate system will move to the higher disturbance frequency 
and smaller dynamic in-plane load. According to the characteristics of the ER fluid, the larger 
applying electric field strength will increase the stiffness of the sandwich plate system and it also 
can be seen that the tendency is similar for different boundary conditions.   
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Fig. 4 The primary and secondary instability regions of the polar orthotropic sandwich annular plate 

system with various applying electric field strength ( 10.a~  , 201 .h
~
 , 502 .h

~
 , 11 E

~
, 

513 .E
~  , 1oK ) 

 
 
Fig. 5 is the primary and secondary instability regions of the polar orthotropic sandwich 

annular plate system with various 3

~
E  (0.5, 0.8, 1.5). The primary and secondary instability 

regions of the sandwich plate system will shift to higher disturbance frequency as the parameter 

3E
~

 increases.  It is because that the stiffness of the sandwich plate system will be larger with the 
increasing of 3E

~
. The plots of the primary and secondary instability regions for polar orthotropic 

sandwich annular plate system with various thickness of ER core layer are presented in Figs. 6 (a) 
and 6(b), respectively. The primary and secondary instability regions of the sandwich plate system 
will move downward and backward when the thickness of ER core layer increases. Additionally, 
the characteristics of the sandwich system are similar for C-F and S-S boundary conditions.  
Because of the system damping effects are provided by the ER fluid layer, so the stiffness of the 
system will decrease while the thickness of the ER core layer increasing.   

Figs. 7 (a) and 7(b) show the effect of static in-plane load 0K  on primary and secondary 
instability regions of polar orthotropic annular plate system for C-F and S-S boundary conditions, 
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respectively. It can be observed that the primary and secondary instability regions will move 
downward as the static in-plane load increases and the variations of the sandwich plate system are 
similar for various boundary conditions. The effect of static in-plane load 0K  on primary and 
secondary instability regions for the polar orthotropic sandwich annular plate system with various 
applying electric field strength is plotted in Figs. 8 (a) and 8(b). Based on the numerical results, the 
primary and secondary instability regions of the sandwich plate system move smaller disturbance 
frequency with the increasing of static in-plane load 0K . Thus, the applying electric field strength 
can be utilized to control the dynamic behaviors of the sandwich plate system with ER fluid layer 
according to the numerical results. 
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Fig. 5 The primary and secondary instability regions of the polar orthotropic sandwich annular plate 

system with various 3

~
E  ( 10.a~  , 201 .h

~
 , 502 .h

~
 , 11 E

~
, mm/kV.E* 50 , 1oK )
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Fig. 6 The primary and secondary instability regions of the polar orthotropic sandwich annular plate 

system with various ER core layer thickness ( 10.a~  , 201 .h
~
 , 11 E

~
, 513 .E

~  , 

mm/kV.E*  50 , 1oK ) 

33



 
 
 
 
 
 

Jia-Yi Yeh 

(a) mm/kV.E* 50  (b) mm/kV.E* 51  

Fig. 7 The primary and secondary instability regions of the polar orthotropic sandwich annular plate 

system with C-F and S-S boundary conditions ( 10.a~  , 201 .h
~
 , 502 .h

~
 , 11 E

~
, 

513 .E
~  , 1tK ) 

 
 

(a) C-F boundary condition (b) S-S boundary condition 
Fig. 8 The primary and secondary instability regions of the polar orthotropic sandwich annular plate 

system with various applying electric field strength ( 10.a~  , 201 .h
~
 , 502 .h

~
 , 11 E

~
, 

513 .E
~  , 1tK ) 

 
 
The effect of static in-plane load on primary and secondary instability regions for the polar 

orthotropic sandwich annular plate system with various 3

~
E  (0.5, 0.8, 1.5) can be obtained in Figs. 

9 (a) and 9(b). The primary and secondary instability regions of the polar orthotropic sandwich 
plate system will move upward to higher disturbance frequency and the width of the instability 

regions of the system will get smaller with the increasing of 3

~
E . Additionally, the variations of 

the system are the same for C-F and S-S boundary conditions. Fig. 10 shows the effect of static 
in-plane load on primary and secondary instability regions for the polar orthotropic sandwich 
annular plate system with various ER core layer thicknesses. According to the numerical results, 
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the instability regions of the sandwich plate system move downward when the thickness of ER 
fluid layer is getting larger. It is because that the stiffness of the sandwich plate system will 
decrease as the thickness of ER fluid layer increases. The results for primary and secondary 
instability regions and different boundary conditions can be observed clearly in Figs. 10(a) and 
10(b), respectively. 
 

 

(a) C-F boundary condition (b) S-S boundary condition 

Fig. 9 The primary and secondary instability regions of the polar orthotropic sandwich annular plate 

system with various 3

~
E  ( 10.a~  , 201 .h

~
 , 502 .h

~
 , 11 E

~
, mm/kV.E* 50 , 1tK )

 
 

(a) C-F boundary condition (b) S-S boundary condition 

Fig. 10 The primary and secondary instability regions of the polar orthotropic sandwich annular plate 

system with various ER core layer thickness ( 10.a~  , 201 .h
~
 , 11 E

~
, 513 .E

~  , 

mm/kV.E* 50 , 1tK ) 

 
 

4. Conclusions 
 
In this paper, the axisymmetric dynamic instability of polar orthotropic sandwich annular plate 

with an ER fluid core layer studied. The boundaries of the stability-instability regions of the 
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sandwich annular plate are calculated and obtained by using the discrete layer annular finite 
element method and the harmonic balance method. And, a complex description of the viscoelastic 
material is adopted for the ER fluid in this investigation. Thus, the controllable devices, such as 
some mechanical or micro-mechanical devices, can be designed and acted as novel controlled 
devices according to present numerical results. 

Numerical results are shown that the applying electric field strength will change the stiffness of 
polar orthotropic sandwich plate system and the instability regions of the sandwich plate system 
can be changed and controlled by applying different electric field strength. Besides, the stiffness of 
the sandwich plate system can increase while increasing of 3

~
E . It also can be utilized to change 

the dynamic behaviors of the sandwich plate system. As to the thickness of ER fluid layer, the 
instability regions of the sandwich annular plate system will be changed and controlled with 
various thickness of the ER layer. Thus, the applying electric field strength, the ER fluid layer, and 
the parameter 3E

~
 are shown to have significant effects on the instability regions of the sandwich 

plate system and can be utilized to control and change the dynamic behaviors of polar orthotropic 
sandwich plate system.   

Finally, the present results hope to provide the basic information for practical applications and 
can be utilized to design some active controllable and more stable mechanical devices  
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Table 1 Non-dimensional natural frequency of polar orthotropic laminated annular plates 

Non-dimensional natural frequency 

b/a b/h Present Lin and Tseng (1998) 

0.1 10 13.471 13.526 

 20 14.042 13.936 

 50 14.238 14.147 

 100 14.267 14.178 

0.5 10 20.818 20.636 

 20 21.959 21.851 

 50 22.318 22.233 

 100 22.371 22.290 

 
 
Table 2 Comparison between published and proposed methods for the full coverage annular plate 

  Mode (n,m) 

  (0,0) (0,1) (0,2) (0,3) (0,4) 

Natural 

frequency (Hz) 

Roy and Ganesan 

(1993) 

74.38 73.08 96.38 142.8 203.7 

 Present 74.44 73.00 96.20 144.00 205.20 

Modal loss 

Factor 

Roy and Ganesan 

(1993) 

0.1127 0.09576 0.1021 0.1212 0.1177 

 Present 0.1128 0.09542 0.1016 0.1210 0.1170 
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