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Abstract.  Brittle fracture of structures excited by earthquakes can be prevented by adding a tuned mass 
damper (TMD). This TMD must be optimum and suitable to the physical conditions of the structure. 
Compressive strength of concrete is an important factor for brittle fracture. The application of a TMD to 
structures with low compressive strength of concrete may not be possible if the weight of the TMD is too 
much. A heavy TMD is dangerous for these structures because of insufficient axial force capacity of 
structure. For the preventing brittle fracture, the damping ratio of the TMD must be sufficient to reduce 
maximum shear forces below the values proposed in design regulations. Using the formulas for frequency 
and damping ratio related to a preselected mass, this objective can be only achieved by increasing the mass 
of the TMD. By using a metaheuristic method, the optimum parameters can be searched in a specific limit. 
In this study, Harmony Search (HS) is employed to find optimum TMD parameters for preventing brittle 
fracture by reducing shear force in additional to other time and frequency responses. The proposed method is 
feasible for the retrofit of weak structures with insufficient compressive strength of concrete. 
 

Keywords:  brittle fracture; metaheuristic methods; harmony search algorithm; tuned mass damper; 

optimization; structural control; earthquake 

 
 
1. Introduction 
 

Control of structures has various types such as active, passive, semi-active and hybrid systems. 

Passive ones are more practical in use and economical. Thus, especially base isolation systems and 

tuned mass dampers (TMD) are important areas for the researchers studying on optimization. 

Optimum design of the mechanical components of passive control systems are effective on 

reducing structural vibrations resulting from wind and earthquake excitations. Especially, TMDs 

can be effective on reducing shear forces resulting from earthquakes. Brittle fracture of reinforced 

concrete (RC) frame buildings with low compressive strength of concrete may be prevented with 

optimum TMDs if the mass of the TMD is not a trouble for the axial force capacity of the building.     

The basic form of TMD is a vibration absorber device invented by Frahm (1911). This device 

only has a mass and stiffness elements so it is only effective on reducing the vibrations when the 

natural frequency of the device is close to the excitation frequency. Ormondroyd and Den Hartog 
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(1928) added viscous dampers to that device for a more effective vibration damping under random 

vibrations.  

Tuning of TMDs have been proposed in several studies. Den Hartog (1947) obtained closed 

form expressions for the design of TMDs. In these expressions acquired for undamped main 

systems with a single degree of freedom (SDOF), the optimum frequency ( optf ) and damping ratio 

(
optd ) of TMD are found according to preselected mass ratios (µ). After the development of the 

expressions of Den Hartog, damping in the main system was taken into account in several studies 

(Bishop and Welboum 1952, Snowdon 1959, Falcon et al. 1967, Ioi and Ikeda 1978). Warburton 

(1982) developed alternative frequency and damping ratio expressions which are also functions of 

a mass ratio for undamped main SDOF systems under harmonic and white noise excitations. 

Close form expressions cannot be derived for the optimum design of TMD if the main mass has 

an inherent damping. All structures has an amount of damping so the optimum design of  a TMD 

can be done by using numerical trials with the aim of reducing desired structural response (Rana 

and Soong 1998). Rana (1995) prepared several tables for optimum TMD design parameters for 

the structures with inherent damping. Sadek et al. (1997) searched numerically optf  and 
optd  

values for different mass ratios and main system damping ratio. The expressions of optf  and 
optd  

were found by using curve fitting. Chang (1999) found optimum TMD formulas for SDOF 

systems under wind and earthquake loadings. Bakre and Jangid (2007) developed explicit 

formulae for damped SDOF main system by using a numerical searching technique under base 

acceleration modeled as Gaussian white-noise random process.  

Hoang et al. (2008) obtained simple formulas of the optimal frequency and damping ratio 

according to mass ratio for SDOF structures with TMD. It is found that the optimum TMD has 

lower frequency and higher damping ratio when the mass ratio increases. 

In the studies mentioned above, the main system is SDOF. If the natural frequencies of building 

are well separated, the physical model of the building may be thought as an equivalent SDOF 

model (Warburton and Ayorinde 1980). For other situations and better optimization, participation 

of the other modes must be taken into account.   

Sadek et al. (1997) also investigated MDOF systems with three different structural models. The 

optimum parameters for MDOF systems were described according to similarities of the optimum 

parameters for SDOF systems. An extended random decrement method was developed for the 

optimization of TMDs by taking a MDOF main system (Lin et al. 2001). The displacement and 

acceleration response spectra for structures with and without passive TMD under various 

earthquake excitations were investigated. Lee et al. (2006) proposed an optimum design theory for 

TMDs installed at different stories of MDOF structures. 

