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Abstract.    The present study deals with two dimensional electro-elastic analysis of a functionally graded 
piezoelectric (FGP) cylinder under internal pressure. Energy method and first order shear deformation 
theory (FSDT) are employed for this purpose. All mechanical and electrical properties except Poisson ratio 
are considered as a power function along the radial direction. The cylinder is subjected to uniform internal 
pressure. By supposing two dimensional displacement and electric potential fields along the radial and axial 
direction, the governing differential equations can be derived in terms of unknown electrical and mechanical 
functions. Homogeneous solution can be obtained by imposing the appropriate mechanical and electrical 
boundary conditions. This proposed solution has capability to solve the cylinder structure with arbitrary 
boundary conditions. The previous solutions have been proposed for the problem with simple boundary 
conditions (simply supported cylinder) by using the routine functions such as trigonometric functions. The 
axial distribution of the axial displacement, radial displacement and electric potential of the cylinder can be 
presented as the important results of this paper for various non homogeneous indexes. This paper evaluates 
the effect of a local support on the distribution of mechanical and electrical components. This investigation 
indicates that a support has important influence on the distribution of mechanical and electrical components 
rather than a cylinder with ignoring the effect of the supports. Obtained results using present method at 
regions that are adequate far from two ends of the cylinder can be compared with previous results (plane 
elasticity and one dimensional first order shear deformation theories).  
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1. Introduction 
 

Piezoelectric materials were discovered in India. These materials have tendency to absorb tiny 
particles when heated. Quartz has been known as the first piezoelectric material. The piezoelectric 
structures can be electrified under mechanical loads and conversely can be deformed under 
external electric field. These two effects can be applied in sensor and actuator applications. The 
piezoelectric effect was scientifically discovered by Pierre and Jacques Curie in 1880. 
Piezoelectric structures are very applicable in industrial systems as actuator or sensor in various 
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geometries such as disk; cylinder and shell. For many applicable conditions, it is appropriate to 
investigate the relation between the applied loads, electric field and displacement in the 
piezoelectric structures such as cylindrical shell. 

In order to control the distribution of the displacement or electric potential in the piezoelectric 
structures, functionally graded piezoelectric material (FGPM) can be used. The properties of this 
material vary continuously along the coordinate system. These materials were proposed for the 
first time by a Japanese group of material scientist. For many advantageous properties, these 
materials can be used in vigorous environments with abruptly gradient of pressure and temperature. 
A brief literature of FSDT for shell analyses is presented as follows: 

One of the most applicable structures in the mechanical engineering is the shells. Ratio of 
thickness with respect to other dimensions such as radius of curvature for the shells is small. As 
the general case, they can be classified to two classes i.e., thin and thick shells. Thin shells are 
applicable for bearing the membrane and in-plane forces. Membrane theory can be used to utilize 
this class of the shells. The second class of shells are the thick shells. For this group of shells, the 
deformation of shell includes displacement of middle surface and rotation about middle surface of 
the shell. Thick shells can be applied to undergo bending and stretching force, simultaneously.        

The exact solution of a thick walled cylinder under inner and outer pressures was presented by 
Lame (Timoshenko 1976). It has been supposed that the cylinder to be axisymmetric and isotropic. 
Naghdi and Cooper (1956) applied the theory of shear deformation for studying the elastic waves 
in a cylindrical shell. FSDT for analysis of an isotropic cylinder was presented for the first time by 
Mirsky and Hermann (1958).  

Researches on the thermal and vibration analysis of functionally graded material (FGM) were 
started since first years of 1990s (Yamanouchi et al. 1990). Tutuncu and Ozturk (2001) presented 
exact solution of functionally graded (FG) spherical and cylindrical pressure vessels. Jabbari et al 
(2002) analyzed thermo-elastic analysis of a FG cylinder under thermal and mechanical loads. It 
was supposed that the material properties vary as a power function in terms of radial coordinate 
system. Mechanical and electrical analyses of a spherical shell were investigated by Chen et al. 
(2002). An analytical model for free vibration analysis of a cylindrical shell under mechanical and 
electrical loads was proposed by Liu et al. (2002). Shai et al. (2004) presented the exact solution 
of a functionally graded piezoelectric (FGP) clamped beam. Mindlin’s theory was employed for 
this analysis and a sinusoidal function was used for simulation of the electric potential distribution. 
Peng-Fei et al. (2004) studied piezoelectric analysis of a cylindrical shell. Wu et al. (2005) 
investigated the elastic stability of a FG cylinder. They employed shell Donnell's theory to derive 
the strain-deformation relations.  

