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Abstract.  Locating and assessing the severity of damage in large or complex structures is one of the most 
challenging problems in the field of civil engineering. Considering that the wavelet packet transform (WPT) 
has the ability to clearly reflect the damage characteristics of structural response signals and the artificial 
neural network (ANN) is capable of learning in an unsupervised manner and of forming new classes when 
the structural exhibits change, this paper investigates a multi-stage structural damage diagnosis method by 
using the WPT and ANN based on “energy-damage” theory, in which, the wavelet packet component 
energies are first extracted to be damage sensitive feature and then adopted as input into an improved back 
propagation (BP) neural network model for damage diagnosis in a step by step mode. To validate the 
efficacy of the presented approach of the damage diagnosis, the benchmark structure of the American 
Society of Civil Engineers (ASCE) is employed in the case study. The results of damage diagnosis indicate 
that the method herein is computationally efficient and is able to detect the existence of different damage 
patterns in the simulated experiment where minor, moderate and severe damages corresponds to involving in 
the loss of stiffness on braces or the removal bracing in various combinations. 
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1. Introduction 
 

The structural integrity of critical civil infrastructures is of continuing concern to the 

international engineering community from both economic and life-safety viewpoints (Wenzl 2009, 

Boller 2009, Yi et al. 2012). Structural degradation, whether caused by material aging due to the 

environment and service loads (fatigue, corrosion, etc.) or by unpredictable external events 

(earthquakes, impact, etc.), is an inevitable fact of life. Therefore, it’s benefit to be gained in the 

ability to detect, locate, and quantify the damage throughout the civil community. Conventional 

damage detection methods are visual or localized experimental methods such as ultrasonic, 
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magnetic field, radiograph, eddy-current, and thermal field methods (Zhang et al. 1999). However, 

all of these methods require that the vicinity of the damage be known a priori and that the portion 

of the structure being inspected be readily accessible. Thus, global methodologies, in which the 

entire structure is excited and the response is measured at certain places, are better suited to the 

task of locating damage. The basic premise of vibration-based global damage detection methods is 

that changes in the physical properties (mass, damping and stiffness), such as reductions in 

stiffness resulting from the onset of cracks or loosening of a connection, will cause changes in the 

measured dynamic properties of the structure (natural frequencies, mode shapes and amplifications) 

(Li and Yang 2007). 

Global damage detection methods based upon measured vibration characteristics of structures 

have gotten considerable attention in the last decade. A comprehensive literature review on 

methods of damage detection and health monitoring using vibration signals for structural and 

mechanical systems was provided by Doebling et al. (1996). Sohn et al. (2001) proposed a damage 

detection approach based on the “statistical pattern recognition” paradigm using time series 

analysis of vibration signals. This damage detection approach has shown great promise in the hull 

of a high-speed patrol boat as well as in several relatively simple laboratory test specimens. Sun 

and Chang (2002) gave a wavelet packet transform (WPT) based method for the damage 

assessment. Dynamic signals measured from a structure were first decomposed into wavelet packet 

components in the time domain. Component energies were then calculated and used as inputs into 

the artificial neural network (ANN) models for the damage assessment. Nair et al. (2006) 

presented a time series algorithm for the damage identification and localization. In contrast to prior 

pattern classification and statistical signal processing algorithms that have been able to identify 

primarily severe damage and have not been able to localize the damage effectively, the proposed 

algorithm is able to identify and localize minor to severe damage. Carden and Brownjohn (2008) 

advanced a statistical classification algorithm in which the time-series responses were fitted with 

the Autoregressive Moving Average (ARMA) models and the ARMA coefficients were fed to the 

classifier, which was proved to be capable of learning in an unsupervised manner and of forming 

new classes when the structural response exhibits change. Lam and Ng (2006, 2008) put forward 

to a pattern recognition approach for the structural damage detection that used damage-induced 

changes in the Ritz vectors as the features to characterize the damage patterns defined by the 

corresponding locations and severity of damage. Unlike most other pattern recognition methods, 

the Bayesian ANN technique was employed as a tool for systematically identifying the damage 

pattern corresponding to an observed feature. The results of the case study demonstrated 

effectiveness of the proposed methodology. Chen and Zang (2009) developed an artificial immune 

pattern recognition (AIPR) approach for the damage classification, which incorporated several 

characteristics (adaptation, evolution, and immune learning) of the natural immune system and had 

been verified to classify structure damage patterns successfully by using a benchmark structure 

proposed by the American society of civil engineers (ASCE) structural health monitoring (SHM) 

task group and a three-story frame provided by the Los Alamos national laboratory. Zheng and 

Mita (2009) used the ARMA models in a two-stage damage assessment method where differences 

between the ARMA models were calculated as their Itakura distances, model cepstra or subspace 

angle distances used as damage detection features, and enhanced localization performance was 

achieved using pre-whitening filters. The approaches were applied to numerically simulated and 

experimental laboratory data. Lautour and Omenzetter (2010) developed a method for damage 

classification and estimation of remaining stiffness using the AR models and ANNs which had 

been applied to a simple 3-storey bookshelf structure and more complex ASCE Phase II 
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experimental SHM benchmark structure. The results showed that the combination of AR models 

and ANNs were efficient tools for damage classification and estimation, and performed well using 

small number of damage-sensitive features and limited sensors. Based on sequential application of 

an extended Kalman estimator for recursive solution of extended state vector and least-square 

estimation of unknown excitation inputs, Lei et al. (2012) proposed an algorithm for detecting 

structural damage with limited excitation input and response output measurement signals. 

