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Abstract.  In this paper, a statistical reference-free real-time damage detection methodology is proposed for 
detecting joint and member damage of truss bridge structures. For the statistical damage sensitive index 
(DSI), wavelet packet decomposition (WPD) in conjunction with the log likelihood ratio was suggested. A 
sensitivity test for selecting a wavelet packet that is most sensitive to damage level was conducted and 
determination of the level of decomposition was also described. Advantages of the proposed method for 
applications to real-time health monitoring systems were demonstrated by using the log likelihood ratios 
instead of likelihood ratios. A laboratory truss bridge structure instrumented with accelerometers and a 
shaker was used for experimental verification tests of the proposed methodology. The statistical 
reference-free real-time damage detection algorithm was successfully implemented and verified by detecting 
three damage types frequently observed in truss bridge structures – such as loss of bolts, loosening of bolts at 
multiple locations, sectional loss of members – without reference signals from pristine structure. The DSI 
based on WPD and the log likelihood ratio showed consistent and reliable results under different damage 
scenarios. 
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1. Introduction 
 

Early damage detection in the civil infrastructure has been considered critical for achieving 

goals in the field of structural health monitoring (SHM). The recent collapse of the I-35 W bridge 

in Minneapolis highlights the importance of early damage detection in bridge structures for public 

safety. Nowadays, advances in sensors and information technology (IT) render the real-time SHM 

for civil infrastructure viable. In particular, developments of damage sensitive index (DSI) and 

real-time SHM system are critical factors for early damage detection in civil infrastructure. The 

real-time SHM system has been gaining attention, since it can raise an alarm about significant 

damaging events during operations, thereby providing more time for evacuation of users and 

timely maintenance of civil infrastructure. Therefore, there are apparent advantages of real-time 
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monitoring of the structural health of civil infrastructure: it allows us to ensure both servicability 

and safety, and it prevents any catastropic disaster.  

There has been a vast amount of literature and reports on the online real-time SHM system for 

bridge structures. Nigbor and Diehl developed an online alerting of structural integrity and safety 

(OASIS) system that can remotely monitor two bridges in Thailand and Korea (Nigbor and Diehl 

1997). Aktan et al. instrumented the Commodore Barry bridge in Philadelpia as a test bed with 

real-time environmental monitoring systems which can monitor the live loading, speed of wind 

and temperature at several locations of the bridge (Aktan et al. 2004). Masri et al. applied a web 

enabled real-time SHM system to Vincent Thomas Bridge in California (Masri et al. 2004). With 

increasing awareness of the importance of monitoring the structural health over the entire life 

cycle, it is a recent trend that built-in SHM systems are planned and designed before construction 

phases for long-term monitoring and maintenance of structures.  

 However, there have been difficulties in applications of the vibration-based real-time SHM 

system to damage detection and continuous condition assessment because of limitations in fast 

signal processing and inherent uncertainties due to environmental effects, including temperature 

and humidity. Most of vibration-based SHM and damage detection techniques have employed  

theoretical rationales, including the argument that changes in modal properties are directly related 

to changes in structural stiffness and damping. Damage detection techniques based on finite 

element model updating focus on the identification of changes in the parameters defined within 

numerical models. In case of large-scale structures, such model-based diagnosis methods are not 

adequate to real-time monitoring due to tremendous computational times. On the contrary, 

model-free methods are based on patten recognitions of response signals from the structural 

system. As a real-time damage detection algorithm, a DSI based on coefficients of the 

autoregressive (AR) time series model was introduced by Nair et al. (2007) and an AR 

model-based damage detection algorithm was developed with Gaussian mixture model (GMM) of 

feature vector and tested with the ASCE benchmark structure. But this algorithm has limited usage 

for the linear stationary response signal. Jiang and Adeli developed multiple signal classification 

(MUSIC) and fuzzy wavelet neural network (WNN) with pseudospectrum method (Jiang and 

Adeli 2007). They used response signals from the 1:20 scaled 38-story concrete test model 

developed by Ni et al. (Ni et al. 2006). MUSIC and WNN tools can be used for the real-time SHM 

especially for the high rise building structures. (Jiang and Adeli 2007).  

The wavelet transformation (WT) method is an effective tool for applications such as signal 

denoising, wave propagation based damage detection, signal compression and feature extraction. 

Due to the computational efficiency of the WT, it holds potentials for applications in real-time 

SHM and damage detection. According to the literature (Liew and Wang 1998), the wavelet based 

damage detection method has the advantage of simplicity in implementation, when compared to 

traditional eigenvalues analysis for detecting structural damage. Liew and Wang also pointed out 

the inaccuracy of eigenvalue analysis in higher-order modes caused by the limitation of 

mathematical and comptutation modeling, but they find that wavelet analysis does not have this 

problem. Moreover, wavelet analysis can reveal local information of non-stationary signals by 

zooming in at any interval of time and frequency. For these reasons, a variety of studies on SHM 

and damage detection have been conducted by applying the WT (Grabowska et al. 2008, Hu and 

Afzal 2006, Jiang and Mahadevan 2008, Jiang et al. 2007, Liew and Wang 1998, Ovanesova and 

Suarez 2004, Taha et al. 2006, Tsai et al. 2006, Wang and McFadden 1996) or WPD (Amiri and 

Asadi 2009, Chang and Sun 2005, Chendeb et al. 2006, Ding and Li 2007, Han et al. 2005, Jiang 

et al. 2007, Shinde and Hou 2005, Sun and Chang 2002, Sun and Chang 2007, Yen and Lin 2000, 
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Zhou et al. 2005) to different types of structures.  