Shao (2005) performed thermo-elastic analysis of a thick walled cylinder under mechanical and 
thermal loads. The cylinder has been divided into many annular sub cylinders in the radial 
direction. Exact solution of a FGP cylinder under bending was studied by Lu et al. (2005). Dai et 
al. (2007) performed electro-magneto-elastic behavior of the FGP cylindrical and spherical 
pressure vessels. Exact solution of an infinitely long magneto-elastic hollow cylinder and solid 
rotating cylinder polarized and magnetized radially, was presented by Babaei et al. (2008a). 
Electro-elastic analysis of a FGP rotating hollow shaft was studied where the variation of material 
properties was assumed to follow a power law along the radial direction by Babaei and Chen 
(2008b). The effect of non-homogeneity has been considered on the mechanical and electrical 
components. The cylinder was supposed orthotropic. They investigated the effect of angular 
velocity on the hoop and radial stresses. Jabbari et al. (2009) analyzed two dimensional 
thermo-elastic analysis of a FG cylinder under thermal and mechanical loads. They solved the 
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problem using the pre-defined displacement field. The solution method was applicable for simply 
supported cylinder, only. The present paper proposes a novel method for solution of cylinder with 
different boundary conditions. Qian et al. (2008) used exponential variation functionality for a 
FGP substrate in order to study behavior of transverse surface waves using analytical technique. 
The influence of the initial stress was discussed on the distributions of the mechanical 
displacement and shear stresses along the thickness direction by Qian et al. (2009). 

Khoshgoftar et al (2009) studied thermo-elastic analysis of the FGP cylindrical pressure vessels. 
They supposed that all mechanical and electrical properties could be varied as a power function. 
Qian et al. (2009a, b, c) studied the effect of in-homogeneity on the vibration modes of a FGPM. 
They indicated that in-homogeneity has significant effect on the fundamental mode and long 
waves and has negligible effect on the higher order modes and short waves. The transient 
thermo-piezoelectric response of a radially polarized FG hollow cylinder was investigated by 
Babaei and Chen (2010a). The effect of transient thermal loading has been investigated on the 
different results. They also presented a one-dimensional thermo-piezo-electricity analysis of a FG 
medium excited by a moving heat source (Babaei and Chen 2010b).  

Thermo-elastic analysis of a FG cylinder was analytically investigated by Arefi and Rahimi 
(2010). They used the FSDT for simulation of displacement components of a FG structure. The 
achieved results were compared with those results that have been derived by using the plane 
elasticity theory. Sheng and Wang (2010) employed FSDT for evaluation of approximate solution 
of the FG laminated piezoelectric cylindrical shells under thermal shock and moving mechanical 
loads. Hamilton’s principle was used for derivation of governing equation of the system. Babaei 
and Chen (2010c) presented one-dimensional heat conduction analysis of a FG hollow cylinder in 
the radial direction in the Laplace domain for hyperbolic heat conduction. 

The effect of variable material properties on the electro-mechanical behavior of a FGP sphere 
was analytically investigated by Wang and Xu (2010). The spherical shell was subjected to 
mechanical and electrical loads and was polarized in radial direction. The closed form solution of 
the second order ordinary differential equation with variable coefficient was obtained using the 
Frobenius series method. The material properties were assumed to be exponential function of the 
radial direction. Thermoelastic solution of a FG cylindrical shell with piezoelectric layers was 
studied by Alibeigloo (2010). The assumed problem was solved analytically using the Navier’s 
solution. They investigated the effect of mechanical and electrical boundary conditions on the 
response of the system. The assumed stress and displacement functions were used for solution of 
equilibrium equations. The assumed functions were applicable for one type of boundary conditions 
(simply supported). Because of this incomplete study of that paper, the present paper proposed the 
comprehensive governing differential equations and solved that analytically with every simple and 
complex boundary condition.  

