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Abstract.  Environmental and operational variables are inevitable concerns by researchers and engineers 
when implementing the damage detection algorithm in practical projects, because the change of structural 
behavior could be masked by the conditions in a large extent. Thus, reliable damage detection methods 
should have a virtue of immunity from environmental and operational variables. In this paper, the pair 
cointegration method was presented as a novel way to remove the effect of environmental variables. At the 
beginning, the concept and procedure of this approach were introduced, and then the theoretical formulation 
and numerical simulations were put forward to illustrate the feasibility. The jump exceeding the control limit 
in the residual indicates the occurrence of damage, while the direction and magnitude imply the most 
potential damage location. In addition, the simulation results show that the proposed method has strong 
ability to resist the noise. 
 

Keywords:  structural health monitoring; damage detection; environmental variable; pair cointegration; 

time series; data-based model 

 
 
1. Introduction 
 

Advanced technologies in sensors, communication, data acquisition and processing have made 

it possible to implement continuous structural health monitoring (SHM) system, which could 

guide the damage detection, state evaluation and conditional maintenance of large-scale structures. 

The core of a SHM system is the diagnostic algorithms for detection of the presence, location and 

extent of the damage. However, development of SHM in civil engineering is constrained heavily 

by the poor performance of damage detection methods applied in the practical project. 

Up to date, considerable research efforts have been made in order to enhance the validity of 

damage detection, in which the vibration-based damage identification techniques have shown to be 

the most promising methods (Doebling et al. 1998, Fan and Qiao, 2011). But many serious 

challenges still stand when applied to real structures, for it is often impractical to excite full scale 

structures in a controlled way, and natural frequencies are inherently insensitive to local damages. 

Besides the problems aforementioned, mode shapes are easily spoiled by various sources of 

environmental and operational noise. There are also some alternative fingerprints to aid the 

                                                      
Corresponding author, Professor, E-mail: hnli@dlut.edu.cn 



 

 

 

 

 

 

Cui Zhou, Hong-Nan Li, Dong-Sheng Li, You-Xin Lin and Ting-Hua Yi 

damage detection, such as the static displacement, which is immune to the local disturbance and 

easily accessible via high-resolution instruments. The measurement of displacements has become 

an indispensable component of SHM systems (Ghrib et al. 2012), especially for large-span 

structures. Wang et al. (2012) proposed Symmetrical Displacement Difference Index to identify 

the damage in bridges using static displacements. Lee and Eun (2008) utilized the displacement 

curvature to locate successfully a simple cantilever beam. Dewangan (2011) presented a 

row-echelon form of matrix based static displacement and force data, which was able to predict the 

damage existence in the structure with only few measurements. 

Like the fundamental frequencies, the drawback of the displacement is also weak resistance to 

the variation induced by environmental and operational conditions, especially the dominant 

temperature. Based on a field test, Moorty and Roeder (1992) reported that the bridge deck showed 

a significant expansion as temperature increased from both the analytical model and the measured 

values. Doebling and Farrar (1997) revealed that the first mode frequency of the Alamosa Canyon 

Bridge varied about 5% during one day. Askegaard and Mossing (1988) recorded approximately 

10% seasonal changes for a three-span RC footbridge. Kim et al. (2003) published that the 

measured natural frequencies of a 46 m long simply supported plate girder bridge decreased up to 

5.4% as a result of heavy traffic. For more detailed information, please refer to Sohn (2007). 

In the continuous SHM system, structural static response signal increment can be roughly 

expressed as 

 T P C D RS S S S S S       (1) 

where ST 
is the temperature effect, 

PS is the load effect, 
CS is the concrete shrinkage and creep 

effect, 
DS is the structural damage effect and 

RS is the system test error. It is clear that the 

structural response signal increment is the superposition of multiple effects. 

