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Abstract.  In this paper is studied the influence of the uncertain mass distribution over the floors on the 
choice of the optimal parameters of a hybrid control system for tall buildings subjected to wind load. In 
particular, an optimization procedure is developed for the robust design of a hybrid control system that is 
based on an enhanced Monte Carlo simulation technique and the genetic algorithm. The large computational 
effort inherent in the use of a MC-based procedure is reduced by the employment of the Latin Hypercube 
Sampling. With reference to a tall building modeled as a multi degrees of freedom system, several numerical 
analyses are carried out varying the parameters influencing the floors’ masses, like the coefficient of 
variation of the distribution and the correlation between the floors’ masses. The procedure allows to obtain 
optimal designs of the control system that are robust with respect to the uncertainties on the distribution of 
the dead and live loads. 
 

Keywords:  robust optimization; Monte Carlo simulation; latin hypercube sampling; active tuned mass 
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1. Introduction 
 

To mitigate the wind-induced response of high-rise buildings several types of control devices 

can be used that provide the building with additional damping, increasing the performance of the 

structure (Casciati et al. 2012).  

Among the control systems, hybrid control devices such as Active Tuned Mass Dampers 

(ATMDs), are particularly effective as they need a lower actuation power with respect to the 

purely active systems and can work as passive devices when power supply is missing. Another 

advantage of the hybrid control is that, unlike the purely passive system, it can adjust to the load 

uncertainties and to the variations of the system dynamic characteristics, at the price of an increase 

in the performance demand of the system. In a general framework of limited resources and system 

constraints on control forces, damping and strokes, it is important to perform a robust design 

optimization to obtain a controlled system almost independent on the variations of the external 

conditions.    

In the technical literature many analytical and numerical methods were proposed for the choice 

of the optimal parameters of passive and hybrid systems under different types of excitation 
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(Warburton 1982, Hoang et al. 2008). More recently, robust optimization methods started to be 

discussed accounting for the uncertainties on the dynamic characteristics of the structure and/or the 

external loading (Chen et al. 2007, Moreno and Thomson 2010, Chakraborty and Roy 2011).  

The robust optimization is the process of finding a design solution that is relatively invariant 

with respect to uncertain parameters changes. This goal is opposite to the target of the optimization 

because the best solution in general is not the most robust one (Beyer and Sendhoff 2007). The 

target pursued by the designers is to provide a high degree of robustness even at the expense of the 

system’s performance. The structural robustness is assessed by the measure of the performance 

variability around the expected value. The task of reducing the scatter of the structural 

performance without eliminating the source of variability is the target of the robust design 

(Doltsinis and Kang 2004).  

Among the robust optimization methods, those treating the uncertainties directly within the 

optimization problem are referred to as simulation optimization (Schueller and Jensen 2008). 

These problems are usually solved by direct optimization methods that do not require an estimate 

of the gradients of the functions. In order to perform robust optimization, the robustness measures 

like expectancy and dispersion measures (expected values and variances), must be calculated from 

the information obtained by simulation (Lee and Park 2001, Jensen 2006). The most well-known 

simulation technique is the Monte Carlo method (MC) whose main limitation is the requirement of 

a significant computational effort. Among the enhanced simulation methods, the  

Importance Sampling (IS) (Zhang 2012, Grooteman 2011) the Latin Hypercube Sampling 

(LHS) (Huntington and Lyrintzis 1998, Olsson et al. 2003), the Line Sampling (LS) (Pradlwarter 

et al. 2007, Katafygiotis and Wang 2009) and the Subset Simulation (SS) (Li and Au 2010, Song 

et al. 2009) are available tools for an efficient estimation of the robustness.     

Uncertainties in structural dynamics may be stochastic, like seismic (Marano and Greco 2009) 

and wind loads (Cluni et al. 2007) or epistemic, related to the lack of information that could be 

reduced by additional information (Pascual and Adhikari). Although the uncertainties on the mass 

and the stiffness of the structural system (or on the natural frequency that accounts for both mass 

and stiffness uncertainty) were often considered in the optimal design of control systems (Marano 

et al. 2010), the topic of the uncertain mass distribution over the height of the building and over 

the floors’ surface was not deeply investigated. As the loads vary from floor to floor and over the 

floors’ surface, there is significant variability on the mass distribution corresponding especially to 

the live loads variations. The design of the control system is usually carried out considering an 

uniformly distributed mass corresponding to the design value of the dead and live loads which can 

be significantly different from the actual mass distribution. Because of this discrepancy, the 

natural frequencies and the modal masses that are used for the optimization of the control system 

can be significantly different and therefore the control system can be less effective. 