Most existing damage detection methods require signals from undamaged pristine structures to 

be compared with signals from damaged structures. Without signals from the original undamaged 

state, it is usually impossible to detect damage in structures. Therefore, a reference-free damage 

detection algorithm is introduced in this paper. The reference-free schemes do not depend on the 

response of previous healthy conditions. Kim and Sohn developed a reference-free crack detection 

methodology which does not require baseline data for crack detection for a plate-like structure 

with uniform thickness by examining measured Lamb wave signals (Kim and Sohn 2007). This 

methodology can reduce the false alarms caused by changing operational and environmental 

variations. In this paper, a statistical reference-free damage identification method was proposed for 

use in real-time SHM system. For this purpose, a WPD method was adopted in the proposed 

real-time SHM algorithm. The WPD decomposes original time domain signals into several 

frequency bands by the corresponding scales. The wavelet coefficients from a certain frequency 

range that are sensitive to the local damage can be selected for damage detection. Based on the 

selected wavelet coefficients, the log likelihood ratio is calculated to obtain the DSIs. In particular, 

the proposed real-time damage detection method is capable of detecting damage without response 

signals from healthy structures by comparing the sum of the log likelihood ratios of the wavelet 

coefficients between different sensor locations. The real-time reference-free damage detection 

system was implemented by using the National Instruments (NI) LabVIEW virtual instruments 

(VI) program in conjunction with the NI data acquisition (DAQ) system. A remote front panel was 

published on a remote collaboratory web-site by a web-publishing tool supported by the 

NI-LabVIEW. A laboratory structure that is a part of the remote collaboratory system (Yun 2010) 

was used for demonstration tests.  

 

 

2. Statistical reference-free damage detection based on WPD 
 

In the sequel, theoretical backgrounds and advantages of the WPD over the conventional WT 

will be revisited and the proposed reference-free damage sensitive feature will be introduced. 

 
2.1 Wavelet packet decomposition 

 
Compared to the Fourier transform, which uses simple harmonic functions (sine and cosine) as 

a basis, the wavelet transform allows for a wider choice of basis functions. This flexibility allows 

the wavelet transform to isolate changes in a signal that may be difficult to detect using other 

transform methods. This advantage of the wavelet transform is naturally inherited by 

wavelet-based measures of energy and entropy, and it leads to better damage identification (Yun et 

al. 2011). For this reason, wavelet transform methods such as continuous wavelet transform 

(CWT), discrete wavelet transform (DWT), and WPD have been widely used as signal analysis 

methods (Newland 1993). Wavelet transform and wavelet packets based damage detection is 

widely used in many vibration based SHM and damage detection applications (Chendeb et al. 

2006, Han et al. 2005, Jiang and Mahadevan 2008, Sun and Chang 2007, Yen and Lin 2000). 

Wavelet transforms have advantages when the signal is non-stationary, since they describe signals 

in localized time and frequency domains. However, the DWT can hold poor frequency resolution 

in the higher frequency range and thus has limitations in analyzing signals that contain close high 

frequency components. The WPD is a technique to decompose signals repeatedly into successive 
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low and high frequency components up to the targeted frequency scale. Whereas the DWT 

decomposes only the approximations, the WPD decomposes both the approximations and details at 

a given scale of decomposition. Therefore the WPD is more flexible and has wider basis with 

higher resolutions for the analysis of signals than the DWT. The WPD also enables multi 

resolution damage detection, since it can localize multi-frequency bands in any time domain.  

Wavelet packet i
kj ,  shown in Eq. (1) holds properties such as orthonormality and 

time-frequency localization inherited from wavelet functions (Coifman and Wickerhauser1992). 

The index i denotes the modulation; j and k represent the scale and translation parameters, 

respectively.  

...3,2,1,Wavelet)(MotherFunctionBasis)2(2 12/
,  iktjiji
kj

 
(1) 

The first wavelet function Ψ
1
 is called a mother wavelet function; this satisfies the invertability 

and orthogonality. Wavelet analysis has a very wide choice of basis functions, such as Haar, 

Daubechies, Symlets, Coiflets, etc. In this paper, Daubechies2 (db2) was selected for the mother 

wavelet. Daubechies wavelet is a type of orthogonal wavelet. It has asymmetrical properties and 

possesses good compression. Detailed information about the Daubechies wavelet can be found in 

(Daubechies 1992). The wavelets Ψ
1 

are obtained from the following recursive relationships as 

shown in Eqs. (2) and (3) (Sun and Chang 2002). 






 
k

i ktiklt )2()()2()( 2/112  (2) 







k

i ktikht )2()()2()( 2/12  (3) 

In these equations, h(k) and l(k) are the high pass filter and low pass filter. The schematic 

structure of the decomposed wavelet packet tree of an original time domain signal S(t) was shown 

in the Fig. 1. The schematic diagram shows wavelet packet transforms up to the third frequency 

scale. 

In each scale, the original signals are decomposed through the low pass filter L and high pass 

filter H. Unlike the wavelet transform, the WPD allows details (Dj,k: j=jth scale and k=1,..,2j-2) to 

be filtered by the high pass filter. It thus provides higher resolution in the higher frequency band. 