Dynamic response of a rotating radially polarized FGP hollow cylinder is investigated under a 
constant magnetic field and thermo-electro-mechanical loading by Akbarzadeh et al. (2011a). The 
effect of various mechanical, electrical and thermal parameters has been studied on 
thermo-electro-magneto-elastic behavior of the hollow cylinder. 

The effects of the covering dielectric layer thickness and material gradient was investigated on 
the Love waves and other parameters such as phase velocity, group velocity for a FGPM structure 
by Qian et al. (2011a, b). Laplace transform and successive decoupling method have been 
employed for dynamic response of a FGPM rod of exponentially varying excited by a moving heat 
source by Akbarzadeh et al. (2011b). A functionally graded piezoelectric rotating cylinder as 
mechanical sensor under pressure and thermal loads was analytically investigated by Rahimi et al. 
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(2011) for evaluation of angular velocity of rotary devices. Arefi and Rahimi (2011a, b, c, 2012a, b, 
c, d, e, f) investigated on the general formulation, thermo-piezo-magnetic and nonlinear analyses 
of piezoelectric structures by using the energy method.  

The present paper proposed an analytical method based on the FSDT and using energy 
functional for the two dimensional analysis of a FGP cylinder with different mechanical and 
electrical boundary conditions. This method simulates the effect of end supports on the 
electro-elastic behavior of a FGP cylinder using FSDT. The previous papers have not truly 
considered the effect of the end supports on the cylinder (Jabbari et al. 2009).             

 
 

2. Formulation   
               

Two dimensional electro-elastic analysis of a FGP cylinder is studied in the present work. For 
analysis of a solid structure, two methods may be employed. Equilibrium and energy methods are 
two appropriate methods for analysis of a solid structure. Every method has whose special 
advantageous. For example, energy method has capability to formulate two dimensional analysis 
of a FG hollow structure with different boundary conditions. In order to obtain the general 
formulation of a FGP cylinder in general state, the energy method can be employed in the present 
study. Furthermore FSDT is employed for simulation of the deformations. 

Equilibrium method can be applied for pre-defined functions. For example Jabbari et al. (2009) 
studied two dimensional behavior of the FG cylinder with simply-simply supported. More 
complicated boundary conditions cannot be simulated using a single and straight function in order 
to satisfy two navier equations. This incomplete solution may be observed in Alibeigloo study 
(2010). 

The present study focuses on FSDT for simulation of the deformations in a piezoelectric 
structure. This theory uses the classic solution of the pressure vessels. Based on the classic solution 
of the pressure vessels, radial displacement u(r) of an axisymmetric cylinder in the radial 
coordinate system is (Timoshenko 1976, Arefi and Rahimi 2010) 

2
1( )

c
u r c r

r
   (1)

This solution is well-known as Lame's solution. In Eq. (1), r is distance of every element with 
respect to axis of the cylinder. For a cylinder, this distance can be expressed as summation of the 
radius of mid-surface R and distance of every element with respect to mid-surface  as follows 

r=R+  (2)

By substitution of Eq. (2) into Eq. (1) and using the Taylor expansion, we’ll have 

2
1 0 1(R+ ) ...  

R+

c
u c c c 


       (3)

This formulation (Eq. (3)) is known as FSDT. Based on this theory, each deformation 
component may be expressed by two variables including the displacement and rotation. For a 
symmetric cylindrical shell, the radial and axial components of deformation may be considered as 
follows 
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where, zu , rw are the axial and radial components of deformation, respectively. , , ,z ru w   are the  

functions of axial component of coordinate system (z), only. By considering the Eq. (4), the strain 
components are (Arefi and Rahimi 2010): 
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The comprehensive stress-strain relations for a piezoelectric structure are expressed 
(Khoshgoftar et al. 2009, Arefi and Rahimi 2011, 2012)   
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 (6)

where, ,ijkl ijkC e are elastic stiffness and piezoelectric coefficients, , ,ij kl kE  are the stress, 

strain and electric field components, respectively. In this section, it is appropriate to define the 
components of the electric field. By employing an electric potential ( , , )r z  in a piezoelectric 
structure, the electric field can be defined as:  