In this paper the influence of the uncertain mass distribution over the floors on the robust 

design of the optimal parameters of a hybrid control system for tall buildings subjected to wind 

load is studied. The design of the parameters is carried out using an optimization procedure based 

on an enhanced Monte Carlo simulation of the uncertain parameters distribution and a genetic 

algorithm. In particular, an optimization of the design parameters of the control system is carried 

out for each sample mass matrix allowing the evaluation of the probability distribution of the 

optimal parameters. The large computational effort required by the Monte Carlo method is reduced 

by the use of the Latin Hypercube Sampling, a stratified random procedure that provides an 

efficient way of simulating variables from their multivariate distributions, taking samples from 

equally probable intervals. The robust optimization procedure is applied to a tall building modeled 
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as a multi degrees of freedom system and subjected to wind loads obtained from wind tunnel tests. 

Several optimizations are carried out varying the parameters which influence the distribution of the 

floors’ masses, like the coefficient of variation and the correlation of the distribution over the 

floors. The robust designs are selected to have corresponding values of the objective function lying 

in the neighborhood of the expected value.  

 

 

2. Dynamics of the controlled system  
 

The hybrid control system considered in this paper, is capable to control the translational and 

torsional response of the structure. It can be schematized with n ATMDs located at the top floor of a 

tall building (Venanzi et al. 2013). 

The structure is schematized considering 3 DOFs for each floor. The total number of DOFs of the 

system is 3p + p’, where p is the total number of storeys and p’ is the number of DOFs of the 

ATMDs. Assuming that the aeroelastic effects are negligible, hypothesis that is acceptable for low 

wind speed in service conditions (Venanzi and Materazzi 2012), the classical equation of motion for 

the controlled system is 

+ + = + 
s s s 0

M q C q K q f B u                             (1) 

where q is the vector of the generalized displacements, 
s

M , 
s

C  and 
s

K  are the  mass, damping 

and stiffness matrices, respectively, f  is the vector of the wind loads, u is the vector of the control 

forces and 
0

B  is a location matrix. The damping matrix is computed according to the classical 

Rayleigh model = + 
s s s

C M K , where α and β are functions of the circular frequencies and the 

damping ratio. 
The state space formulation of the equation of motion of the controlled system obtained by Eq. 

(1) is 

 =  +  + z Az Bu Hf                     (2) 

where 
T

]q [qZ   is the state vector, A is the system matrix, B and H are the location matrices for 

the vectors u e f, respectively. 

Owing to the common availability of accelerometers as monitoring sensors, tracking of the 

state using only acceleration measurements is here considered. In particular, three accelerometers 

per floor are used to measure the alongwind, acrosswind and torsional accelerations. 

The output, y, thus results in a linear combination of generalized nodal accelerations, as 


a

y C q
                    (3) 

where Ca is a convenient matrix that selects the monitored DOFs.  

Eq. (3) can be rewritten in terms of state vector and control forces as 

   y Cz Du Hf ν                       (4) 

where 

    



-1 -1

a s s s s

-1

a s 0

C C M K M C

D C M B              (5) 
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and v is the vector of measurement noise. 

Without loss of generality, the linear optimal control algorithm is used for the problem at hand. 

The linear quadratic performance index can be written as 

 
0

1
d

2
J t



 
T T

z Qz u Ru
                   (6) 

where Q and R are the weighting matrices of the state vector and the control forces vector 

respectively. By application of the classic LQR algorithm the optimal gain matrix K, which allows 

minimizing the performance index J, is computed and the feedback is calculated as Kz-   u  . 

 

 

3. Uncertain mass modeling 
 

The uncertainty on the mass distribution leads to the uncertainty on the natural frequencies of 

the structure that affects the optimal design of the control system. The uncertain mass can be 

modeled as follows: 

1. the mass is random and doesn’t vary from floor to floor. In this case the mass 

distribution is described by a unique random variable; 

2. the mass is random and varies from floor to floor. In this case the mass distribution is 

described by a set of random variables; 

3. the mass is random and varies from floor to floor and over the floors’ surface. The mass 

distribution is described by a three-dimensional random field.  

Without loss of generality, in this paper only the uncertainty on the distribution with the height 

(case 2) is considered, neglecting the spatial variability over the floors.  