A recursive relationship between jth and (j+1)th scale decompositions is satisfied as 

)()()( 2
1

12
1 tStStS i

j
i

j
i
j 


   (4) 

The filtered time-domain signals in Eq. (4) can be written as 
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j
i
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i
j  

  (5) 

where L and H are filtering-decimation operators that are related with discrete filters l(k) and h(k) 

as 
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After jth scale decomposition, the original time-domain signals S(t) is expressed as  






j

i

i
j tStS

2

1

)()(  (7) 

Then the wavelet packet time-domain signals Sj
i
(t) are expressed by a linear combination of 

wavelet packet function i
kj ,  as follows(Sun and Chang 2002) 



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kj

i
kj

i
j tCtS )()( ,,  (8) 

Under the orthogonality property of wavelet packet function (i.e., mn
n

kj
m

kj  ,,  where δmn is 

the Kronecker delta), the wavelet packet coefficients can be obtained as 






 dtttSC i
kj

i
kj )()( ,,  (9) 

 

 

 

Fig. 1 Schematic structure of the WPD 

 

Due to the time-frequency multi-resolution property of the wavelet packet transform, adequate 

selection of wavelet packets is critical for successful damage detection. Frequency bands of the 

chosen wavelet packets should include fundamental natural frequencies of the structure since 

damage changes the natural frequencies. Selection of the mother wavelet and the number of scales 

of the wavelet transform are also important for successful detection of damage. In this analysis, the 

Daubechies2 (db2) mother wavelet was selected and sixth scale wavelet packets were tested 

considering the frequency band of the wavelet packets. Sun and Chang reported the importance of 

having sufficient magnitudes of wavelet packet coefficients, enough to reveal trivial changes in 
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vibration signals subjected to noise and errors in real-life measurements (Sun and Chang 2002). As 

in the wavelet transforms (Yun et al. 2011), the level of decompositions of WPD is also one of the 

most important factors in order to detect local damage in structures (Sun and Chang 2002). The 

required level of decompositions can vary depending on the level of damage and loading 

conditions. Therefore, it is desirable to perform sensitivity analysis based on wavelet energy ratio 

(Yun et al. 2011) or energies of components (Sun and Chang 2002) for selecting proper wavelet 

packets. In this paper, a sensitivity analysis was performed based on log likelihood ratios with a 

gradual increase of damage level. 

For convenience in selecting wavelet packets, a path notation in terms of binary codes was used 

as shown in the Fig. 1. The path notation is used in the NI-LabVIEW VI program to choose the 

packet of specific frequency band that is sensitive to the damage, since damage changes the energy 

and frequency contents in the response acceleration signals. Damage sensitive features are defined 

as log likelihood ratios of different sets of the packets corresponding to the frequency bands of our 

interest. 
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Fig. 2 Histogram of raw acceleration data measured from a laboratory structure subjected to broad-band 

white noise (500 mV amplitude) 

 
 

2.2 Log likelihood ratio for damage identification  

 
Likelihood function was introduced in mathmatical statistics by Fisher in 1922 (Aldrich 1997). 

The likelihood function is frequently used in the likelihood ratio test for the purpose of quantifying 

the fitness between the probability distributions or in the maximum likelihood estimate of 

probabilisitic parameters that maximize the likelihood of obtaining an observed set of sample 

values. For vibration based damage detection problems, acceleration data are typically measured 
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through sensors. To experimentally characterize the underlying probabilistic distribution model for 

measured acceleration data, the acceleration response of a laboratory truss bridge structure 

subjected to broad-band white noise was measured at a sampling rate of 5 kHz. A total of 100,000 

acceleration data were measured. According to a statistical analysis of the measured acceleration 

data in the form of a histogram (See Fig. 2), the random process turns out to follow the Gaussian 

process. As shown in Fig. 3, the normal probability plot indicates that the acceleration data follow 

the normal distribution. If the plot is linear with R
2
≈1 as shown in Fig. 3, the random data come 

from the normal process.  
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Fig. 3 Normal probability paper plot for the raw acceleration data measured from a laboratory structure 

subjected to broad-band white noise (500 mV amplitude) 

 

 

Therefore, the likelihood function is based on the normal distribution. Assuming a normal 

distribution for a random variable X, a general form of the likelihood function with a set of 

sampled data x i (i=1,...,n) is expressed as  
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where μ and σ denote the sample mean and standard deviation of the sampled data, respectively. In 

this paper, DSIs are suggested based on the log likelihood ratio of wavelet packet coefficients from 

the selected frequency bands. Therefore, through the same statistical analyses, probabilistic 

distributions of the wavelet packet coefficients are investigated.  
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Fig. 4 Histogram of wavelet coefficients in the wavelet packet of time domain data measured from a 

laboratory structure subjected to broad-band white noise (500 mV amplitude) 

 

 

   

Fig. 5 Normal probability paper plots for the wavelet packets of time-domain acceleration data: the level of 

decomposition= 6 and selected (a) wavelet packet C
1
6, (b) wavelet packet C

2
6 and (c) wavelet packet 

C
3
6 

 

 

As shown in Figs. 4 and 5, it was experimentally proven that all the wavelet packet coefficients 

also follow the normal distribution. This means that the WPD is a linear transformation of 

time-domain random signals (Chendeb et al. 2006). It is worth noting that acceleration response of 

civil structures such as a building under vehicle traffic loading and a tower under wind gust may 

not show normal distributions. In this case, through the goodness-of-fit test, corresponding 

probability distribution function has to be determined first as demonstrated in this section and used 

in calculating the likelihood function. 