(7) 1
, , , ,r zE E E E

r r z
  


           

 
 

Due to symmetric condition 0






and considering
r 
 


 
, the electric field components 

can be obtained as follows 

(8), 0,r zE E E
z

 

 

    
 

 

By selection of appropriate electric potential , Eq. (6) can be completed. Based on the 
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assumption and results of the previous papers (Khoshgoftar et al. 2009, Sheng and Wang 2010) the 
electric potential function may be supposed as a quadratic function along the thickness direction 
and an unknown function along the axial direction 

2
0 1 2( , ) ( ) ( ) ( )z z z z         (9)

By substitution of Eq. (9) into Eq. (7), the electric field can be expressed as follows 

20 1 2
1 2( ) 2 ( ),0,E z z

z z z

                 


 (10)

For an electro-mechanical system, the electric displacement or electric flux iD may be defined 

as a linear combination of the strain and electric field as follows (Khoshgoftar et al. 2009, Arefi 
and Rahimi 2011, 2012) 

i ijk jk ik k
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 (11)

where, ,i ikD  are dielectric coefficients and electric displacement components. By recalling the 

components of the stresses, strains, electric field and electric displacements (Eqs. (5), (10), (11), 
and (12)), the energy equation per unit volume may be obtained. Total energy includes the 
mechanical and electrical energies. Mechanical energy is equal to the half of multiplying the stress 
tensor components in the corresponding strain tensor components. Electrical energy is equal to the 
half of multiplying the electric displacement tensor in the corresponding electric field tensor. 

Therefore energy per unit volume ( u ) may be obtained as follows 
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 (12)

The total energy must be evaluated by integration of Eq. (12) on the volume of the cylinder. 
The volume element of the cylinder is 2 ( )R drdz  . Therefore, total energy of the system is: 
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where, h is the thickness of the cylinder. The functional of the system 0 1 2( , , , , , , , )x zF u w x      

can be obtained as follows 

2
1

0 1 2

2

( , , , , , , , ) 2 ( )

h

z r
h

F
F u w z u R d      
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    (14)

0 1 2( , , , , , , , )z rF u w z     can be decomposed into three types of terms based on the different 

material properties as follows 

0 1 2 S Piezo Die( , , , , , , , ) U ( )+U ( ) U ( )z rF u w z z z z        (15)

Functional of the system include strain energy
SU ( )z , piezoelectric energy PiezoU ( )z and 

dielectric energy DieU ( )z . 

 
 

 
Fig. 1 The schematic figure of a FGP cylinder under mechanical and electrical loads 

 
 
2.1. Definition of the external works    
 
External works are included energy of internal and external pressures or energy of body forces 

such as centrifugal force. In this paper, internal and external pressures are considered in 
formulation. Energy of internal and external pressures is equal to multiplying the pressure in the 
radial deformation of the inner and outer surface of the cylinder, respectively. Inner pressure 
applies in the same direction of the deformation; conversely, outer pressure applies in the opposite 
direction of the deformation. Eq. (16) indicates work that is performed by the internal and external 
pressures. Fig. 1 shows the schematic figure of the cylindrical pressure vessel. In the present paper, 
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only internal pressure is considered in applied problem (Arefi and Rahimi 2010). 
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2.2. Variation of the energy equation 
 
Total energy of the system may be obtained by subtraction of Eq. (15) from Eq. (16) as follows 

'
0 1 2 S Piezo Die 1( , , , , , , , ) U ( )+U ( ) U ( ) Wz rF u w z z z z         (17)

Every terms of above functional S Piezo DieU ( ),U ( ), U ( )z z z  are demonstrated in the 

appendices (Appendix A, B, C).       
Eq. (17) includes seven functions. By using Euler equation, variation of Eq. (17) can be 

expressed as follows (Arefi and Rahimi 2010) 
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Using the Euler equation, final governing differential equation of system in the matrix form is 

2
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
 (19)

where matrices ,iG F are functions of , ,i i iA C D  and are demonstrated in the appendices 

(Appendix D, E, F, G).   
 