The mass matrix of the structure M has dimensions 3p x 3p and its terms are the floors’ masses 

mj (j = 1,…,3p) that are the sums of the masses corresponding to the dead and live loads 

j dj lj j j jm m m m m m    
                      (7) 

In Eq. (7), djm is the mean value of the mass corresponding to the dead load, ljm  is the mean 

value of the mass corresponding to the live load, ljdjj mmm   is the mean value of the mass 

and jm  is the random part of the mass. Only the masses corresponding to the translational 

degrees of freedom mj (j = 1,…, p) are considered as random variables, while the corresponding 

translational masses in the orthogonal direction and the mass moments of inertia mj (j = p+1,…,3p) 

are set correspondingly, considering an uniform mass distribution over the floors.  

The probability distribution of the random variables representing the floors’ masses mj must be 

chosen. For example, a multivariate normal distribution can be selected. It is described by the 

mean values of the random variables jm , their standard deviations j  and the covariances 

between the random variables hk (h,k = 1,…p). The covariances are defined as 

hk h k     
                        (8) 

where   is the correlation coefficient, h  and k  are the standard deviations of the random 

variables mh and mk. The standard deviation is defined as follows 
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j jm CV  
              (9) 

 
4. Robust optimization of the control system 

 

A general robust optimization task can be stated by the following mathematical problem 

 

 

 

 

Min

subject to g , 0 1,...

s , 0 1,...

h 0 1,...

s

r

l

F

i S

j R

l L





 

 

 

y

y

y

y
          (10) 

where y is the vector of the design variables, θ is the vector of the uncertain parameters, F is the 

objective function, gs and sr are functions that define the set of inequality and equality constraints 

and hl are the functions that define the set of deterministic constraints.  

The proposed optimization procedure is aimed at designing a hybrid control system that leads 

to the maximum response reduction and is robust with respect to the uncertainties on the mass 

distribution. The method can also take into account the technological limitations of the devices. 

The first step of the robust optimization procedure is the application of an enhanced Monte 

Carlo procedure for the simulation of a large number N of structural lumped mass matrices Mi (i = 

1,…,N) whose diagonal terms i
jm (j = 1,…,p) follow a certain multivariate probability distribution. 

Solving the eigenvalue problems, the corresponding sets of natural frequencies of the structure Ξi 

= [ i
p

i ,..., 31  ] are computed. The mass-dependent damping matrices are evaluated according to the 

Rayleigh model using the circular frequencies computed in correspondence of each sample mass 

matrix.  

Then, the optimal design of the hybrid control system is carried out. This consists of a 

preliminary optimization of the tuning parameters of the control devices considered as purely 

passive systems and then in the optimization of the parameters that define the LQR performance 

index. The preliminary optimization of the passive control system, allows increasing the 

performance of the hybrid control system in terms of power saving. Moreover, if the tuning 

parameters of the passive devices are optimized independently from the parameters defining the 

active control algorithm, it is possible to have a control system that works at its best also in case of 

lack of power supply. 

To perform a robust optimization, the mass matrices Mi and the sets of natural frequencies Ξi 

are used as input data for N optimizations to compute the probability distributions of the objective 

function and the optimal parameters. From the PDF of the objective function, the robust solutions 

are identified that are those lying in the neighborhood of the expected value.  

 

4.1 Enhanced Monte Carlo simulation 
 
For the simulation of the uncertain mass matrices of the system an enhanced Monte Carlo 

method is used.  

In order to reduce the high computational effort inherent in the use of a crude Monte Carlo 

simulation technique, the Latin Hypercube Sampling is adopted. The Latin Hypercube Sampling 
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(Iman 2008) is a type of enhanced Monte Carlo simulation that provides an efficient way of 

sampling variables from their multivariate distributions. Let N denote the number of realizations 

and p the number of random variables [m1, m2,…, mp]. The sample space is then p-dimensional. To 

generate N samples from p variables with probability density function f(m), the procedure is as 

follows. The range of each variable is subdivided into N non overlapping intervals of equal 

probability 1/N. From each interval one value is selected at random according to the probability 

density of the interval. In particular, each value is obtained from the inverse cumulative 

distribution function as follows 

1

,

0.5
j i j

i
m F

N

  
  

                    (11) 

where mj,i is the i-th sample of the j-th random variable mj, 
1

jF  is the inverse cumulative 

distribution of the variable mj. The N values of the first random variable (m1) are paired in a 

random manner with the values of the second random variable (m2), these pairs are then paired 

similarly with the values of m3 and so on, until N samples of p variables are formed. The N 

p-dimensional vectors are the Latin Hypercube sample. The pairing is done by associating a 

permutation of the first N integers with each input variable in order to match the target 

correlations. 