In this paper, log likelihood functions of the wavelet packet coefficients (C
i
j,k) were used 

instead of the likelihood function for two indispensable reasons: 1) computing log likelihood 

functions is more computationally effcient than the likelihood functions and 2) likelihood 

functions in terms of the wavelet packet coefficients produce numerical instability due to huge 

numbers. By taking a natural logarithm of the likelihood function, the log likelihood function is 

expressed as 
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(11) 

where n indicates the number of coefficients in the selected wavelet packet component. n is 

identical to N/2
j
 where N is the total number of the original time domain data. μc and σc indicate the 

sample mean and sample standard deviation of the wavelet packet coefficients, respectively. As 

shown in Eq. (11) taking the natural logarithm will change arithmetic operators from 

multiplications to additions. The likelihood ratios are usually used for the likelihood ratio test 

(LRT) that is a statistical test of the goodness-of-fit between two probabilistic models based on the 

observed time series data (Hald 1999,  Mood  et al. 1974). In terms of the log likelihood 

function in Eq. (11), the log likelihood ratio is expressed as 
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where i
n,jC and i

n,j'C  denote two coefficient sets of the WPD at jth frequency scale of the raw 

time domain data from two different locations. For the log likelihood ratio computation, i and j are 

determined at a specific modulation and level of decomposition based on the following selection 

procedures proposed in this paper.  

Selection of Wavelet Packet and Level of Decomposition: In application of wavelet packets 

to damage detection problems, proper selection of wavelet packets should be performed. In this 

paper, based on the sensitivity of the log likelihood ratio to changes in damage level and 

magnitude of the log likelihood ratio, a method for selecting the most proper wavelet packet was 

proposed. Considering multi-resolution characteristics of wavelet packets, resolutions of both time 

and frequency domains are determined by the number of time-domain samples and the level of 

decomposition. Therefore, the level of decomposition should be determined so that fundamental 

natural frequencies are seperated into each wavelet packet. It is suggested to choose the wavelet 

packet of the frequency band that includes natural frequencies corresponding to fundamental 

modes. It is postulated that fundamental modes are more influenced by component damage than 

higher modes. 

 

2.3 Computational efficiency of the DSI for real-time damage identification 
 

As previously mentioned, the log likelihood ratio is adopted for computational efficiency since 

multiplication is known to require more computation time than additions. Fig. 6 shows a 

comparison of the computation times required for the likelihood ratio and for the log likelihood 

ratio with WPD based on the acceleration data from two channels. The computation speed of log 

likelihood ratio is shown to be 3.5 to 4 times faster than that of likelihood ratio. 
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Fig. 6 Comparison of computation times required for the likelihood and log likelihood ratio 

 

 

Typically, the log likelihood of the wavelet coefficients from a damaged location is smaller than 

the log likelihood of the wavelet coefficients from an undamaged location, since damage has a 

reducing effect of the energy of signals. Therefore the log likelihood ratio can be used as a DSI . 

The log likelihood ratio is a statistical index to be used as the DSI for real-time reference-free 

damage detection in this paper. A detailed feature extraction process for the reference-free schemes 

will be explained in the following section.  

 

2.4 Statistical reference-free damage identification algorithm 

 
Reference-free damage detection has a practical advantage in cases where baseline signals are 

not available. Most in-built bridge structures do not provide baseline signals from pristine 

structural conditions. Without relying on the baseline signals, the log likelihood ratio of 

coefficients of the selected wavelet packets between two different locations allows us to detect 

damage. 

 Following the definition in Eq. (12), a simpler notation for the log likelihood ratio is 

introduced as  

 and location between RatioLikelihoodLog)|( kk CCLRLn  (13) 

where  and  denote the location of sensors over the structure and k denotes the x, y, z direction 

of the original signal. Ck

 and Ck


 are wavelet coefficients in the selected wavelet packet. 

According to multiple experimental tests and observations, the log likelihood from a damaged 

location tends to become smaller than that from an undamaged location. Explaining such 

observations based on physical perspectives, the level of disorder in the signals increases as the 

level of damage increases. Thus, it results in distraction of the inherent probabilistic distribution of 

wavelet coefficients from normal process. If there are p sensor locations and the raw acceleration 
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data are measured in x, y and z directions at each of p locations, the statistical reference-free DSI 

for the location β is defined as 

zyxkCCLRLnDSI
p

kkkk ,,   ,)|(
1




  (14) 

For each sensor location, the statistical DSI is defined as a sum of the ratios of the log 

likelihood values at all sensor locations to the log likelihood at the current sensor location. The p 

DSIs are expanded as shown in Table 1. If damage occurred at a location d, the log likelihood 

value of the wavelet coefficients from the damaged location is smaller than that from other 

undamaged locations. Therefore, the log likelihood ratios between undamaged locations and the 

damaged location- Ln LRk (Ck
1
 | Ck

d
), Ln LRk (Ck

2
 | Ck

d
)  ...  Ln LRk (Ck

p
 | Ck

d
) that are 

highlighted in the Table 1- will show relatively higher values than the other log likelihood ratios 

except Ln LR (Ck
d
 | Ck

d
) that corresponds to one. 

 

 
Table 1 Computation of statistical reference-free DSI at p sensor locations 
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Based on this procedure, p statistical reference-free DSIs can be calculated and any sensor 

location showing a larger DSI than a threshold value will be identified as a damaged location. 