Many features extracted from displacements for their sensitivity to damage are also sensitive to 

changes caused in the structure by environmental and operational conditions, resulting in the 

damage information indecipherable. It can be inferred that the aforementioned displacement-based 

methods would be hassled by the problem of environmental variability. For practical application, it 

becomes an imperative task to divorce the effect of environment and live load from that caused by 

damage. Several methods have been proposed to divorce the environmental and operational 

variables from the damage indices. Peeters et al. (2000) used the ARX model to filter out the 

temperature effects from the measured frequencies. Fritzen et al. (2003) modified an existing 

subspace-based identification method for temperature compensation. Sohn (2007) made a 

comprehensive review on removing the environmental and operational variables from the 

identified eigenfrequencies. Figueiredo et al. (2010) compared four machine learning methods, 

including auto-associative neural network, factor analysis, Mahalanobis distance, and singular 

value decomposition, to detect the structural damage in the presence of operational and 

environmental variables. Loh et al. (2011) combined the singular spectrum analysis with the auto 

regressive model to form a damage identification algorithm based on the continuous monitoring of 

the dam static deformation. Zhou et al. (2011) presented a back-propagation neural network-based 

method for elimination the temperature effect in vibration-based structural damage alarm. 

In current work, the pair cointegration approach is suggested as a suitable methodology for 

exploring the damage trace from the noise time series polluted by environmental and operational 

variables. This original idea has been applied by Chen et al. (2009) in statistical process control 

and by Cross et al. (2010) in removal of environmental trends from the identified eigenfrequencies 
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series, but they only addressed the simplest level of damage identification, i.e., whether damage is 

present or not. Here, this method will be extended to localize the damage using 

temperature-dependent displacement time series. After purging the influence of temperature by the 

pair cointegraiton of neighbored displacement series, the up and low control limit of the residue 

will be set up through the statistical analysis, and thereafter the early warning could be determined 

in the online SHM system. 

 

 
2. Fundamental of cointegration 

 
2.1 Outline 

 
Engle and Granger (1987) first introduced the concept of cointegration method, and it has 

become an indispensable step in the analysis of non-stationary time series in econometrics. The 

underlying idea is that even if two variables or more are non-stationary, there can be a combination 

of them to create a new stationary one. This definition leads to an interesting interpretation as the 

variables can then be represented to have a stable relationship known as a long-term equilibrium, 

that is, they share common stochastic trend. 

If a non-stationary process variable Y becomes stationary after differencing d times, it is said to 

be integrated of order d, denoted as  Y I d  (Box et al. 1994), Engle and Granger considered a 

set of d-integrated non-stationary variables,  T n

1 2  , ,..., nY Y Y Y R , that holds a long-term 

dynamic equilibrium if and only if 

 1 1 2 2 n nY Y Y        (2) 

where  R  is the residual sequence and  T n

1 2 n  , , ,   β R is a cointegrating vector.  

If the equilibrium is to describe the long-term relationship between the non-stationary variables, 

then the residual sequence must be stationary, i.e., integrated of order 0, (0)I . Therefore, 

cointegration modeling targets to identify coefficient vectors such that the residual sequence 

becomes stationary.  

There are generally two steps to find the coefficient vectors. First, ascertain the order of 

integration of the time series, because cointegration tests only work when the non-stationary 

variables stay in the same order of integration. For this procedure, unit root test, specifically the 

augmented Dickey-Fuller (ADF), is employed. Once the variables are integrated to the same order, 

it is ready to find out the cointegrating vector. According to the test object, there are two types of 

cointegration tests: one is based on the regression residual, such as the EG test and CRDW test 

(Gao 2009), and another is based upon the regression factor, such as the Johansen test. The 

Johansen test will be used here, owing to its increased sophistication. 

 

2.2 Augmented dickey-fuller test 

 
The unit root test is integrated with the Augmented Dickey-Fuller test (Dickey and Fuller 1979). 

If a time series has a unit root, it will be non-stationary. It is clearly expressed by the 

autoregressive model AR(1). 
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 -1 , , , , ,t t tY   Y   e t = 1 2 3 ... n   (3) 

where   is a real number, and  te  represents a sequence of independent normal random 

variables with mean zero and variance 2σ . The time series tY  converges to a stationary time 

series if 1  . When 1  , the time series develops into non-stationarity. As for 1  , the 

time series is not stationary and the variance of the time series grows exponentially. The 

hypothesis that 1   is of some interest in the application, because it corresponds to the 

hypothesis that it is appropriate to transform the time series by differencing (Dickey and Fuller 

1981). 