 

4.2 Optimization of the passive control system  
 
For each trial value of the mass matrix Mi, the parameters of the TMDs are optimized to 

minimize the response of the controlled modes. In the case of systems with uncertain parameters, 

like the one considered in this case, the optimal stiffnesses and dampings of the TMDs are random 

variables. The optimization procedure is aimed at computing the probability distributions of the 

optimal parameters and therefore at identifying the robust designs. 

The total mass of the TMDs, 
sTMDm , is set equal to a conveniently small percentage of the first 

modal mass of the building 
*M1 , *

TMD M/m
s 1  where µ is the total mass ratio of the TMDs.  

The design variables of the optimization procedure are the stiffnesses and the dampings of the 

TMDs. In particular, the vector of the design variables is 

 1 1,... , ,...p pk k c c Ψ
                       (12) 

where p’ is the number of DOFs of the TMDs, pk,...k 1  are the stiffnesses of the TMDs, pc,...c 1   

are the dampings of the TMDs. 

The objective function of this optimization problem )(F ψ1  is 

            1 1 1 1
, ,

h h uncontrolledpassiveh x y

F G P q q P


 


      Ψ Ψ Ψ Ψ Ψ
          (13)    

where the first term )(G ψ1  is the sum of the ratios between the standard deviations of the 

generalized displacements ,y,xh),(qh   ψ  at the top of the building in the case of passively 

controlled structure   possiveh )(q ψ  and the standard deviations of the generalized displacements 
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at the top of the building in the case of uncontrolled structure eduncontrollh )q( . 

The non-linear constraints to the problem are max,min ψψψ mm,m  , where mψ  is the m-th 

term of the design variable vector )p....,m(  21ψ  and minψ ,m  and max,ψm are the lower and 

upper bounds of the terms of the design variable vector that depend on the technical characteristics 

of the selected control devices. To keep into account the constraints, a suitable penalty function 

)(p ψ1  is added to the objective function when the constraints are violated in order to discard the 

solution. 

To solve the proposed optimization problem, one of the evolutionary algorithms like the genetic 

algorithm (Goldberg 1989), the simulated annealing algorithm (Venanzi and Materazzi 2007), the 

direct search algorithm (Conn and Le Digabel 2013) can be used as they do not require knowing 

the gradient of the objective function. In this paper, the genetic algorithm is adopted that is based 

on the natural selection, the process that drives biological evolution (Casciati 2008). It repeatedly 

modifies a population of individual solutions selecting at each step individuals at random from the 

current population to be parents and using them to produce, through selection, crossover and 

mutation, the children for the next generation. 

 

4.3 Optimization of the hybrid control system 
 

For each trial value of the mass matrix, the optimal choice of the weight matrices R and Q of 

the control force and state vectors in the LQR performance index (Eq. (6)) is obtained through an 

optimization procedure.  

The matrix R that weights the control forces is defined as follows 

110


 
1

R I                   (14) 

where 1  is a coefficient and I1 is an identity matrix. 

The matrix Q is the product between an identity matrix I2 and a diagonal matrix that stores a set 

of coefficients n,...,2  

2

2

... 0

... ... ...

0 ... n





 
 

 
 
  

Q I

      (15) 

The components of the vector 

Φ = [ 1,..., n  ]
T
                    (16) 

are the design variables of this second optimization problem.  

The objective function )(F Φ2 , is defined as follows 

 

            2 2 2 2
, ,

h h passivehybridh x y

F G P q q P


 


      Φ Φ Φ Φ Φ
           (17)   

where )(G Φ2  is the sum of the ratios between the standard deviations of the generalized 

displacements  at the top of the building in the case of hybridly controlled structure 
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  hybridh )(q Φ  and the standard deviations of the generalized displacements at the top of the 

building in the case of passively controlled structure passiveh )q( while )(P Φ2  is a penalty 

function. 

Some constraints can be applied to the design variables 

,min ,max 1,...,v v v v n    
                   (18)   

where the limits min,v and ax,v m  are assigned on the basis of a preliminary sensitivity analysis. 

Additional constraints can be applied on the maximum control forces and strokes of the 

ATMDs 

 
max

, ,max

1,...,
t

ATMD t ATMD

u u
t p

q q




           (19) 

where ut is the t-th term of the control force, umax is the upper bound of the control force, qATMD,t is 

the t-th stroke of the ATMDs, qATMD,max is the upper bound to the stroke of the ATMDs. The limits 

depend on the technological characteristics of the selected control devices. To solve this second 

optimization problem the genetic algorithm is used. 