Numerical study results showed that the proposed algorithm could identify structural parameters 

and unknown excitation in a sequential manner, which simplified the identification problem 

compared to other approaches available. 

Although aforementioned methods have demonstrated various degrees of success in damage 

diagnosis of certain structures, engineers are still far from obtaining a framework that effectively 

detects damage in structures that were excited by a natural phenomenon, or have suffered from 

regular daily use and display conditions such as corrosion or fatigue, all within a reasonable 

budget. In this paper, a multi-stage approach for the damage diagnosis is investigated by use of the 

combined wavelet packet analysis and ANN. In the process of analysis, the time domain response 

signals are transformed by the WPT to obtain the damage-sensitive features. And then, by using 

the component energy in different frequency bands as the sample of the ANN can perfectly reflect 

the damage features. Following that, the ASCE benchmark structure is applied as numerical 

example for describing the process of the damage diagnosis. Finally, a few concluding remarks are 

given. 

 

 

2. Multi-stage structural damage diagnosis method 
    

It is desirable that different degrees and types of damage be identified accurately as they occur 

regardless of influencing factors that may affect the structural behavior. However, it is unrealistic 

that a single technique would be capable of detecting the damage of different degrees and types.  

Therefore, a combination of methodologies that could optimally combines their outputs and 

takes full advantage of the information available should be the final goal of research in this area. 

 

2.1. Wavelet packet analysis based energy extraction method 
 

As known, the damage generally produces changes in the stiffness of a structure. These 

changes are reflected by changes in some of the dynamic properties. Thus, the focus of damage 

diagnosis is on feature extraction for a structure when subjected to dynamic excitation. The 

conventional feature extraction approach has generally relied upon the Fourier-based analysis as a 

means of translating vibration signals in the time domain into the frequency domain. However, the 

Fourier analysis provides a poor representation of signals well localized in time. Here, the WPT is 

introduced as an alternative means of extracting time-frequency information from the vibration 

signature. The WPT is an expansion of the discrete wavelet transform (DWT) that presents more 

possibilities for the signal processing (Misiti et al. 2004). Instead of just decomposing the low 

frequency component, it is possible to subdivide the whole time-frequency plane into different 

time-frequency pieces as can be seen from Fig. 1. The top level of the WPT is the time 

representation of signal, whereas, the bottom level has better frequency resolution. Thus, with the 

use of WPT, a better time-frequency resolution can be obtained for the decomposed signal. 
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Fig.1 Three-tier factorization trees of wavelet packet transform 

 

 

From the aforementioned discussion, it can be concluded that wavelet packets are a collection 

of function 2{2 (2 - )}j i j t k , , ,i j k N , generated from the following sequence of functions (Sun 

and Chang 2002, Wickerhauser 1994) 
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where ( )h k  and ( )g k  are the scaling and mother wavelet functions, respectively. 

After the j th level of decomposition, the original signal  f t  can be expressed as: 
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The wavelet packet component signal ( )i

jf t  can be expressed by a linear combination of 

wavelet packet functions , ( )i

j k t  as follows 
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The wavelet packet coefficient ,

i

j kc  can be obtained from 
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-
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j k j kc f t t dt



                              (5) 

Providing that the wavelet packet functions are orthogonal 

, ,( ) ( ) 0m n

j k j kt t    if m n                            (6) 

Each component in the WPT tree can be viewed as the output of a filter tuned to a particular 

basis function, thus the whole tree can be regarded as a filter bank. Since the breakage differently 

reacts on the every frequency component of the original signal, the frequency components will 

redistribute on the signal. The WPT actually decomposes the signal to different levels, which 

represent different frequency bands. This is to say, the feature vectors can be formed by extracting 

the energy of each level as the index of damage case. Yen and Lin (2000) define the wavelet 

packet component energy and concluded that it could provide a more robust signal feature for 
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classification than using the wavelet packet coefficients directly. The signal energy can be defined 

as follows 

2 2
2

- -
1 1

( ) ( ) ( )
j j

m n

f j j

m n

E f t dt f t f t dt
 

 
 
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Substituting Eq. (4) into Eq. (7) and using the orthogonal condition, Eq. (6), gives 

2

=1

i
j

j
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i
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Where the wavelet packet component energy i
jf

E  can be considered to be the energy stored in 

the component signal i

jf  

2

-
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j
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jf
E f t dt




                                (9) 

It can be seen from Eq. (8) that the total signal energy can be decomposed into a summation of 

wavelet packet component energies that correspond to different frequency bands. Thus, if the 

response of structure under the external excitation is taken as the system output signal, the change 

of its energy of each frequency band can denote the damage state of some component of the 

structure (Sun and Chang 2002). The “energy-damage” principle presented here is just based on 

this point. 