In more general case, consider AR(p) model 

 1 -1 2 -2 -t t t p t p tY   Y  Y Y  e          (4) 

Eq. (4) subtracts -1tY
 

from both sides. With the method of adding and deleting terms, get 

 
-1

-1 -

1

 
p

t t i t i t

i

Y   Y  Y  e 


      (5) 

where 

 
1

1
p

i

i

 


      
1

p

i j

j i

 
 

   (6) 

After calculating the parameters in the model, the null hypothesis of the ADF test includes 

0: 0H   , 1: 0H   . 

Assuming that 0H
 

be accepted then tY  has a unit root, and tY
 
is a stationary sequence, i.e., 

tY
 

is an (1)I  non-stationary sequence. If 0H is rejected, keep on testing tY . If it is accepted 

then, tY  represents an (2)I  non-stationary sequence. If 0H
 
is rejected again, repeat the test for 

3d  , etc. until 0H
 
is accepted. 

The ADF test procedure is, therefore, to estimate the parameters in Eq. (5) by the least-square 

methods and then test the null hypothesis 0  . The test statistic term is 

 
ˆ

t







 
(7) 

where ̂  
is the least-square estimate of  , and 

  is its standard deviation, which should be 

evaluated and compared with the critical values from Dickey–Fuller (DF) tables (Fuller 1996).  

Additional hypotheses and test statistics are needed if the model is extended to include intercept 

or trends (or both). For the extended time series form 

 
-1

1 1

1

 
p

t t i t t

i

Y   Y  Y t  e    



        (8) 

The null hypothesis for the time series to be (1)I  should be extended to include 0, 0   . 

More details for these specific cases can be found in Ref. (Fuller 1996). 

Having ascertained the order of non-stationarity of each process variable of interest, an attempt 
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to build a stationary residual through combination of those variables integrated to the same order 

becomes easy to implement. The Johansen procedure is outlined below for this purpose. 

 

2.3 Johansen test 

 
Johansen and Juselius proposed a cointegration test based on the vector auto-regression (VAR) 

which represents a multivariate AR time series model (Johansen and Juselius 1990). The test is 

only applicable to a set of non-stationary variables integrated of (1)I . In that case, it can be found 

that the independent cointegrating vectors create the most stationary linear combination. In general, 

a cointegration model of N non-stationary variables is given by the following linear combination 

 
Tε β Y

 (9) 

where T
β Y  could be interpreted as the “equilibrium” of a dynamic system, and ε  as the vector 

of “equilibrium errors”. 

Consider the VAR(p) model of order p 

 
-

1

    
p

t i t i t

i

 Y ΦY e  
(10) 

where Φ  is the parameter matrix of the multivariate AR model. A vector error correction model 

(VECM) can be obtained by subtracting 1tY  from both side of Eq. (10) 

 
-1

-1 -

1

 +  
p

t t i t i t

i

 


   Y ΠY Γ Y e  (11) 

where 

 
1 1

,
p p

i i i

i j i  

    Π Φ I Γ Φ  (12) 

Through differencing procedure, the variables 
- , ( 1,2, , )t t i i p  Y Y

 
in Eq. (11) are variables 

of (0)I , so only if 
-1tΠY are variables of (0)I , each variables in 

-1tY are cointegration and 
tY  is 

stationary. Whether variables in 
-1tΠY  are cointegration, it mainly depends on the rank of Π . 

There are three possible cases: 

(1) Rank( Π )=n, i.e., the matrix Π  has a full rank, implying that 
tY  is stationary. 

(2) Rank( Π )=0, i.e., the matrix Π is a null matrix and Eq. (11) corresponds to a traditional 

differenced equation. 

(3) 0< Rank( Π )= r < n, indicating that there are n r matrices α  and β to satisfy 
TΠ αβ . 