 

 

5. Numerical analyses 

 
5.1 Description of the case study 
 

The optimization procedure is applied to a prismatic tall building 180 m high with side lengths 

A = 60 m, B = 30 m. The 60-storeys structure is made of steel with central cores and systems of 

bracings in both the principal directions. Floors are reinforced concrete slabs capable of warranting 

a rigid in-plane behavior. A finite element model of the structure is built and used for the 

preliminary sizing of the structural elements. Then, for the robust optimization procedure, the 

structure is modeled as a simplified dynamic system having 6 nodes, equally spaced every 10 

floors. Each node has 3 DOFs and the stiffness matrix of the system is obtained by static 

condensation from the finite element model of the structure. 

Without loss of generality, a simplified control system made of 3 unidirectional ATMDs is 

considered: the central ATMD is located at the elastic center of the top floor of the building and is 

expected to control the alongwind response and the 2 lateral ATMDs are located symmetrically in 

eccentric position (C = 20 m, D = 5 m, Fig. 1) and are expected to control the torsional response. 

The total mass ratio of the control system is µ = 2% of the first mode mass of the building. The 

mass ratio of the central ATMD is µc = 1.5% while the total mass ratio of the lateral ATMDs is µ l = 

0.5%. 

 

5.2 Wind load modeling 
 

The forcing functions representing the wind load were obtained from synchronous pressure 

measurements carried out in the wind tunnel (Venanzi and Materazzi 2012, Gioffrè et al. 2004). 

Experimental tests were carried out in the boundary-layer wind tunnel operated by CRIACIV 
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(Inter-university Research Center on Buildings Aerodynamic and Wind Engineering) in Prato, 

Italy.  

The rigid 1/500 scale model of the building was instrumented with 120 pressure taps, 30 for 

each side. The sampling frequency was 250 Hz and the duration of the records 30 s. Tests were 

carried out with a wind speed profile and turbulence intensity corresponding to open terrain 

conditions . In particular, the exponent of the mean wind profile was 0.17, the mean wind speed at 

the top of the model was Vm = 18.3 m/s and the turbulence intensity at the same height was the 6%.   

It was chosen to neglect the similitude on the Reynolds number because for prismatic structures 

its effect on the estimation of the pressure coefficients is negligible. Therefore, for the prototype 

building it was arbitrarily chosen to use a 10-minute average reference wind speed at 10 meters 

above the ground Vr = 30 m/s. According to the logarithmic law proposed by the Eurocode 1, it 

corresponds in open terrain (Terrain category II) to a mean wind speed at the top Vp = 46.7 m/s. 

In this study, the wind is considered acting in direction x (Fig. 1). 

 

 

 
 

Fig. 1 Plan view of the control system 

 

 
5.3 Probabilistic distribution of the natural frequencies 
 

In order to evaluate the robust optimal parameters of the control system, the preliminary step is 

to generate a large number of random mass matrices of the system using the Latin Hypercube 

Sampling.  

The mean value of the mass corresponding to the dead load varies from floor to floor while the 

mean value of the mass corresponding to the live load is 
2

1  130 m/kgm  . This value corresponds 

to a design value of the live load of about 
2

1  200 m/kgm des  , if the 95
th
 percentile of the normal 

distribution and a coefficient of variation CV = 0.3 is adopted. 

The samples generation is carried out considering a multivariate normal distribution of the 

floors’ masses with three different values of the correlation coefficient ρ = 0, ρ = 0.5, ρ = 1 and 

three different values of the coefficient of variation CV = 0.2, CV = 0.4, CV = 0.6. The maximum 
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coefficient of variation of CV = 0.6 is chosen in order to have the mass corresponding to the live 

load varying in the range [0 - 260 kg/m
2
] if the confidence level corresponding to the 90% 

probability is considered.  

To avoid the possibility of having non positive definite mass matrices, a preliminary check 

allows to identify and discard the unfeasible sample mass matrices. In correspondence of each 

random mass matrix, the natural frequencies of the system are computed through modal analysis.  

A preliminary sensitivity analysis allowed to set the number N of random samples that are 

required for the correct estimation of the mean values and the standard deviations of the first 3 

natural frequencies of the system. In particular, assuming as target values those obtained with a 

standard Monte Carlo (MC) simulation with N=10000 samples, the Latin Hypercube Sampling 

(LHS) with N=500 samples leads to sufficiently precise results (Table 1). 