 

2.2. Improved BP neural network based damage detection algorithm 
 

The ANN is a multiple network which is arranged logically by fundamental units that simulate 

the neuron activity in living brains. The information passing between the units simulates the 

function of a human brain nerve network; such as learning, recalling, concluding and speculating. 

Contrary to the traditional model-based methods, the ANN is a data-driven and self-adaptive 

method in which there are a few priori assumptions about the models for problems in the study. 

They learn from examples and capture subtle functional relations among the data even if the 

underlying relations are unknown or difficult to be described (Zhang et al. 2009).  

A variety of different neural network models have been developed, among which the 

back-propagation (BP) network is the most widely adopted one. A typical BP neural network 

model is a full-connected neural network including input layer, hidden layer and output layer 

(Yang et al. 2009). The training of the learning process starts when a signal is transmitted from the 

hidden layer to the output layer. The training of a learning process has two phases, a forward 

propagation and backward propagation. Forward propagation is the first phase, which is a positive 

step from the first layer to the last. The weighted value and threshold value of each layer is 

calculated by iteration and passed into the BP three-layer network. The backward propagation is 

the second phase, where the weighted value and threshold values are revised. It is based on the 

impact of total error which is developed by calculating each weight and threshold value from the 

final layer backwards to the first one. These two phases operate repeatedly and alternately until 

they converge. After this training process, the network can “distinguish” and “remember” the raw 

data. When the network is stimulated by actions similar to those previously learnt its output 

section can give corresponding results. Thus, the ANN is well suited for damage identification 

problems whose solutions require knowledge that be difficult to specify and in which there are 
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enough data or observations. 

However, the basic BP algorithm is too slow for practical applications of the damage 

identification. In order to speed up the algorithm and make it more practical, several modifications 

have been proposed by researchers (Basheer and Hajmeer 2000, Song 2000). The research on 

faster algorithm falls roughly into two categories. One involves the development of heuristic 

techniques such as the use of momentum and variable learning rates. The other has focused on 

standard numerical optimization techniques such as the conjugate gradient algorithm and the 

Levenberg-Marquardt algorithm. Among these algorithms, the Levenberg-Marquardt algorithm is 

most rapid for medium networks. So, this paper adoptes the BP network in combination with the 

Levenberg-Marquardt algorithm. 

 

2.3. Outline of multi-stage structural damage diagnosis method 
 

Generally, the ANN can identify the type, location and grade at the same time. However, if the 

structure is complex, the sample amount for training would be excessively large and the training 

time has further to be exceedingly long. Thus, a multi-stage damage detection method is adopted 

here, and the occurrence, location and severe grade of the damage are diagnosed, respectively. The 

multi-stage method based on the WPT and the improved BP network is given as follows: 

Step (1): Decompose the signal of the structural response to be detected to the rational level 

through a trial and error sensitivity analysis using the healthy and damaged structural models. 

Step (2): Extract the signal of the different bands and calculate the wavelet packet component 

energies in each frequency band. 

Step (3): Select the wavelet packet component energy which is significant in actual value and 

damage sensitive to construct the feature vector. 

Step (4): Put the feature vectors constructed into the ANN to diagnose the whether the structure 

is damaged. 

Step (5): Put the feature vectors selected into the ANN to locate the structure damage. 

Step (6): Put the feature vectors selected into the ANN to quantity the structure damage. 

 

 

3. Damage diagnosis for the ASCE benchmark structure 
 

In order to test and compare various damage identification techniques, a benchmark problem 

was proposed by the ASCE task group on health monitoring (Johnson et al. 2004). The benchmark 

structure is a four-story, two-bay by two-bay steel-frame scale model structure built in the 

earthquake engineering research laboratory at the University of British Columbia, Canada. It has a 

2.5 m×2.5 m plan and is 3.6 m tall. Each story is composed of 9 columns of 0.9 m each in height, 

12 beams of 1.25 m each in length, 8 lateral braces, and 4 floor weights. A diagram for the 

analytical model for the benchmark structure is shown in Fig. 2(a), giving dimensions and 

coordinate directions in which the x  direction is the strong direction of the columns. 

Fig. 2(b) illustrates node numbering in the finite element (FE) model of the benchmark 

structure. The columns and floor beams are modeled as the Euler-Bernoulli beams in the FE 

model.  

The braces are bars with no bending stiffness. The FE model, by removing the stiffness of 

various elements, can simulate damage to the structure. The excitations are applied to each floor, 

which are modeled as the filtered Gaussian white noise processes passing through the 6th-order 
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low-pass Butterworth filter with a 100 Hz cutoff, and the sampling frequency is 1000 Hz. The 

response of the structure in y direction at top center (node 41) is selected to analysis. 