  

Determination of Threshold Value: After reference-free DSIs are computed, those DSIs are 

compared with a threshold value. Factors associated with the threshold value include the number 

of channels (S), the number of coefficients in the selected wavelet packet (C), and the type of test 

structure. Typically, the log likelihood ratio value between two wavelet packets from undamged 

locations is close to one when the number of wavelet coefficients in the selected wavelet packet 

(C) is sufficiently large enough to reveal its statistical normal distribution. In such a case, the log 

likelihood ratio will become close to one. Therefore, the minimum threshold value can be set to S 

when the number of wavelet coefficients in the selected wavelet packet (C) is sufficiently large 

enough to show a normal distribution. When the number of C decreases, the value of the log 

likelihood ratio can be greater than one because the number of realizations is not sufficient to 

reveal the normal distribution. Furthermore, the threshold values can vary depending on the type 
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of structures. Because there is no clear criterion to set the threshold value, it is based on the test 

experiences. When statistical reference-free DSIs exceed the threshold value, the damage detection 

system generates warning alarms at the corresponding damaged locations. 

 

 

3. Damage identification procedures and implimentation  

 
In this section, detailed procedures of statistical reference-free real-time damage identification 

are summarized for practical implementation. The damage detection procedures are implemented 

in a remote front panel using national instruments (NI)-LabVIEW virtual instrumentation (VI) 

program. 

 

3.1 Procedures of statistical reference-free real-time damage identification 

 
Fig. 7 depicts the schematic procedures of statistical reference-free real-time damage 

identification as three steps. 

 

 

 

Fig. 7 Schematic procedures for the proposed real-time damage detection algorithm 

 

 

Step 1 Data Acquisition and Standardization: The first step of the damage detection 

procedure is acquiring time-domain acceleration signals from sensors deployed on the structure. 

The acceleration data are acquired at a user-defined sampling rate. The number of sampled data in 
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a window is also determined by users. Prior to the WPD, a  standardization process is applied to 

the acceleration signals in order to obtain all signals with zero sample mean and unit variance. 

Through this process, different amplitudes of signals at various locations due to any possible 

signal shift can be scaled and shifted to have zero-means, keeping frequency contents and 

probabilistic distribution information of the original raw signals. 
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(15) 

In Eq (15), Xi denotes the original time domain signal and xi denotes the standardized signal. μ 

and σ denote the mean and standard deviation of the original acceleration signals.  

Step 2 Selection of Wavelet Packet and Level of Decomposition: All the standardized 

signals are decomposed using WPD based on the selected mother wavelet and frequency scale. In 

this paper, one wavelet packet showing the largest magnitude and the highest sensitivity of the log 

likelihood to the damage level is chosen. For the selection of frequency scale, the frequency band 

of the selected wavelet packet should include the fundamental frequency for its higher damage 

sensitivity. Considering the frequency band of the wavelet packet, the sixth frequency scale in 

WPD was tested in this paper.  

Step 3 Computation of Statistical DSIs: Once each wavelet packet is selected from different 

locations, the sample mean (μc) and variance (σc
2
) of the wavelet coefficients are computed for use 

in calculations of the log likelihood ratios. Statistical reference-free DSIs are computed based on 

the sum of log likelihood ratios at different sensor locations as explained in Eq. (14) and Table 1. 

The computed statistical DSIs at each sensor location are compared with a predetermined 

threshold value; if a DSI is greater than the threshold value, it will provide an alarm to inspectors.  

Step 4 Computation of DSIs for Next Window: Finally, all of the three steps are repeated in a 

loop as shown in Fig. 7 . 

 

3.2 Implementation of statistical real-time reference-free damage detection system  

 
In the remote front panal, users can specify input parameters such as the sampling rate, the 

number of time domain samples in a window, the mother wavelet, the level of wavelet 

decomposition, notational path for the selected wavelet packet, and channel for viewing the 

coefficients of a selected channel. Users can also specify the threshold level. When statistical DSIs 

exceed the threshold value, an alarm light will be turned on so that users can visually notice the 

damaged location in a real-time mode. In this paper, the threshold value is set to three to seven 

times of the number of channel (S). All of the 24 damage indices (eight DSIs for each of the three 

directions) were graphically presented on the remote front panel and the graphical plots are 

updated every second with the damage indices calculated based on the Eq. (14).  

 

 

4. Experimental verifications of damage identification with a laboaratory-size truss  

 
In this section, a laboratory-size truss bridge structure is introduced and the entire experimental 

test set-up based on the structure is described. Using the test set-up, different damage scenarios 
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such as bolt loss, member fracture and bolt loosening were tested for verifying the proposed 

real-time reference-free damage detection algorithm. 

 

4.1 Laboratory truss bridge structure 

 
A laboratory-size truss bridge structure was designed and manufactured for SHM research. The 

structure with a dimension of Length × Width × Height = 4.8 m × 0.56 m × 0.42 m is an 8-bay, 4.8 

meters (184 inch) span truss bridge constructed of steel pipes and steel connections with 

simply-supported boundary conditions. The structure was assembled using 100 steel pipes; 200 

clevises; 36 T-joints; and 200 bolts, 200 nuts, and 136 washers. Two washers were used between 

clevis and the vertical web of the T-joints in order to fill the gap between clevis and the web. The 

geometric configuration of the truss bridge structure is shown in Fig. 8. 

Thick-walled steel seamless pipes (ASTM A106 grade) with the same sectional properties but 

in five different lengths are used as shown in Fig. 9(a). One end has a left-hand thread and the 

other end has a right-hand thread. These opposing threads provide significant flexibility to adjust 

the length of the members during the assembly process, thus ensuring ease and accuracy (to the 

design drawings) of the final assembled structure shape.  