2.3. Presentation of governing equations in terms of resultant of stress and electric 

displacement 
 
The governing equations (Eq. (19)) can be expressed in terms of resultant of stress and electric 

displacement. Primarily, it is appropriate to introduce resultant of forces and moments and electric 
displacement as follows 
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After performing long mathematic operations on the Eq. (19) with considering the presented 
matrices in appendices, we have seven Equilibrium and Maxwell equation in terms of resultant of 
forces, moments and electric displacement as follows 
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

  
   

   
 
     
  

   
   
 

 (21)

These relations are presented for the first time. It is obvious that with ignoring the piezoelectric 
effect, the governing equations convert to governing equations of a pressurized FG cylinder that 
have been derived in the literature (Arefi and Rahimi 2010).  
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3. Two dimensional solution of a FGP cylinder  
   

The important objective of this study is to investigate the effect of end supports on the response 
of the cylinder. For attaining to this purpose, it is inevitable to obtain the homogeneous solution of 
Eq. (19). Homogeneous solution of this problem includes fourteen constants of integration. These 
constants can be obtained by considering the natural boundary condition of two ends of the 
cylinder. Homogeneous solution of Eq. (19) in the general form is (subscript h shows that this 
solution is a homogeneous solution) 

14

1

im zj i
h i j

i

X c v e


  (22)

where, j indicates the number of unknown functions. For example 1 7
2,...X u X   .Eq. (22) in 

the extended form is 

 
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(23)

where, mi  is the fourteen eigen values of the problem that is obtained from the characteristic 

equation as follows 

2
1 2 3[ ]{ } 0G m G m G v    (24)

Due to nonzero vector v, the characteristic equation of this problem is obtained by using 

determinant of the matrix of 2
1 2 3[ ]G m G m G  : 
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2
1 2 3det[ ] 0G m G m G    (25)

Obtained characteristic equation (Eq. (25)) is a fourteen’s order equation. By solving the 
characteristic equation, fourteen roots can be obtained. By substitution of every root mi in Eq. 
(24), corresponding fourteen vector vi  may be obtained. ( ( 1, 2,...,7)i

kv k   constitutes the i’th 
column of Eq. (23) for root mi ). Particular solution of Eq. (19) is 

1
3 3[ ]{ } { } { } [ ] { }p pG X F X G F    (26)

Therefore, we have the final solution of the problem as follows 

{ } { } { }h pX X X   (27)

Two dimensional solution of two ends short circuited cylinder is completed by imposing the 
appropriate boundary conditions on Eq. (27). For a short-circuited cylinder with clamped-clamped 
or two simply supported ends, the boundary conditions can be presented as follows, respectively  

Clamped-clamped 
and short circuited 

   

0 1 2

0 1 2

0 1 2

0 1 2
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0  at z=0
z z z z z z z
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z z z z z z z

z r

z r

z

z r

u w

u w

u w

u w
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    

   

    

   

      

    
      

      

      

    
      

      

 

(28a)

 

Simply supported 
and short circuited 

 (28b)

For other boundary conditions, the presented method has capability to solve the problem, 
exactly.  

If we ignore the effect of two end supports of the cylinder, the solution of the system at regions 
that are adequate far from two ends of the cylinder can be obtained from Eq. (26). This solution 
can be compared with general solution of FGP cylinder by using the Eq. (27).  

 
3.1 Imposing the boundary condition, Example: clamped-clamped cylinder with two 

short-circuited ends 
 
Two ends of the cylinder are assumed to be fixed and clamped. Therefore, displacements and 

rotations vanish at the two ends of the cylinder. Due to imposing the similar boundary condition on 
the two ends of the cylinder, the slope of the displacements and rotations vanishes at the middle of 
the cylinder. Eq. (28(a)) implied the mentioned boundary condition of a clamped-clamped cylinder. 
The electric potential is assumed short-circuited at two ends of the cylinder (Hashemi et al. 2010).  