 

 

 
 

(a) Diagram of benchmark structure (b) Node and element numbering in FE model 

Fig. 2 ASCE SHM benchmark structure 

 

 
Table 1 Ten damage patterns considered in the benchmark structure study 

Damage pattern Description 

1 All braces are removed in each story 

2 Two braces at the same side are removed in each story 

3 2/3 loss of stiffness on two braces at the same side in each story 

4 1/3 loss of stiffness on two braces at the same side in each story 

5 Two braces at the different sides are removed in each story 

6 2/3 loss of stiffness on two braces at the different sides in each story 

7 1/3 loss of stiffness on two braces at the different sides in each story 

8 One brace are removed in each story 

9 2/3 loss of stiffness on one brace at the different sides in each story 

10 1/3 loss of stiffness on one brace at the different sides in each story 

 

 
3.1. Determining damage of structure 
 

For the excitation of the ambient wind loading in the y direction, the damage of brace in the x  

direction has so little affection on the dynamic response of stories in which only the damage cases 

of the brace in the y direction are considered here. As shown in Table 1, a total of 10 damage 

scenarios are simulated on the structure, which give a mixture of extensive damage patterns by 

involving the loss of stiffness on braces or the removal bracing in various combinations. 

There are many wavelet functions that could form the WP, such as “db”, “haar”, “sym” and 

“coif”. The choice of the WP function for the aforementioned procedure is theoretically arbitrary, 

but it is critical and important in practice, because it affects the performance of the technique. In 

this paper, the Daubechies 6 (db6) WP in the MATLAB Wavelet Toolbox (MathWorks, Natick, 
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MA, USA) was found to perform better by the trial and error. In addition, a sufficiently high level 

of decomposition should be used in order to have sensitive component energies. For this example, 

the decomposition level is set to 6 through the sensitivity analysis, which generate a total of 64 

component energies. As shown in Fig. 3, the first 12 component energies identified by asterisks are 

selected according to their magnitudes to form the feature vector for the neural network. 

The outputs of ANN model have the corresponding information with the damage as follows: 

undamaged pattern (1 0 0 0 0), the damage occurrence on the 1
st
 story (0 1 0 0 0), the damage 

occurrence on the 2
nd

 story (0 0 1 0 0), the damage occurrence on the 3
rd

 story (0 0 0 1 0), and the 

damage occurrence on the 4
th
 story (0 0 0 0 1). Some researchers claim that the network with a 

single hidden layer can approximate any continuous function to any desired accuracy and is 

enough for most forecasting problems (Li and Sun 2003). Thus, a three-layer neural network 

(called ANN model-1) is applied in the damage detection, which can be designed as a 12-nodes 

input layer, a 9-nodes hidden layer and a 5-nodes output layer. The aforementioned 

Levenberg-Marquardt algorithm is adopted to train the network. In computation, its precision had 

reached 10
-7 

when the number of iteration was 64. The 10 patterns produce 60 sample groups, and 

then there are 61 groups together with the undamaged pattern, among them some for training and 

some for testing. The part of the trained results is shown as Table 2. The 8 testing groups are input 

into the ANN model-1 after being trained, and the diagnostic results are illustrated in Table 3. As 

shown in Table 3, the identified precision of the ANN model-1 is very well. The diagnostic results 

of the unknown patterns are correct and the trained periods are short enough to be accepted for the 

on-line monitoring. 

 

 

Fig. 3 WP component energies and its selection result of the ANN model-1 

 
Table 2 Some trained results of ANN model-1 

Sample 

number 

Damage 

story 

Target 

vector 
Trained result 

Error 

(%) 

1 0 1 0 0 0 0 1.0000 -0.0001 0.0000 0.0001 0.0000 0.00 

2 1 0 1 0 0 0 0.0003 1.0000 -0.0001 -0.0000 -0.0002 0.02 

3 2 0 0 1 0 0 0.0001 -0.0001 0.9995 0.0003 0.0001 0.03 

4 3 0 0 0 1 0 -0.0000 -0.0000 -0.0000 1.0000 0.0000 0.00 

5 4 0 0 0 0 1 0.0000 -0.0002 0.0002 0.0002 0.9998 0.02 

6 1 0 1 0 0 0 0.0003 1.0000 -0.0001 -0.0001 -0.0001 0.02 

7 2 0 0 1 0 0 0.0000 0.0004 1.0000 -0.0005 -0.0000 0.03 

8 3 0 0 0 1 0 -0.0000 -0.0001 -0.0001 1.0002 0.0000 0.01 

9 4 0 0 0 0 1 0.0000 -0.0001 0.0000 0.0000 0.9999 0.00 

352



 

 

 

 

 

 

Multi-stage structural damage diagnosis method based on “energy-damage” theory 

Table 3 Diagnostic results of ANN model-1 

Sample 

number 

Diagnostic 

target 
Diagnostic result 

Damage 

story 

Error 

(%) 