 

 

 

Fig. 8 Design of T-Joint component 
 
 

A connection system capable of providing the strength to carry the loads and flexibility to 

simulate several damage cases is designed. Specifically, the connection has the following features: 

1) ability to connect up to eight steel members at any joint; 2) convenient assembly and 

disassembly for rapid testing of various damage scenarios; 3) efficient fabrication; 4) ability to 

accommodate sensors. A total of 36 connections are utilized throughout the structure, and a typical 

connection is shown in Fig. 9 (b). 
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(a) (b) 

Fig. 9 (a) Five types of load carrying members of the laboratory-size truss bridge structure and (b) 

T-joint with 7 joining members 

 

 

  
(a) (b) 

Fig. 10 Boundary condition of the truss bridge structure (a) roller support and (b) hinge support 

 

 

The truss bridge structure is supported by rollers at one end and hinges at the other. Those 

supports are similar to ones used in real-life bridge structures as shown in Fig. 10. More details on 

the truss bridge structure can be found in (Shang et al. 2010). 

 
4.2 Experimental test setup and damage scenarios  
 

Eight triaxial accelerometers (Dytran 3093B1) were instrumented on the truss bridge structure 

for measuring accelerations. An electrodynamic shaker (LDS V408) was used to shake the 

structure. An amplifier and a power supply were used to operate the shaker. A function generator 

(Agilent 33250A) was also used to generate excitation signals. A data acquisition system 

consisting of three NI 4472B dynamic signal acquisition moduls (each provides eight channels) 

and a NI PXI 8105 controller within NI-PXI-1402 chassis provides 24 channels from which 

acceleration data are measured. The test setup was configured to measure structural vibration 

response of the truss bridge structure with different types of damage under broad-band white noise 

exitations. Fig. 11 shows joint identification (ID) numbers to distinguish damaged locations. To 

shake the structure in Z direction, the LDS V408 shaker is attached at joint ID 22. 
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Fig. 11 Joint ID of the truss bridge structure 

 

 

In truss bridge structures, various kinds of damage such as loss of bolts, bolt loosening, 

reduction of member stiffness due to sectional loss, cracks, material deterioration, fracture, or 

combinations of them are frequently observed. Therefore, in this paper, three different damage 

types are tested: a) loss of bolts b) section loss of a member, and c) loosening of bolts as shown in 

Fig. 12.  

 

 

 

 
 

 

Fig. 12 Three damage types (a) loss of bolts, (b) section loss of member and (c) loosening of bolts 

 

 

As shown in Fig. 12 (a), seven damage scenarios with loss of bolts were made by removing 

bolts one-by-one at joint ID 16. As shown in Fig. 12(b), 50% section loss of a member 1 (joint ID 

15-16) was made with 1 mm thickness saw-cut at the center of the member. As shown in Fig. 

12(c), all of the bolts are loosened at the selected damaged joint. First damage type (loss of bolts) 

is intended to select a wavelet packet to be used for computing the proposed statistical DSIs. As 
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proposed in Section 2.2, the sensitivity of the proposed statistical DSI to the damage and its 

magnitude are considered for wavelet packet selection. To evaluate the proposed statistical DSIs 

under multiple damaged locations, loosening of bolts at different locations were tested. As such, 

different damage types and damage scenarios were created and summarized in Table 2 with the 

joint ID numbers.  

 

 
Table 2 Damage scenarios with different types of damage 

Damage Type Damage Level Damaged Position Sensor Position 

a. Bolt Loss 

1 bolt loss 16 16 

2 bolts loss 16 16 

3 bolts loss 16 16 

4 bolts loss 16 16 

5 bolts loss 16 16 

6 bolts loss 16 16 

7 bolts loss 16 16 

b. Sectional loss 

Sensor deployment 1 
center of  

member 1(15-16) 

member 1(15-16), member 2(16-17) 

member 3(2-3), member 4(3-4) 

Sensor deployment 2 
center of  

member 1(15-16) 

member 1(15-16), member 2(5-14) 

member 3(11-12), member 4 (28-7) 

c. Bolt 

Loosening 

single 

damage 

JDS1 12 10,11,12, 13, 15, 16, 17, 18 

JDS2 17 10,11,12, 13, 15, 16, 17, 18 

double 

damage 

JDS3 11,14 10,11,12, 13, 15, 16, 17, 18 

JDS4 16,26 11,23,16,19,26,6,3,32 

triple 

damage 

JDS5 6,20,3 12,24,14,20,8,6,3,32 

JDS6 24,17,3 24,13,27,6,21,17,30,3 

 

 

In this paper, broad-band white noise signals were used to excite the structure. Loading 

intensity for each test was arbitrarily set within a range from 400 mV to 520 mV. Due to the 

mandatory standardization process, the proposed method is immune to variability of loading 

amplitudes. The presented tests proved that the proposed method can identify damage locations as 

long as the loading intensity is sufficient to induce structural vibration. We also tested the 

proposed method under sweep sine excitation signals. However, because broad-band white noise 

signals are more similar to in-field ambient excitations, the sweep sine signals were not used.  
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4.3 Sensitivity test for selecting wavelet packet 
  
In this section, the sensitivity of the proposed statistical DSIs was tested by varying the level of 

joint damage in order to select a wavelet packet to be used for the DSI. From the joint ID 16, the 

acceleration signals (10,000 data) sampled at 5 kHz sampling rate were standardized and then 

decompsed by WPD to the sixth level of decomposition. All the selected paramters used for 

computing the DSI are summarized in the Table 3. 