We can write Eq. (11) in the following form: 
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1

T

-1 -

1

  +  
p

t t i t i t

i





   Y αβ Y Γ Y e  (13) 

The residual vector 
1tε  

can be obtained as follows 

 
1

T 1 T

1

1

( ) (  )
p

t t i t i t

i




 



    ε α α α Y Γ Y e  (14) 

Eq. (14) indicates that 
1tε  

is integrated of (0)I , i.e., stationary sequences. Thus, the linear 

combination of T

1tβ Y  is (0)I , and the column vectors of β
 
are cointegrating vector matrix, 

and r is the number of cointegrating vectors.  

The keystone of Johansen procedure is to change the cointegration test of 
tY  to that of the 

matrix Π . The rank of the matrix Π  is equal to the number of its non-zero eigenvalues; 

therefore, the cointegration test can estimate the number of the non-zero eigenvalues. 

Assuming that the eigenvalues of matrix Π  are 
1 2 0r       in desceding order, then r 

cointegration vectors could be obtained, and the other n  k non-cointegration combination, i.e., 

1, ,r k 
, should be zero. It is called the trace test. The null and alternative hypotheses are 

 
0rH :

1 0r    

1rH :
1 0r   , 0,1, , 1r n   

(15) 

The corresponding test statistic is 

 
1

ln(1 ),
n

r i

i r

T 
 

   0,1, , 1r n   (16) 

where 
r is called eigenvalue trace statistic. Test the significance of these statistic: when 

0  is 

not significant (i.e., 
0  is smaller than the critical value of Johansen distribution at some 

significant level) and 
00H  is accepted, indicating that n unit roots and non-cointegrating vector. 

Otherwise, 
0  is significant and 

00H  is rejected, revealing that there are at least one 

cointegrating vector and the continued significant test of 
1 should be proceeded. 

 

 

3. Theoretical formulation 
 

In the current section, a theoretical formulation is provided to illustrate how the proposed pair 

cointegration method works, i.e., not only to identify the existence of the damage, but also to 

localize the damage through the pair-cointegration of neighbored displacements. A hinged-hinged 

beam was used to demonstrate for simplicity. 

The time-invariant analytical model of a both-ends hinged uniform beam is shown in Fig. 1. 

Assuming that the beam be loaded by a concentrated force P, and a crack exists at point j on the 

left side. The deflection of the overall beam before and after damage (Li 2009) can be expressed as 
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2 6 ( )1 3
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j jx L xL
x x L

L

 
     

(18) 

where ( )uD x  and ( )dD x  are the deflections in the undamaged and damaged case; L is the total 

length of the beam; 
jx  is the location of damage, and   is the additional flexibility coefficient 

that describes the damage degree; ( )U x  indicates the unit step function, showing discontinuity at 

jx , defined as ( ) 0jU x x   for jx x , ( ) 1jU x x   for jx x . 

 

 

 

Fig. 1 A hinged-hinged supported beam 

 

 

For pair cointegration method, the feature we truly care is that the displacements of adjacent 

positions. Assume that 
iD
 

and 
1iD 

 are the static displacements at adjacent points i, i+1 

respectively, which is called cointegration pair (CP) for convenience. Then, the pair cointegration 

residual is constructed by 

 1, 1,2i i i i ia D b D i     (19) 

where ai and bi are the cointegration coefficients. Once ai and bi are determined, the damage could 

be identified through the relative change of 
i . It is true that , 1u iD   is greater than ,u iD  for the 

left half span. In this condition, assuming 0ia  , 0ib   and i ia b , i.e., the smaller 

displacement corresponds to negative and absolute large number. It is reasonable that only in this 

way can the residual be near zero. 

When the damage arises, the displacement change is 
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( )

[ ( ) ( ) ],0
2 2

j j

d u j j j

x x L xP L
D D D x x x U x x x

EI L





           (20) 

From Eq. (20), D  increases with the augmentation of x  when 
jx x ; while 

jx x , 
tD  

decreases with the augmentation of x . 

The jump series can be described as 

 i 1+i i i ia D b D      (21) 

then the problem will be separated into three conditions. Firstly, if the damage is located at the 

right side of both sensors, mathematically 1j ix x  , 
i  will be a distinct positive number; 

secondly, the damage lies between the sensors, i.e., 
1i j ix x x   , 

i  might stay stationary or an 

undistinguishable positive or negative jump; in the last case, when j ix x , 
i will be a distinct 

negative number. In addition, the closer to the damage, the more significant the amplitude of the 

jump becomes, which is also a feature to help the diagnosis. 