Conclusi

on 

1 0 1 0 0 0 0.0004 0.9989 0.0005 0.0007 -0.0006 1 0.07 correct 

2 0 0 0 1 0 -0.0000 -0.0000 -0.0001 1.0002 -0.0001 3 0.01 correct 

3 0 0 0 1 0 0.0001 -0.0002 0.0006 0.9989 0.0006 3 0.06 correct 

4 0 0 0 0 1 0.0000 -0.0003 0.0002 0.0002 0.9998 4 0.02 correct 

5 0 0 0 1 0 -0.0000 -0.0001 -0.0000 1.0001 -0.0000 3 0.00 correct 

6 0 0 0 0 1 -0.0000 0.0001 -0.0001 -0.0001 1.0001 4 0.01 correct 

7 0 1 0 0 0 -0.0008 1.0013 -0.0002 -0.0000 -0.0002 1 0.07 correct 

8 0 0 1 0 0 -0.0000 0.0001 0.9997 -0.0004 0.0002 2 0.03 correct 

 

 

3.2. Quantifying the severity of damage 
 

From section 3.1, one can judge that on which story the damage occurs. Then the damage 

information of that story is further used as the new patterns for the ANN model-2 training. To 

quantify the severity of damage, 6 degrees of the damage are partitioned as Table 4 according to 

the damage patterns aforementioned. 
 

 

Table 4 Six damage degrees partitioned according to the damage pattern 

Code of damage 

degree 

Corresponding damage 

pattern 

Code of ANN model-1 output 

layer 
Damage degree 

d1 Pattern (1) 1 0 0 0 0 0 
extremely 

severe 

d2 Pattern (2), (5) 0 1 0 0 0 0 severe 

d3 Pattern (3), (6) 0 0 1 0 0 0 moderate 

d4 Pattern (8) 0 0 0 1 0 0 generic 

d5 Pattern (4), (7), (9) 0 0 0 0 1 0 minor 

d6 Pattern (10) 0 0 0 0 0 1 slight 

 

 

 

Fig. 4 WP component energies and its selection result of the ANN model-2 

353



 

 

 

 

 

 

Ting-Hua Yi, Hong-Nan Li and Hong-Min Sun 

To take the 3rd story of the benchmark structure for an example, there are totally 16 damaged 

patterns that are divided into two parts: 14 patterns for training and 2 patterns for testing. For the 

new ANN model (called ANN model-2), it is composed of a 10-nodes input layer, a 15-nodes 

hidden layer and a 6-nodes output layer, which is still trained by the Levenberg-Marquardt 

algorithm. Accordingly, the first 10 component energies identified by asterisks in Fig. 4 are 

selected on the base of their magnitude to form the feature vector for the neural network. The 

trained results are demonstrated as Table 5. Two testing patterns are then input into the ANN 

model-2 after being trained, and the diagnostic results are listed in Table 6. It can be found from 

Table 6 that the well-trained ANN model-2 can make the correct diagnosis extended to the other 

unknown patterns. 

 

 
Table 5 Trained results of ANN model-2 

Sample 

number 

Code of 

damage 

degree 

Target 

vector 
Trained result 

Error 

(%) 

1 d1 1 0 0 0 0 0 1.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.00 

2 d2 0 1 0 0 0 0 0.0001 1.0002 0.0002 -0.0003 -0.0001 0.0001 0.02 

3 d2 0 1 0 0 0 0 -0.0001 0.9998 -0.0002 0.0003 0.0001 -0.0001 0.02 

4 d5 0 0 0 0 1 0 -0.0001 0.0000 -0.0002 -0.0002 1.0000 0.0003 0.02 

5 d5 0 0 0 0 1 0 -0.0001 0.0000 -0.0002 -0.0001 0.9998 0.0004 0.02 

6 d3 0 0 1 0 0 0 0.0001 -0.0005 0.9997 0.0003 -0.0003 0.0008 0.05 

7 d3 0 0 1 0 0 0 -0.0000 -0.0000 0.9999 -0.0000 0.0000 0.0001 0.01 

8 d5 0 0 0 0 1 0 -0.0001 0.0000 -0.0002 -0.0001 0.9998 0.0004 0.02 

9 d3 0 0 1 0 0 0 -0.0001 0.0005 1.0004 -0.0003 0.0003 -0.0009 0.05 

10 d4 0 0 0 1 0 0 0.0001 -0.0001 -0.0000 0.9999 0.0001 -0.0000 0.02 

11 d4 0 0 0 1 0 0 -0.0001 0.0001 0.0000 1.0001 -0.0001 0.0000 0.01 

12 d6 0 0 0 0 0 1 -0.0000 -0.0000 0.0000 -0.0000 0.0010 0.9991 0.06 

13 d6 0 0 0 0 0 1 -0.0000 0.0000 -0.0000 0.0000 -0.0006 1.0006 0.04 

14 d5 0 0 0 0 1 0 0.0002 -0.0001 0.0005 0.0004 1.0003 -0.0011 0.06 

 