 

 
Table 3 Parameter set for bolt loss damage scenarios 

Damage 

Type 

Sampling 

Rate (Hz) 

Number of 

Samples 

Mother 

Wavelet 
Level 

Path for Selected 

Wavelet Packet 

Frequency Range 

(Hz) 

Bolt Loss 5,000 10,000 db2 6 

000000(1
st
 Packet) 0- 39.06 

000001(2
nd

 packet) 39.06-78.12 

000010(3
rd

 packet) 78.12-117.18 

 

 

Seven statistical DSIs were computed by using selected wavelet packets from an undamaged 

state and seven damaged states that range from loss of one bolt to losses of seven bolts at joint ID 

16. To perform statistical sensitivity analyses, ten windows of time-domain acceleration data were 

used to obtain ten sets of the first, second and third wavelet packets and the averaged log 

likelihood ratios for the first three wavelet packets were plotted with error bars as shown in Fig. 

13.  

The results clearly showed that the DSIs based on the first wavelet packet have higher 

magnitude and senstivity to the damage than the DSIs based on the second and third wavelet 

packets. It is because the frequency range (0- 39.06 Hz) of the first wavelet packet includes first 

three fundamental frequencies (14.45 Hz, 20.98 Hz and 29.73 Hz) identified by the frequency 

domain decomposition (FDD) analysis. Therefore, it is important to identify the fundamental 

frequencies of test structures for guiding selection of a wavelet packet and determine the level of 

decomposition so that the selected wavelet packet includes the damage sensitive fundamental 

natural frequencies. 

 

 

   

Fig. 13 Change of log likelihood ratio versus the number of missing bolts at Joint 16: (a) test results of 

WP1(C
1

6), (b) test results of WP2(C
2
6) and (c) test results of WP3 (C

3
6) 
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4.4 Experimental test results: identification of member damage 
 
In this section, detecting member damage by the proposed DSIs was demonstrated with two 

different sensor deployments. Due to the limited number of sensors, two specific sensor 

deployments were tested as shown in the Figs. 14(a) and 14(b). As shown in Fig. 14(c), two 

sensors were attached per each of the selected members in order to measure relative accelerations.  

 

 

 

 

 

Fig. 14 Test configuration for identifying a member with sectional loss (50% saw-cut) (a) sensor 

deployment 1, (b) sensor deployment 2 and (c) installation of sensors on the member 

 

 
Table 4 Parameter set for sectional loss damage detection 

Damage 

Type 

Sampling 

Rate(Hz) 

Number of 

Samples 

Mother 

Wavelet 
Level 

Path for Selected 

Wavelet Packet 

Frequency 

Range 

(Hz) 

Sectional 

loss 

(50% 

saw-cut) 

5000Hz 10000 db2 6 
000000 

(1
st
 Packet) 

0- 39.06 
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Fig. 14(a) shows that three top chord members (Member 2(joint ID 16-17), Member 3(joint ID 

2-3) and Member 4(joint ID 3-4)) adjacent to the damaged member are selected. Fig. 14(b) shows 

the sencond sensor deployment in which two top chord members (Member 1(joint ID 15-16)) and 

Member 3(joint ID 11-12)) in X direction, one transverse member (Member 2(joint ID 5-14)) in Y 

direction, and one diagonal member (Member 4(joint ID 28-7)) placed on the X-Z plane are 

selected. In the second sensor deployment, the selected members are located far distance from 

each other and their axial directions are set to be different. Time-domain acceleration data (10000 

samples) were sampled at 5-kHz sampling rate. First, the measured accelerations were 

standardized by Eq. (15). For computations of the DSIs, relative accelerations were computed 

simply by subtracting acceleration data measured at one end from those measured at the other end 

per each member. Four relative acceleration signals were decompsed by WPD to the sixth scale 

with db2 mother wavelet. Based on the results of the sensitivity test presented in Section 4.3, the 

first packet was selected to compute the DSIs because frequency range of the selected wavelet 

packet includes fundamental frequencies as explained in Section 4.3. Detailed information on the 

parameters selected for the computation of DSIs is summarized in Table 4. 

 

 

  

Fig. 15 Results of member damage identification (a) test results of sectional loss with sensor deployment 

1 and (b) test results of sectional loss with sensor deployment 2 

 

 

The tests were repeated up to 30 times in order to perform statistical analyses of the DSIs and 

accordingly computed DSIs were averaged and plotted with error bars as shown in Fig. 15. The 

test results with two different sensor deployments show that the proposed method could 

successfully locate the damaged member (Member 1(joint ID 15-16)). According to the test results, 

the DSIs computed from tests with members having the same length and axial directions showed 

better performance than those computed from tests using members with different lengths and axial 

directions. Although we could monitor only four members due to a limited number of sensors, the 

damage specificity is expected to increase as more sensors are available. 
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4.5 Experimental test results: identification of joint damage 
  

For detecting joint damage made by loosening bolts, the remote front panel of the statistical 

reference-free real-time damage detection system developed in the NI-LabVIEW VI program was 

used. The proposed statistical reference-free DSI was experimentally verified by detecting the 

damaged joints. All the information of parameters, selected wavelet packet and corresponding 

frequency ranges of the wavelet packet were summarized in Table 5. Joint damage scenario (JDS) 

1, 3 and 4 were tested with 5 kHz sampling rate, 5000 samples in a window, db2 for mother 

wavelet, sixth level of decomposition and wavelet packet (000000) that includes the frequency 

band from 0 Hz to 39.06 Hz. JDS 2, 5 and 6 were tested with 2 kHz sampling rate, 2000 samples 

in a window, db2 for mother wavelet, sixth level and wavelet packet (000001) that includes the 

frequency band from 16.13 Hz to 32.25 Hz. As shown in Table 5, all of the selected wavelet 

packets include natural frequencies of the truss bridge structure.  