 

 
Table 1 Sensitivity analysis on the number of random samples ( 0.5   and 0.4CV  ) 

 
SMC 

N=10000
 

LHS 

N=10000
 

LHS 

N=1000
 

LHS 

N=500 

LHS 

N=300 

LHS 

N=100 

Mean 

value 

f1 (Hz) 0.2321 0.2321 0.2321 0.2321 0.2321 0.2321 

f2 (Hz) 0.239 0.239 0.239 0.239 0.239 0.239 

f3 (Hz) 0.2515 0.2515 0.2515 0.2514 0.2516 0.2514 

Standard 

deviation 

f1 (Hz) 0.005 0.005 0.0051 0.0049 0.0051 0.0049 

f2 (Hz) 0.0057 0.0057 0.0057 0.0058 0.0056 0.0056 

f3 (Hz) 0.0139 0.0139 0.0139 0.0139 0.014 0.0135 

 
Table 2 Statistical moments of the first three natural frequencies for 0.2CV   and 0.5   

 1f (Hz) 2f (Hz) 3f (Hz) 

Mean 0.232 0.239 0.251 

Variance 0.005 0.006 0.014 

Skewness 0.189 -0.261 0.674 

Kurtosis 3.251 3.931 3.625 

 

 

In Fig. 2 are shown the graphs of the probabilistic distribution of the first three natural 

frequencies of the building obtained considering 50.  and CV = 0.2. In the same figure it can 

be observed the comparison with the normal probability density functions with the same mean 

values and standard deviations. It is possible to note from Fig. 2 and Table 2 that the probability 

distributions are non-Gaussian with positive skewness and kurtosis. The possible overlapping of 

the natural frequencies does not influence the effectiveness of the Monte Carlo-based optimization 

procedure (Adhikari and Friswell 2007). 

The advantage in considering the uncertainty directly on the mass distribution is that it is not 

necessary to make simplified hypothesis on the probability density function of the natural 

frequencies and their correlation as it is often done in many literature references.  

 

5.4 Optimization of the passive control system  
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As in this case study three uni-directional ATMDs are considered, the design variables vector 

(Eq. (12)) is reduced to 

 , , ,lx cx lx cxk k c cΨ
                     (21) 

where lxk  is the stiffness of the lateral ATMDs, cxk  is the stiffness of the central TMD, lxc  is 

the damping of the lateral ATMDs, cxc  is the damping of the central TMD. The subscript x 

specifies that all the TMDs can move along the x direction.  

The upper and lower bounds to the terms of the design variables vector min ,ψi and max ,ψi are 

obtained with a preliminary sensitivity analysis. 

 

 

  
(a) (b) 

 
(c) 

Fig. 2 Relative frequencies of the 1
st
 (a), 2

nd
 (b) and 3

rd
 (c) natural frequencies compared to the 

corresponding normal distributions 

 

 

The objective function is expressed by Eq. (13), where the sum is extended only to the 

alongwind and torsional components of the structural response.  

The parameters of the genetic algorithm, chosen with a preliminary sensitivity analysis in order 

to guarantee a sufficient accuracy of the results, are reported in Table 3.  

The effect of mass in modifying damping is considered in the numerical procedure. In 
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particular, adopting a damping ratio equal to 1% and the design (deterministic) values of the mass 

and stiffness matrices, the Rayleigh coefficients α and β are computed. Then, the mass-dependent 

damping matrices are evaluated using the sample mass matrices and the Rayleigh coefficients α 

and β. If the maximum coefficient of variation CV = 0.6 and a correlation coefficient ρ = 0.5 are 

adopted, the corresponding damping ratio varies between 0.82% and 1.23%.  

In Fig. 3 is shown the relative frequencies diagram of the objective function obtained with CV 

= 0.4 and ρ = 0.5. The vertical lines represent the interval 
11 FF   where 1F  is the mean value 

of the objective function and 
1F is its standard deviation. The selected interval corresponds to the 

robust solutions, that lie in the neighborhood of the mean value of the distribution. 

 

 

 

Fig. 3 Relative frequency of the objective function F1((ψ) 

 

 

Fig. 4 Confidence interval and level 
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Table 3 Parameters of the genetic algorithm 

PARAMETER VALUE 

Population size 30 

Maximum iterations number 100 

Function tolerance 10
-6 

Elite count 2 

Crossover fraction 0.8 

Migration fraction 0.2 

 

 

The choice of the amplitude of the confidence interval 
11 FF  is based on a preliminary 

sensitivity analysis. In Fig. 4 is shown the cumulative distribution function (CDF) of the objective 

function obtained for ρ = 0.5 and CV = 0.4. The vertical lines represent the boundaries of the 

confidence interval and the horizontal lines represent the corresponding probability of non 

exceedance. From the figure it can be inferred that the confidence level is about 80% that may be 

considered an acceptable compromise between the need of reducing the confidence interval and 

the need of having a sufficiently high confidence level. Table 4 reports the confidence intervals 

and levels for the different cases that have been analyzed. The confidence levels vary between 77 

 and 80% and the probability of non exceedance of the upper threshold of the confidence interval 

is greater than 86% for all the analyzed cases. 