 

Table 6 Diagnostic results of ANN model-2 

Sample 

number 

Diagnostic  

target 
Diagnostic result 

Code of 

damage 

degree 

Error  

(%) 
Conclusion 

1 0 0 1 0 0 0 0.0002 -0.0005 0.9998 0.0004 -0.0004 0.0007 d3 0.05 Correct 

2 0 0 0 0 1 0 0.0003 -0.0001 0.0005 0.0005 1.0003 -0.0011 d5 0.06 Correct 

 

 

3.3. Locating the damage 
 

According to the diagnosis process described in section 3.1 and 3.2, one can judge that on 

which story the damage occurs and what the damage severity is. However, the aforementioned 

process cannot determine the specific damage location. For instance, in Fig. 5 the damage in the 

first story may occur at the negative or positive direction of x  axis or at both two sides. To 

estimate that at which side the damage occurs, the accelerations are selected in the y direction of 
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nodes 13 and 15 as the signals to be analyzed. There are 16 damage patterns, in which the 2 

patterns are chosen for testing and the remains are input into the ANN model-3 for training. The 

designed ANN model-3 consists of a 16-node input layer, a 15-node hidden layer and a 2-node 

output layer, which is trained by the Levenberg-Marquardt algorithm too. The WP component 

energies and its selection result of the ANN model-3 is demonstrated in Fig. 6. The trained results 

are listed in Table 7. And two testing patterns are put into the ANN model-3 after being trained; the 

detection results are shown in Table 8. The results in the Tables 7 and 8 indicate that the errors of 

diagnosis results are relatively big compared to the trained results. Yet, such errors can indeed 

satisfy the need for the practical engineering. 

 

 

 

Fig. 5 Damaged braces in the first story of the structure 

 

 

 

Fig. 6 WP component energies and its selection result of the ANN model-3 

 

 
 

355



 

 

 

 

 

 

Ting-Hua Yi, Hong-Nan Li and Hong-Min Sun 

Table 7 Trained results of ANN model-3 

Sample number Target vector Damage location in x  axis Trained result 
Error 

(%) 

1 1  0 “-” 1.0000 0.0000 0.00 

2 0  1 “+” 0.0000 1.0000 0.00 

3 1  0 “-” 1.0000 0.0000 0.00 

4 0  1 “+” -0.0000 1.0000 0.00 

5 1  1 “+”, “-” 1.0000 1.0000 0.00 

6 0  1 “+” 0.0000 1.0000 0.00 

7 1  0 “-” 1.0000 -0.0000 0.00 

8 0  1 “+” -0.0002 1.0000 0.01 

9 1  0 “-” 1.0000 -0.0000 0.00 

10 0  1 “+” 0.0000 1.0000 0.00 

11 1  0 “-” 1.0000 -0.0000 0.00 

12 1  1 “+”, “-” 0.9987 1.0000 0.09 

13 1  1 “+”, “-” 1.0000 1.0000 0.00 

 

 

Table 8 Diagnostic results of ANN model-3 

Sample 

number 

Diagnostic 

target 
Diagnostic result 

Damage location in x  

axis 
Error (%) Conclusion 

1 1   0 0.9989 -0.0000 “-” 0.08 Correct 

2 0   1 0.0239 1.0000 “+” 1.69 Correct 

 

 

3.4. Network generalization ability test 
 
After the ANNs are trained successfully, all domain knowledge extracted out from the existing 

samples is stored as digital forms in weights associated with each connection between neurons. 

Although the verified results in Tables 3, 6 and 8 show that the well-trained network models take 

on optimal generalization performance, these validation data sets have the same damage patterns 

to training data sets. Thus, it is worth paying attention to evaluate whether there is a big difference 

between the output and target value when using totally different testing set obtained from other 

damage patterns, which represent the generalization capability of these BP models for decision 

making. Here, 1/5, 2/5, 3/5 and 4/5 loss of stiffness on the lateral brace were simulated to generate 

20 new testing sets. 

The generalization ability test results of ANN model-1 are shown in Table 9. It can be easily 

found that except sample numbers 1, 5, 9 and 17, the differences between the diagnostic and target 

value are less than 0.5% that means the ANN model-1 has good generalization capability. 