It is supposed that all mechanical and electrical components are graded in the radial direction 
only. Before numerical evaluation, nonhomogeneous properties such as E must be defined as a 
power function of the radial coordinate as follows (Khoshgoftar et al. 2009, arefi and rahimi 2012) 
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

 

   


   

 (29)

The values of inner and outer radius and length of the cylinder are selected consistent with 
reference (Khoshgoftar et al. 2009) 

0
L0.6 , 1 , =15 2ir r   

Other numerical values are (Khoshgoftar et al. 2009) 

Czzzz  = 79.2 Gpa, Czzrr= \Crrzz =45.2 Gpa, Crrrr = 83.6 Gpa, Crr = Crr = 39.3 Gpa, Czz 

=Czz =45.2 Gpa C  = 74.1 Gpa, Czrzr = 79 Gpa, errr = 0.347(VmN-1), ezzr = erzz = 
-0.16(VmN-1),er = er =-0.16(VmN-1), 
rr = 910-11 (mN-1) 

(30)

 

Table 1 comparison between the present results with solution of previous theories (radial displacement) 

r Theories n=0 n=1 n=-1 n=2 n=-2 
 Present-FSDT 0.00202 0.00158 0.00254 0.00121 0.00313 

0.6 Previous- FSDT* 0.00202 0.00157 0.00256 0.00119 0.00316 
 Plane elasticity theory 0.00223 0.00177 0.00275 0.00130 0.00334 

 
 Present-FSDT 0.001899 0.00148 0.00238 0.00113 0.00292 

0.7 Previous- FSDT 2  0.001897 0.00147 0.00239 0.00112 0.00295 
 Plane elasticity theory 0.00200 0.00157 0.00250 0.00121 0.00305 

 
 Present-FSDT 0.00177 0.00138 0.00221 0.00106 0.00272 

0.8 Previous- FSDT 2  0.00177 0.00137 0.00222 0.00104 0.00274 
 Plane elasticity theory 0.00181 0.00142 0.00229 0.00113 0.00284 

 
 Present-FSDT 0.00164 0.00128 0.00205 0.00098 0.00251 

0.9 Previous- FSDT 2  0.00164 0.00127 0.00206 0.00097 0.00253 
 Plane elasticity theory 0.00170 0.00131 0.00220 0.00106 0.00267 

 
 Present-FSDT 0.00151 0.00118 0.00188 0.00091 0.00230 
1 Previous- FSDT 2  0.00151 0.00118 0.00189 0.00090 0.00232 
 Plane elasticity theory 0.00164 0.00126 0.00208 0.00100 0.00250 

 
 

                                                       
* - These results are evaluated by disregarding the first and second order terms of Eq. (19).  
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4. Results and discussion 
 

4.1. Validation, comparison of the present results with the results of previous theories  
 
The results of this paper were obtained analytically by consideration of the homogeneous and 

particular solution of the Eq. (19) and imposing the boundary condition Eq. (28(a)). The obtained 
results can be compared with the previous results at the regions that are adequate far from the two 
ends of the cylinder and with results of plane elasticity theory (PET). These results are achieved 
with ignoring the first and second order derivatives in Eq. (19). For comparison of the present 
results with previous results, radial distribution of the radial displacement is selected.  

Table 1 presents the comparison between radial displacements of the present results with the 
other previous results (Khoshgoftar et al. 2009). The mentioned results and comparisons are 
plotted in Fig 2.   

This table indicates that the differences between three methods are not significant at regions 
that are adequate far from two ends of the cylinder. Hence, the present results and comparisons 
indicate that employed method has sufficient capability to simulate two dimensional electro elastic 
analysis of a FGP cylindrical shell. The comparison between the achieved results for validation of 
the present results can be completed with presentation of the electric displacement along the 
thickness direction for three methods. 