In conclusion, CP residuals of two neighbored displacements sharing common trend is able to 

capture the existence of damage simply by a jump in the time series. In order to locate the damage, 

a distributed measuring scheme should be employed; then the opposite jump appearing in the 

residuals will indicate the location of damage, and the location on which the direction shift appears 

firstly is the most potential damaged area. For simplicity, the pair cointegration method is 

illustrated for hinged-hinged beam theoretically, but this method is not confined to this kind of 

structure; for whatever type the structure is, the neighbored displacements will always show a 

close correlation, which is the principle the pair cointegration algorithm adopts. 

As illustrated in Eq. (1), the static displacement, which possesses nonlinear characteristics 

inherently, results from very complicated factors, including the possible damage. In order to 

eliminate all the influence except the damage, the pair cointegration is employed to identify the 

existence of damage, and to indicate the position where the damage located as well. The main 

procedures are summarized as follows: 

(1) To achieve the feasibility of the monitoring of non-stationary process, training data sets that 

comprise multiple effects are employed to build the VAR models. These data sets as the reference 

should be sampled under the normal operation conditions.  

(2) To further in the analysis, these monitored data sets are tested by an ADF test to ascertain 

whether they are of the same order of non-stationarity. Specially, each data set should be integrated 

order one in order to exert the Johansen procedure. It should be noted that most of SHM data 

satisfy this requirement (Cross et al. 2011). Especially for static displacement, it is inherently 

integrated order one, for the difference of displacement is structural velocity response which is a 

stationary series. 

(3) When each data set meets the qualification, the Johansen procedure is applied to the 

monitored data to identify the cointegrating vectors. The eigenvector associated with the largest 

eigenvalue commonly have the best description of the equilibrium relationship, so that it is 

adopted as the coefficients that combine the data set. 

(4) The residual sequence should be a stationary process if the model acts out the long-term 

equilibrium in normal condition. In the case of on-line monitoring, the dynamic equilibrium is 

distorted and do not recover when a disturbance (damage) is occurred. A jump would occur in the 

residual sequence, and this position indicates the instance when damage occurs. 
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4. Numerical simulation 

In order to illustrate the feasibility of the proposed pair cointegration algorithm for damage 

detection under varying environmental conditions, a numerical model of a prestressed concrete 

beam is established using the commercial finite element software ANSYS. Half span of the beam 

is depicted in Fig. 2 due to its symmetry. 
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Fig. 2 Prestressed concrete model (units: mm) 

 
 

The parameters of the beam are as follows: the area, density, and stretching force of the 

prestressed tendon are 139 mm
2
, 7921 kg/m

3
 and 180 kN, respectively; the density of the concrete 

is 2300 kg/m
3
. Both ends of the beam are constrained by pin joints. The relationships of the elastic 

modulus of concrete and prestressed tendon versus temperature are shown in Fig. 3 (Yan et al. 

2005). The concrete is simulated by the concrete element SOLID65, and the prestressed tendon is 

modeled as LINK8. Totally, there are 1798 elements and 2520 nodes. 
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Fig. 3 Temperature-dependent elastic modulus 
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Fig. 4 Temperature history series (Jan. 1,2011-Jan. 31,2012) 

 
The temperature dominates the variation of structural behavior via directly affecting the 

stiffness of a structure, although it can additionally change the boundary conditions of a structure, 

if foundations, etc. become frozen (Cross et al. 2011). In the numerical simulation, the effect of 

temperature is only considered on displacements calculated by static analysis. Two real 

temperature history series (shown in Fig. 4) are selected in the analysis: one is the temperature of 

Los Angeles (T-LA) from Jan. 1, 2011 to Jan. 31, 2012 recorded by a weather station near Los 

Angeles once per two hours; the other is a similar one in Beijing (T-BJ). The 

temperature-dependent elastic modulus of concrete exhibits distinct attributes below and up zero, 

as shown in Fig. 3(a), which is an important factor causing the nonlinearity. It is for this reason 

that these temperature series, ranging from 4°C to 31.7°C and from 15°C to 36°C, are applied. 