The results in Table 10 indicate that there are differences between the targets and the diagnosis 

results for the ANN model-2. These are caused by the fact that only 6 degrees of the damage are 

partitioned, i.e., the damage pattern divided too rough. However, for an actual project, it is 

impossible to finely divide all of the damage levels. Thus, the generalization performance of the 

trained network can be thought to be good if the damage level could be diagnosed in relatively 

accurate. The results in Tab.11 indicate that except sample 2 the errors of the diagnosis results are 

relatively small compared to the targets. 
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Table 9 Generalization ability test results of ANN model-1 

Sample 

number 

Diagnostic 

target 
Diagnostic result 

Damage 

story 

Error 

(%) 
Conclusion 

1 0 1 0 0 0 0.0678 0.9241 0.0003 0.0064 0.0013 1 4.56 Correct 

2 0 1 0 0 0 0.0002 0.9995 0.0006 -0.000 -0.0001 1 0.04 Correct 

3 0 1 0 0 0 -0.0030 1.0039 0.0002 -0.0010 -0.0001 1 0.22 Correct 

4 0 1 0 0 0 0.0002 1.0001 -0.0001 0.0001 -0.0002 1 0.01 Correct 

5 0 0 1 0 0 0.0392 0.1050 0.8506 0.0021 0.0030 2 8.35 Correct 

6 0 0 1 0 0 -0.0000 -0.0003 1.0001 -0.0001 0.0002 2 0.02 Correct 

7 0 0 1 0 0 -0.0004 0.0008 0.9997 0.0002 -0.0002 2 0.04 Correct 

8 0 0 1 0 0 -0.0000 0.0001 1.0002 -0.0001 -0.0002 2 0.01 Correct 

9 0 0 0 1 0 0.1468 -0.0410 -0.0017 0.9120 -0.0161 3 7.90 Correct 

10 0 0 0 1 0 -0.0020 -0.0016 0.0006 1.0012 0.0017 3 0.15 Correct 

11 0 0 0 1 0 -0.0004 -0.0005 0.0001 1.0005 0.0004 3 0.04 Correct 

12 0 0 0 1 0 -0.0000 0.0003 -0.0001 1.0001 -0.0003 3 0.02 Correct 

13 0 0 0 1 0 -0.0020 -0.0014 0.0006 1.0012 0.0016 3 0.14 Correct 

14 0 0 0 1 0 -0.0001 0.0003 -0.0001 1.0002 -0.0003 3 0.02 Correct 

15 0 0 0 1 0 0.0001 0.0001 -0.0001 0.9999 -0.0001 3 0.01 Correct 

16 0 0 0 1 0 0.0002 0.0001 -0.0001 0.9999 -0.0001 3 0.01 Correct 

17 0 0 0 0 1 0.0689 0.2577 -0.0000 0.0052 0.6683 4 19.04 Correct 

18 0 0 0 0 1 0.0000 0.0000 -0.0001 0.0000 1.0000 4 0.00 Correct 

19 0 0 0 0 1 -0.0005 -0.0017 0.0002 -0.0001 1.0021 4 0.12 Correct 

20 0 0 0 0 1 0.0000 0.0001 -0.0001 0.0000 0.9999 4 0.01 Correct 

 

Table 10 Generalization ability test results of ANN model-2 

Sample 

number 

Diagnostic 

target 
Diagnostic result 

Damage 

degree 

Error 

(%) 
Conclusion 

82-1/5 0 0 0 0 0 1 -0.0015 0.0006 -0.0016 -0.0005 -0.1167 1.1187 d6 6.80 Correct 

82-2/5 0 0 0 0 1 0 -0.0001 0.0001 -0.0005 0.0000 0.3426 0.6578 d6 19.8 Correct 

82-3/5 0 0 0 0 1 0 -0.0004 0.0002 -0.0009 -0.0002 0.9957 0.0052 d5 0.28 Correct 

82-4/5 0 0 0 0 1 0 0.0299 -0.0179 -0.0613 0.1897 0.9025 -0.0112 d5 9.18 Correct 

8283-1/5 0 0 0 0 0 1 -0.0001 0.0000 -0.0004 0.0000 0.2726 0.7276 d6 15.73 Correct 

8283-2/5 0 0 0 0 1 0 0.0091 -0.0054 -0.0102 0.0487 0.9724 -0.0049 d5 2.37 Correct 

8283-3/5 0 0 1 0 0 0 -0.0343 0.0204 0.8489 0.1007 0.0170 0.0109 d3 7.63 Correct 

8283-4/5 0 0 1 0 0 0 0.0073 -0.0059 1.0212 -0.0102 -0.0045 -0.0000 d3 1.05 Correct 

 

 

Table 11 Generalization ability test results of ANN model-3 

Sample 

number 
Diagnostic target Diagnostic result 

Damage location 

in x  axis 
Error (%) Conclusion 

1 1   0 1.0000 0.0000 “-” 0.00 Correct 

2 1   0 1.0000 0.1876 “-” 13.27 Correct 

3 0   1 -0.0000 1.0000 “+” 0.00 Correct 

4 0   1 0.0129 1.0001 “+” 0.91 Correct 

5 1   0 1.0000 0.0000 “-” 0.00 Correct 

6 1   0 1.0000 0.0009 “-” 0.06 Correct 

7 0   1 -0.0000 1.0000 “+” 0.00 Correct 

8 0   1 -0.0000 1.0000 “+” 0.00 Correct 
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Table 12 Anti-noise performance test results 

Damage 

sample 

Diagnostic 

target 

Noise 

level 
Diagnostic result 

Error 

(%) 