 
 

Table 2 comparison between the present results with solution of previous theories (electric potential) 

r Theories  n=0 n=1 n=-1 n=2 n=-2 

 Present-FSDT 0 0 0 0 0 
0.6 Previous- FSDT† 0 0 0 0 0 

 Plane elasticity theory 0 0 0 0 0 

            

 Present-FSDT -118933 -90694 -152508 -70691 -172152 
0.7 Previous- FSDT 3  -118872 -91611 -150844 -69039 -187306 

 Plane elasticity theory -118114 -91348 -147146 -67863 -177151 

            

 Present-FSDT -158577 -120926 -203344 -94254 -229536 
0.8 Previous- FSDT 3  -158497 -122148 -201125 -92052 -249741 

 Plane elasticity theory -136370 -101336 -176951 -72483 -221832 

            

 Present-FSDT -118933 -90694 -152508 -70691 -172152 
0.9 Previous- FSDT 3  -118872 -91611 -150844 -69039 -187306 

 Plane elasticity theory -90045 -64589 -121288 -44723 -158037 

            

 Present-FSDT 0 0 0 0 0 
1  Previous- FSDT 3  0 0 0 0 0 
  Plane elasticity theory 0 0 0 0 0 

                                                       
† - These results are evaluated by disregarding the first and second order terms of Eq. (19).  
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Table 2 presents the comparison between electric potential of the present results with the other 
previous results (Khoshgoftar et al. 2009). The mentioned results and comparisons are plotted in 
Fig. 3. 

 
 

 
Fig. 2 Comparing the present results (solution of Eq. (19)) with the previous results (solution of Eq. (26)) 

and plane elasticity solutions for n=1 
 

 
Fig. 3 Comparing present results (solution of Eq. (19)) with the previous results (solution of Eq. (26)) and 

plane elasticity solutions for n=1 
 
 
4.2. Mechanical and electrical responses 
 
In the present section, the mechanical and electrical responses of a clamped-clamped FGP 

cylinder can be presented and investigated. These responses can be employed for evaluating the 
effect of end supports on the longitudinal distribution of mechanical and electrical components. 
The present results can be compared with those results derived without consideration of the end 
supports and furthermore with results of plane elasticity theory. Because of symmetric boundary 
conditions, the achieved results are presented for semi-length of the cylinder. x=0 is located at the 
middle of cylinder for whole figures.    

Fig. 4 shows the axial distribution of the axial displacement of the mid-surface of the cylinder. 
The previous researches using the plane elasticity theory has not been had capability to simulate 
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the end supports effect and then simulates the axial distribution of the axial displacement. This 
figure indicates that the amplitude of the axial displacement increases with decreasing the 
nonhomogeneous index ‘n’. The end supports has effect on the distribution of the axial 
displacement at 15 percent of length of the cylinder. At other regions of the cylinder, the 
distribution of the mechanical and electrical components is approximately uniform and is 
independent of the end supports. 

Fig. 5 shows the axial distribution of the radial displacement for the mid-surface of the cylinder. 
This figure indicates that the amplitude of the radial displacement increases with decreasing the 
nonhomogeneous index ‘n’. The end supports has a significant effect on distribution of the axial 
displacement at 15 percent of length of the cylinder. At other regions of cylinder, the distribution is 
uniform and is independent of end supports. 

 
 

 
Fig. 4 The axial displacement of mid-plane of the cylinder along the length of the cylinder 

 
 

 
Fig. 5 The radial displacement of mid-plane of the cylinder along the length of the cylinder 

 
 
The value of rotation about two circumferential and radial axes of the cylinder (r, z) can be 

presented as a main result of the present paper. Fig. 6 shows the axial distribution of the 
circumferential rotation of the cylinder. This figure indicates that the amplitude of rotation is zero 
at regions that are adequate far from two ends of the cylinder. At regions near two ends of the 
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cylinder, the value of rotation is significant. This result is very important in analysis of structures 
with end supports. The presence of circumferential rotation justifies the presence of shear stress in 
the structure. A comprehensive review of literature indicates that using the two dimensional plane 
elasticity theory, calculation of shear stress and radial and axial deformation is not consistent with 
actual boundary conditions (Jabbari et al. 2009). Furthermore the shear stress and strain can not be 
considered in one dimensional plane elasticity theory. Hence, the present results are very 
significant in mechanical design especially for evaluation of the shear stress. 