 

 
Table 5 Parameter sets for joint damage scenarios 

Damage 

Scenario 

Sampling 

Rate(Hz) 

Number of  

Samples(ea) 

in a Window 

Mother 

Wavelet 
Level 

Path for 

Selected 

Wavelet 

Packet 

Threshold 

Value 

Frequency 

Range (Hz) 

JDS1 5 kHz 5000 db2 6 000000 50 0- 39.06 

JDS2 2 kHz 2000 db2 6 000001 50 16.13- 32.25  

JDS3 5 kHz 5000 db2 6 000000 50 0- 39.06 

JDS4 5 kHz 5000 db2 6 000000 50 0- 39.06 

JDS5 2 kHz 2000 db2 6 000001 50 16.13- 32.25 

JDS6 2 kHz 2000 db2 6 000001 50 16.13- 32.25 

 

 

Log likelihood ratios are updated in nearly real-time mode on the remote front panel for all of 

the tested JDSs as shown in Fig. 16 through Fig. 21. In both of the single joint damage cases, the 

locations of damage could clearly be detected with the damage alarm light. Compared to other 

undamaged joints, the statistical DSIs from joint ID 12 and 17 fluctuated very much, with 

noticeably large amplitudes. It indicates damage at joint ID 12 and 17.  It was also observed that 

the DSIs in X and Y direction were more effective in detecting joint damage than the DSI in Z 

direction. Figs. 18 and 19 show monitoring states on the remote front panel in the case of double 

joint damage scenarios. Similarly, the proposed DSIs from the damaged joints exceeded the preset 

threshold value and indicated damage. Like the single damage case, the DSIs in Z direction were 

relatively smaller than those in X and Y direction. Figs. 20 and 21 show monitoring states on the 

remote front panel for the cases of triple joint damage. With an equivalent level of specificity, all 

three damaged joints were successfully detected with the proposed statistical DSI. Due to 

relatively small energy level in Z direction, DSIs in Z direction were smaller than those in other 
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directions. As a result, all the single and multiple damaged locations were clearly detected by the 

statistical reference-free real-time damage deteciton algorithm. Although it was not included in this 

paper, the proposed reference-free DSIs showed consistency and repeatability in detecting 

locations of damaged joints. Therefore, the proposed statistical DSI is expected to be very useful 

for monitoring structural health of in-field truss bridge structures in real-time mode because of its 

robustness, high specificity to damage, reference-free feature and fast analysis times. 

 

 

 

Fig. 16 Result of joint damage scenario 1(damaged location at joint ID 12) 

 

 

 

Fig. 17 Result of joint damage scenario 2 (damaged location at joint ID 17) 
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Fig. 18 Result of joint damage scenario 3 (damaged location at joint ID 11,14) 

 

 

 

Fig. 19 Result of joint damage scenario 4 (damaged location at joint ID 16 and 26) 
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Fig. 20 Result of joint damage scenario 5 (damaged location at joint ID 6, 20 and 3) 

 

 

 

Fig. 21 Result of joint damage scenario 6 (damaged location at joint ID 24, 17 and 3) 
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However, since the DSIs proposed in this paper are sensitive to the selection of wavelet packet, 

the frequency range of the selected wavelet packets should include the fundamental frequencies in 

order to successfully detect the damaged locations.  

 

 

5. Conclusions 
 

In this paper, a statistical reference-free damage detection method was proposed for real-time 

monitoring of truss bridge structures. In particular, the proposed method does not need vibration 

signals from undamaged structures because of its effective pairing methodology of signals from 

different locations at the current damaged state. Therefore, the proposed damage detection method 

can be applied to damaged bridge structures without referencing signals from the undamaged 

structure. From this point of view, the proposed damage detection method is considered more 

effective than other damage detection methods that need reference data from undamaged state 

because the monitored data from initial pristine structures are not always available. Moreover, it 

was demonstrated that signal processing and analyses in terms of the log likelihood ratio was 

much faster than computations in terms of the likelihood ratio. Therefore, the proposed damage 

detection method can monitor bridge structures continuously in the real-time mode. This 

potentially helps public users by providing more time for evacuation in order to prevent a 

catastropic disaster.  

The proposed statistical damage detection method is based on WPD of vibration signals and log 

likelihood ratio for their statistical signal analyses. For this purpose, it was postulated that 

probabilistic distributions of vibration signals from damaged and undamaged locations are very 

different, and this difference can be used for the purpose of damage detection. Log likelihood 

ratios were computed based on the normal distribution model because both time-domain 

acceleration signals and wavelet coefficients showed the normal distribution from the 

demonstrated tests. The proposed method was verified by using a laboratory-size truss bridge 

structure in detecting various types of damage that are frequently observed in real-life structures – 

such as loss of bolts, member stiffness reduction by sectional loss, and damaged joints caused by 

bolt loosening. Since it is important to select the wavelet packet that is the most sensitive to 

damage, a sensitivity test was conducted and a procedure for selecting the wavelet packet was 

proposed in this paper. According to various experimental demonstrations and verifications, the 

proposed damage detection method was proven to be very effective in detecting various types of 

damage without reference data from undamaged structures. Especially for the damage detection of 

joint damage by bolt loosening, a statistical reference-free real-time damage detection system was 

developed by using NI-LabVIEW and was applied to the experimental verification. Through this 

system, all of the damaged joint locations were successfully located without any false alarm, even 

with damage at multiple joints. The proposed statistical reference-free real-time damage detection 

system can also be useful to monitor any abnormality caused by sensor failures. 
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