Brace 28 and 

29 in first 

story are 

removed 

0 1 0 0 0 

10% 0.0004 0.9989 0.0005 0.0007 -0.0006 0.07 

15% 0.0001 1.0018 -0.0012 0.0002 -0.0009 0.10 

20% -0.0001 1.0074 -0.0020 0.0011 -0.0064 0.45 

Brace 86 in 

third story is 

removed 

0 0 0 1 0 

10% -0.0000 -0.0000 -0.0001 1.0002 -0.0001 0.01 

15% 0.0001 -0.0018 -0.0001 0.9999 0.0019 0.12 

20% 0.0001 -0.0110 -0.0001 0.9999 0.0111 0.70 

1/3 loss of 

stiffness on 

brace 116 at 

the fourth 

story 

0 0 0 0 1 

10% 0.0000 -0.0003 0.0002 0.0002 0.9998 0.02 

15% 0.0008 -0.0045 0.0004 -0.0014 1.0016 0.22 

20% 0.0010 0.0039 -0.0007 -0.0008 0.9966 0.24 

2/3 loss of 

stiffness on 

brace 87 at the 

third story 

0 0 0 1 0 

10% -0.0000 -0.0001 -0.0000 1.0001 -0.0000 0.00 

15% -0.0002 -0.0018 -0.0001 1.0002 0.0018 0.11 

20% -0.0012 -0.0075 -0.0003 1.0005 0.0086 0.51 

2/3 loss of 

stiffness on 

brace 116 at 

the fourth 

story 

0 0 0 0 1 

10% -0.0000 0.0001 -0.0001 -0.0001 1.0001 0.01 

15% 0.0001 -0.0001 0.0000 -0.0001 1.0001 0.01 

20% 0.0001 -0.0001 -0.0001 0.0000 1.0001 0.01 

1/3 loss of 

stiffness on 

brace 28 and 

29 at the first 

story 

0 1 0 0 0 

10% -0.0008 1.0013 -0.0002 -0.0000 -0.0002 0.07 

15% 0.0014 1.0047 -0.0040 0.0002 -0.0023 0.30 

20% 0.0004 1.0178 -0.0098 0.0060 -0.0145 1.15 

2/3 loss of 

stiffness on 

brace 57 and 

58 at the 

second story 

0 0 1 0 0 

10% -0.0000 0.0001 0.9997 -0.0004 0.0005 0.03 

15% -0.0000 -0.0007 1.0002 -0.0001 0.0006 0.04 

20% 0.0000 -0.0035 1.0001 -0.0001 0.0035 0.22 

 

 

3.5. Network anti-noise performance test 
 
As known, the noise embedded in measured signals, sometimes even very heavy, disturbs the 

reliability and accuracy of measurements, and thus places a fundamental limit on the detection of 

small damages. Therefore, the anti-noise performance of the network should be tested carefully.  

The measurement noise is introduced in the structural responses to discuss the effect of the 

noise on the damage diagnosis. The noise level is determined by the percentage of the maximum 

root-mean-square of top responses. Here, the data of 10% noise is used for network training, and 

three groups of test samples (each has 7 samples) with 10%, 15% and 20% noises are used for 

testing the network anti-noise performance. The comparisons of the diagnostic errors are shown in 

Table 12 and the comparison curves are shown in Fig. 7. From Table 12 and Fig. 7, it can be seen 
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that with the increase of noise levels, the network diagnostic errors increase. However, even at the 

20% noise level, the error is no more than 2%, which fully satisfies the engineering requirement. 

Thereby, the method can produce correct results under conditions of heavy noise, which is an 

effective method for damage diagnosis. 

 

 

 

Fig. 7 Diagnostic error of the network under different noise levels 

 

 

4. Conclusions 

 
Despite vibration-based structural damage detection methods have attracted considerable 

attention over the past decade, robust and reliable methods capable of detecting, locating and 

estimating damage whilst being insensitive to changes in environmental and operating conditions 

have yet to be agreed upon. This paper investigated the multi-stage structural damage diagnosis 

method for the steel frame structure. Based on the numerical results, the following observations 

can be obtained: 

(1) It is unrealistic that a single technique would be capable of detecting damage of different 

degrees and types. The WPT-based feature extraction procedure could obtain useful information 

for the damage assessment and ANN is well suited for the damage identification with the 

reasonable accuracy which does not seem to be affected by presence of measurement noise. The 

combined use of the WPT and ANN model is promising for the damage diagnosis of structures. 

(2) The multi-stage structural damage diagnosis method has been used to classify minor, 

moderate and severe structure damage patterns using a benchmark structure proposed by the 

ASCE SHM Task Group. The results are very encouraging. Regardless of minor, moderate or 

severe stiffness reductions, most of the damages identified by trained ANNs are very close to the 

true values. 

(3) The preliminary damage detection procedure summarized in this paper is not 
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time-consuming which may be on-line applied in the in-situ condition if the off-line analysis of the 

component energy and training of the ANN model have been finished. 
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