Fig. 7 shows the axial distribution of longitudinal rotation. This figure indicates that the value 
of axial rotation increases with decreasing the value of nonhomogeneous index. The end supports 
has effect on the uniformly distribution of radial rotation at regions near two end supports.  

Fig. 8 shows the axial distribution of maximum electric potential at mid-surface of the 
cylindrical shell. This figure indicates that the maximum electric potential decreases with 
increasing the nonhomogeneous index. The electric potential changes abruptly for entire value of 
nonhomogeneous indexes at near of the end of the cylinder. 

 
 

 
Fig. 6 The circumferential rotation of mid-plane of the cylinder along the length of the cylinder 

 
 

 
Fig. 7 The radial rotation of mid-plane of the cylinder along the length of the cylinder 
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the cylinder. This result expresses that the magnitude of shear stress is significant at mentioned 
region. From Fig. 9, same range of effect of end supports can be understood. Abrupt changes of 
axial stress can be detected at near of two ends of the cylinder. 

 
 

5. Conclusions  
 
FSDT has been employed for simulation of displacement filed in order to two dimensional 

analysis of the FGP cylindrical shells. A second order distribution has been employed for electric 
potential distribution. Final governing differential equation has been solved for clamped-clamped 
short circuited cylindrical shell. Some important conclusions are expressed as follows: 
1.  Electro-elastic formulation of a functionally graded piezoelectric cylindrical shell is derived in 
the present paper. The achieved governing differential equations are second order with seven 
unknown functions (Four mechanical and three electrical components). The obtained governing 
equations may be analytically solved for different boundary conditions. 
2. Due to imposing the actual mechanical and electrical boundary conditions, it is observed that 
the responses of the system at near of the two ends of the cylinder change abruptly. These changes 
tend to significant shear stress at the ends of the cylinder. The previous studies have not had 
capability to simulate the end effects of the cylinder; exactly and therefore the obtained results 
have not been had sufficient consistency with actual boundary conditions (Jabbari et al. 2009).  
3. The obtained differential equation can be solved at regions that are adequate far from two ends 
of the cylinder. The comprehensive solution of the problem (solution of Eq. (19)) can be compared 
with solution at those regions (solution of Eq. (26)). This comparison justifies that the present 
theory (first order shear deformation theory) can be employed as a valid and reasonable theory for 
analysis of a functionally graded piezoelectric structure.   
4. The distribution of different mechanical and electrical components indicates that the absolute 
value of those components decreases with increasing the value of non-homogenous index.  
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Nomenclature 
 

b Radius of  an arbitrary layer of cylinder fi, Ii, Ji 
A function of component of 

displacements and electric potential

  Coordinate of arbitrary layer of cylinder 
respect to middle surface 

Ai, Ci, Di
General property of material 

R Radius of mid-surface of cylinder G Shear modulus of elasticity 

zu  Axial component of deformation iP  Internal pressure 

wr Radial component of deformation P0 External pressure 

u  Displacement component of axial 
deformation 

W 
External work(due to pressure) 

w 
Displacement component of radial 

deformation 
C1 

General force 

z  Rotational component of axial deformation C2 General moment 

r  Rotational component of radial deformation F Functional 

z  Axial strain Nz Resultant of axial force 

r  Radial strain Ne Resultant of tangential force 

  Circumferential strain Nr Resultant of radial force 

rz  Shear strain in xz plane Mz Resultant of axial moment 

z  Axial stress Me Resultant of tangential moment 

r  Radial stress Mrz Resultant of shear force 

  Circumferential stress Qz Resultant of axial force 

xz  Shear stress {Z} Unknown functions 

Cijkl Elastic stiffness coefficient [G1] 7 7  matrices of material property

eijk Piezoelectric coefficient [G2] 7 7  matrices of material property

  Electric potential [G3] 7 7  matrices of material property

U Total energy {F} Vector of general force 

u  Energy per unit volume Ei 
Modulus of elasticity in the inner 

radius 

dV Element of volume ir  Inner radius 

h  Local thickness of cylinder or  Outer radius 

Us Mechanical strain energy n Non homogenous index 
Upiezo Piezoelectric energy L Length of cylinder 
Udie Dielectric energy dx, dz Resultant of electric displacement 
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