 

 
Table 4 Confidence intervals and levels for different coefficients of variation and correlation coefficients 

 
11 FF   

11 FF   Pmin (%) Pmax (%) 
Confidence 

level (%) 

0.2CV   0.5 
 1.216 1.321 8.6 85.6 77.0 

0.4CV   0.5 
 1.192 1.371 8.0 86.2 78.2 

0.6CV   0.5 
 1.187 1.353 8.8 86.5 77.7 

0.4CV   0 
 1.193 1.381 7.6 86.4 78.8 

0.4CV   0.5 
 1.192 1.371 8.0 86.2 78.2 

0.4CV   1 
 1.210 1.377 7.8 87.8 80.0 

 
 

Table 5 Statistical parameters of the robust optimal stiffnesses (•10
5 

N/m) and dampings (•10
4
 Ns/m) for 

0.5   

 
Coefficient of variation 

0.2 0.4 0.6 

 klx kcx clx ccx klx kcx clx ccx klx kcx clx ccx 

Mean 1.013 4.350 0.684 4.288 1.169 4.489 0.849 4.362 1.937 5.446 3.531 5.621 

Variance 0.039 0.022 0.061 0.164 0.339 0.408 0.547 0.974 4.004 4.545 6.425 7.214 

Skewness 6.885 -0.162 2.154 0.455 4.459 -0.122 4.428 3.953 2.126 0.222 0.856 0.597 

Kurtosis 55.42 1.448 12.70 3.616 25.71 44.72 24.35 22.86 7.157 4.291 1.787 2.150 
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In Fig. 5 are shown the relative frequencies of the design variables obtained with CV = 0.4 and 

ρ = 0.5. In the same graph are reported the histogram corresponding to all the samples and the 

histogram corresponding to the robust samples. This latter are the solutions corresponding to the 

optimal values of the objective functions comprises in the interval 
11 FF  , that are the robust 

solutions. The optimal stiffness and damping of the lateral TMDs are in general more skewed than 

the corresponding parameters of the central TMDs. Moreover, the optimal stiffness are less 

scattered than the corresponding optimal damping. 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5 Relative frequency histograms of the optimal values of the design variables: (a) klx , (b) kcx, (c) clx and 

(d) ccx 

 

 

In Tables 5 and 6 are summarized the statistical moments up to the 4
th
 order of the robust 

optimal values of the design variables.  

In Fig. 6 are shown the relative frequencies of the objective functions obtained with different 

values of the coefficient of variation and different values of the correlation coefficients. In the 

same graphs are reported the corresponding normal distributions. In Table 6 are summarized the 

mean values and the standard deviations of the optimal values of the objective function as a 

function of the coefficient of variation and the correlation coefficient. It can be observed that the 
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standard deviation of the objective function increases with the coefficient of variation. 
 

 

Table 6 Statistical parameters of the robust optimal stiffnesses (•10
5 

N/m) and dampings (•10
4
 Ns/m) for 

0.4CV   

 
Correlation coefficient 

0 0.5 1 

 klx kcx clx ccx klx kcx clx ccx klx kcx clx ccx 

Mean 1.200 4.392 0.936 4.523 1.169 4.489 0.849 4.362 1.059 4.919 0.791 4.228 

Variance 0.496 0.464 0.739 1.076 0.339 0.408 0.547 0.974 0.029 0.334 0.327 0.697 

Skewness 3.632 4.591 3.333 3.979 4.459 -0.122 4.428 3.953 0.027 7.017 6.265 4.783 

Kurtosis 17.15 40.37 15.07 20.74 25.71 44.72 24.35 22.86 9.016 53.48 46.14 32.86 

 

 

 

(a) 

 

(b) 

Fig. 6 Relative frequencies of the design variables obtained for different coefficients of variation (a) and 

different correlation coefficients (b) 

 

 

In Fig. 7 are reported the relative frequency histograms of the objective function obtained with 

two different sets of data. The blue histogram is obtained using all the sample sets of the optimal 

design variables and the deterministic mass matrix. The red histogram is obtained using the robust 

sample sets of the optimal design variables (those corresponding to the solutions lying in the range 