In the next part, we will show that our cointegration method performs well in spite of the 

nonlinearity. In addition to the uniform distributed temperature on the structural section, the 

temperature gradient case is also considered in the model shown in Fig. 2, in which T0 represented 

the recorded temperature series, and two linear gradients are assumed, a similar type as 

recommended by the concrete code (2006). Two temperature series and two kinds of temperature 

modes are combined to four situations with test the proposed method. 
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Note: For better display, the second and third mode frequencies are translated. 
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Two damage cases simulated by killing the element (Fig. 2) are introduced. In damage case 1, 

the size of the element deactivated is 5 cm×5 cm×15 cm, while 5 cm×7 cm×15 cm for damage 

case 2. The displacements of sensor locations were extracted for the undamaged and damaged 

states in the computation. The training set was conducted from Jan. 1, 2011 to Dec. 31, 2011, 

containing 4380 samples. Damage was introduced on Jan. 1, 2012 and other 372 data points were 

recorded. 

To better illustrate the environmental effect, the following pictures describe the change of the 

natural frequencies (Fig. 5) and displacements (Fig. 6) with the temperature. The nonstationary 

properties exhibit clearly, and the variation caused by the environmental factors would submerge 

the change due to the damage. 
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Fig. 6 Time varying displacements and their difference 

Note: the second point’s displacement is translated by 1.5 mm. 

 

 

4.1 Simulation 1 

 
The first simulation was carried out in the case of T-LA uniformly distributed temperature, with 

the damage existing between sensors 8 and 9. The detection results of the damage were depicted in 

Fig. 7, in which the control limit was determined by ±3 times of standard deviation of each 

training set residual. 

It is clear that all the sequences have a quick jump when damage happens. From CP7 to CP9, 

an obvious opposite direction of jump appears, thus it can be inferred that the damage is located at 

CP8 as explained in the former section, and it is really where the damage lies. In addition, a 

gradually changing magnitude emerges in these figures, which can be used to locate the damage as 

well. Like the aforementioned, a more significant jump will arise near the damage spot. Therefore, 

the pair cointegration of displacement series could successfully identify when and where the 

damage occurs. 

In previous simulation, the validity of the proposed identification procedure has been 

substantiated on the basis of exactly measured displacements. However, in the practical 

experiments or applications, they are all exposed to unmeasurable noise composing an important 
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source of the error. Hence, the immunity to noise is a required criterion to evaluate the damage 

detection method. It will be shown that the proposed pair cointegration approach performs well 

even on the condition of high level noise. 

 

 

 

Fig. 7 Detection result of simulation 1 without noise 

 

 

The noise model added is displayed in Eqs. (22) and (23) 

 nS S A randn     (22) 

in which  

 
[ (max) (min)]

2

rms rms
A




 
(23) 

where 
nS  is the noise signal, S  is the perfect signal,   is the noise level, rms is short for the 

root mean square, max and min represent the maximum and minimum envelops of the perfect 

displacement series and randn means normally distributed random variables independent of each 

other with zero mean and unit variance. Under the same situation, 2.5%, 5%, 7.5% and 10% levels 

of noise are added to the simulation displacement, respectively. In all the tests, the cointegration 

works well. For simplicity, only 10% noise results are shared here in Fig. 8. Compared with the 

cointegration result without simulation noise, the residual of each cointegration pair oscillates 

more intensely, and the control limit is enlarged correspondingly; however, the large level of noise 

does not mask the damage information. The pair cointegration of displacement series could still 

successfully diagnose the damage. Therefore, it is proper to say that the proposed approach has a 

great degree of noise resistance. However, when the noise level is above 15%, obvious jumps still 

could be observed but it is hard to distinguish pinpoint damage position. 
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Fig. 8 Detection result of simulation 1 with 10% noise 
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Fig. 9 Detection result of simulation 2 with 10% noise 
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Fig. 10 CP residual and its autocorrelation function 

 
 