11 FF  , Fig. 3), and the deterministic mass matrix. The deterministic components of the mass 

matrix are the “design values”, corresponding to the 95
th
 percentile of the mass distribution. The 

corresponding deterministic optimal value of the objective function is Fdet. Fig. 7 shows that all the 

values obtained with the optimal design variables with reference to the deterministic system are 

higher than the value Fdet. Moreover, using the robust optimal solutions the objective function, that 

is related to the structural response, does not exceed the value of about 1.5 and all the higher 

structural responses are avoided. 
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Fig. 7 Relative frequency histograms of the objective function obtained with reference to the 

“deterministic system” 

 

 

5.5 Optimization of the hybrid control system 
 

The second part of the optimization procedure is aimed at finding the optimal weight matrices 

R and Q of the control force and state vectors in the LQR performance index. 

In this specific example, the coefficient φ1 that appears in the definition of matrix R (Eq. (14)), 

is assumed equal to 20 and I1 has dimensions (3 x 3), being 3 the degrees of freedom of the control 

system. 

The matrix Q that weights the states of the system (Eq. (15)) has dimensions (42 x 42), being 

(18+3) the degrees of freedom of the controlled system. In particular, based on a preliminary 

sensitivity analysis, a weight coefficient equal to 1 is assigned to the displacements and the 

velocities of the structure, a weight coefficient equal to 0 is assigned to the velocities of the 

actuators and a weight coefficient equal to 10
2
 is assigned to the structural rotations in order to 

increase the importance of the torsional response reduction.  

Therefore, the design variables are the weight coefficients of the displacements of the central 

( 2 ) and lateral ( 3 ) ATMDs 

 2 3, Ψ
                             (22) 

The upper and lower bounds to the terms of the design variables vector minψ ,i  and maxψ ,i are 

obtained with a preliminary sensitivity analysis. The upper bound to the stroke of each ATMD is 

qTMD,max = 2 m while the upper bound to the control force is umax = 1000 KN. The objective 

function is expressed by Eq. (17) where the sum is extended only to the alongwind and torsional 

responses.  

In Fig. 7 is shown the relative frequency of the objective function obtained with CV = 0.4 and ρ 

= 0.5. The vertical lines delimit the interval 
22 FF   where 2F  is the mean value of the 

656



 

 

 

 

 

 

Robust optimization of a hybrid control system for wind-exposed tall buildings… 

objective function and 
2F  is its standard deviation. The selected interval corresponds to the 

robust solutions, that lie in the neighborhood of the mean value of the distribution. In Fig. 8 are 

plotted the relative frequencies of the design variables for CV = 0.4 and ρ = 0.5 obtained using all 

the samples and the robust samples. The variability of the optimal values of φ2 and φ3 is small and 

their relative frequencies are slightly skewed to the right.   

 

 

 

Fig. 8 Relative frequency of the objective function F2(Ф) 

 

 

 

(a) 

 

(b) 

Fig. 9 Relative frequency histograms of the optimal values of the design variables : (a) φ2 , (b) φ3 
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Table 7 Mean value and standard deviation of the optimal value of the objective function 

 Mean Standard deviation 

0.2CV   0.5 
 1.268 0.053 

0.4CV   0.5 
 1.281 0.089 

0.6CV   0.5 
 1.270 0.083 

0.4CV   0 
 1.287 0.094 

0.4CV   0.5 
 1.281 0.089 

0.4CV   1 
 1.293 0.084 

 

 

6. Conclusions 
 

In this paper is studied the influence of the uncertain mass distribution over the floors on the 

choice of the optimal parameters of a hybrid control system for tall buildings subjected to wind 

load. An optimization procedure is developed for the robust design of a hybrid control system that 

is based on an enhanced Monte Carlo simulation technique and a genetic algorithm. The procedure 

allows to find the probability distribution of the objective function and the design variables. The 

robust optimal sets of the design variables are those corresponding to the optimal values of the 

objective function lying in the neighborhood of the mean value of the distribution. Several 

numerical analyses are carried out varying the parameters influencing the distribution of the floors’ 

masses, like the coefficient of variation of the distribution and the correlation between the floors’ 

masses showing the significant influence of the coefficient of variation on the variance of the 

objective function’s distribution. The numerical analyses showed that using the robust optimal 

solutions and the design value of the mass matrix, the control system is efficient in mitigating the 

structural response and almost insensitive with respect to the mass variations. 
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