4.2 Simulation 2 

 
The second simulation is carried out with T-LA applied in temperature gradient introduced 

before. This condition is quite similar to the real case. Damage case 1 is used in the computation of 
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displacements. Then the displacements are polluted by 10% noise. Only three pictures (Fig. 9) are 

given to describe the damage situation for simplicity, and similar results are obtained for this rather 

complicated case. The proposed approach still can distinguish when and where the damage occurs, 

although the results are not so well as the last simulation. 
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Fig. 11 Filtered residual sequences and its autocorrelation function 

 

4.3 Simulation 3 

 
The third one is applied with the T-BJ in uniform distribution through the section of the beam. 

The simulated displacement series are contaminated 10% noise, and damage case 2 is employed. 

In this situation, the CP residual exhibits strong autocorrelation, leading to the nonstationarity of 

the residual, as shown in Fig. 10. If the nonstationary variables (displacements) are auto-correlated 

and cross-correlated, the residual is auto-correlated (Chen et al. 2009). At the same time, the 

residual sequences are normally autocorrelated as a result of controller feedback and the presence 

of unmeasured disturbances which may be autocorrelated. In the former simulation, the 

displacements are also auto-correlated, but the degree is not strong enough to demonstrate the 

non-stationarity. However, when the noise level is high, it shows non-stationarity property in the 

residual sequences. To crack out this problem, the residual are filtered by an inverse AR filter 

(Monson 1996). In an AR model of order p, the current output is a linear combination of the past p 

outputs plus a white noise input. The weights on the p past outputs minimize the mean-square 

prediction error of the autoregression. Let e(t) be a stationary and serially uncorrelated sequence, 

the stationary autocorrelated residual sequence  t
 

can be determined as follows 

 
1( ) ( ) ( )e t t A z   (24) 

where 
1 1 2

1 2( ) 1 ( )p

qA z a z a z a z        . Invert the AR filter to get 

 
1

( ) ( ) ( )
p

i

e t t t i 


    (25) 
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Online damage detection using pair cointegration method of time-varying displacement 

The filtered CP residual is shown in Fig. 11, showing that the autocorrelation is removed 

effectively. Now the filtered residual e(t) can be used for the online process monitoring. 

The damage detection results are illustrated in Fig. 12. After postprocessing the CP residual, the 

result series looks perfect that the training set remains stationary while a clear jump could be 

observed when the damage occurs. Once again, the pair cointegration identifies the instant and the 

position of damage accurately. Through proper operating on the residuals, the pair cointegration 

can handle the nonlinearity caused by the elastic modulus dependent on the temperature. The 

inverse AR filter also improves the ability of resisting noise. Even when the noise level reaches 

30%, ideal identification results could be obtained. 
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Fig. 12 Detection results of simulation 3 with 10% noise 

 

 

4.4 Simulation 4 

 
The fourth case was used T-BJ with a temperature gradient across the section. Then, the 

displacement signals were added 10% noise. With the same damage location and the same data 

processing as Simulation 3, ideal results are obtained again, shown in Fig. 13, from which we can 

distinguish the damage temporally and spatially precisely. The proposed pair cointegration method 

does make a really good job even in this complicated model. It suggests that the pair cointegration 

method may be a prospective damage detection method to be applied in the real project. 
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Fig. 13 Detection result of simulation 4 with 10% noise 
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5. Conclusions 

 
The neighbored displacement series are combined to generate residuals by the cointegration 

approach, and it shows an excellent performance in detecting the damage spatio-temporally with 

environmental influence eliminated simultaneously. A prestressed concrete beam is adopted to test 

the feasibility of the proposed method. In all the four situations, the proposed detection method 

functions well and preserves the virtue of immunity to noise. Nonstationarity characteristics in the 

residual sequences could be amended by the autocorrelation filter that also can improve the 

anti-noise property. The pair cointegration method shows a well adaption for real application. It 

should be mentioned that the training sets should include all the possible environmental or 

operational conditions for the better performance of the pair cointegration method. Cointegration is 

a powerful mathematical tool to handle the time series sharing the similar trend, and as a result, it 

is not required that the variables cointegrated have the same unit. 
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