Amini and Doroudi (2010) investigated several cases of building complex formed of one main 

building and one podium structure connected through Magneto- Rheological (MR) dampers and 

TMD. Pozos-Estrada et al. (2011) carried out parametric analyses of torsionally sensitive 

structures without or with TMDs to determine their reliabilities, if the structures are designed to 

just meet an adopted serviceability limit state criterion. Tributsch and Adam (2012) discussed and 

evaluated the optimal tuning of TMD parameters. The response reduction of TMDs depends on the 

structural period, inherent damping of the structure and mass ratio.      

Metaheuristic algorithms, which simulate natural phenomena, have been used for the optimum 

design of TMDs. The evolutionary algorithm such as genetic algorithm (Hadi and Arfiadi 1998, 

Singh et al. 2002, Desu et al. 2006, Marano et al. 2010) and bionic algorithm (Steinbuch 2011) 
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were used for optimum TMD design. Particle swarm optimization (PSO) was also employed for 

the optimization of TMD (Leung et al. 2008) and explicit expressions were proposed (Leung and 

Zhang 2009).  

Marano et al. (2010) also optimized mass ratio in addition to frequency and damping ratio of 

TMD with reference to the ratios of the main system and the input frequencies. A SDOF main 

structure is used to develop two different optimization criteria in order to minimize the main 

system displacement or the inertial acceleration by employing genetic algorithm strategy. 

The harmony search (HS) algorithm, which was developed by Geem et al. (2001), was 

modified to the optimization of TMD for MDOF structures (Bekdaş and Nigdeli 2011). A program 

was developed for the optimization of TMD parameters without using a preselected TMD 

parameter. So, the optimized parameters are mass, stiffness and damping coefficient of TMD. 

Criteria of the optimization  procedure were the maximum first storey acceleration transfer 

function (TF) and the displacement of the first storey (x1) under a sine wave loading with 1 g 

amplitude.  

Bozer and Altay (2012) proposed a hybrid tracking controller with attached TMD in order to 

track the response of an oscillator and set the operating frequency of TMD.  

In this study, a new TMD optimization strategy using HS was developed. The strategy of the 

method is to reduce shear forces at structures under earthquake excitations. Several earthquake 

data can be used at the optimization process. The method was tested with three storey RC frame 

structures with different compressive strength of concrete. Example structures are under the risk of 

brittle fracture according to the regulation of American Concrete Institute (ACI) (2005) and 

Turkish Earthquake Code (TEC2007) (2007). Also, the buildings have limited axial force capacity 

for carrying an additional TMD. By using an iterative searching method like HS, the solution 

domain can be limited according to physical condition of structures. For the explicit formulas of 

TMD design, it is not possible to use different ranges for all parameters of TMDs. These formulas 

depending on mass ratio of TMD are for optimum frequency and damping ratio of TMD. The 

formulas are not capable to find a specific optimum result when designing a TMD for a structure 

with restrictions. 

 

 

2. TMD tuning formulas 
 

In this section, the formulas of TMD frequency and damping ratio, which were compared with 

proposed method, are given. The methods contain basic formulas in order to obtain an optimum 

frequency and damping ratio according to mass ratio (µ).   

The expressions of optimum frequency ratio ( optf ) and damping ratio of TMD (
optd ) which 

minimize the steady-state response of the undamped SDOF main mass subject to a harmonic main 

mass excitation can be seen in Eqs. (1) and (2), respectively (Den Hartog 1947).      




1

1
optf                         (1) 

)(optd








18

3
                       (2) 
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For an undamped SDOF main system, the optimum parameters of TMD under random 

acceleration excitation with white noise spectral density are given in Eqs. (3) and (4) (Warburton 

1982).    
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The expressions of TMD parameters for damped SDOF structures are given in Eqs. (5) and (6) 

(Sadek et al. 1997). These expressions are also related to damping ratio of main system (ξ).        
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If the amplitude of first mode vibration for a unit modal participation factor at the location of 

the TMD is represented with Ф, the frequency ratio for the MDOF system is nearly equal to the 

frequency ratio for a SDOF system with a mass ratio of µФ. For a MDOF system, the TMD 

damping ratio is also approximately equal to the TMD damping ratio computed for a SDOF 

system multiplied by Ф. Thus, Eqs. (7) and (8) represents the optimum TMD parameters for a 

damped MDOF structure (Sadek et al. 1997). 
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For a damped SDOF structure under white noise base excitation, the optimum frequency ratio 

and damping ratio of TMD founded by using PSO algorithm are Eqs. (9) and (10), respectively 

(Leung and Zhang 2009).  
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The expressions given in this section are only related to mass ratio. It is not possible to see the 

effect of the period of the main system. Also, an optimum mass ratio cannot be found and these 
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expressions cannot be suitable for the structures with limitations. This situation was explained on a 

numerical example in the fourth section.     

 

 

 

Fig. 1 Flowchart of the program 

 

 
3. Methodology 

 

In this study, a program employing HS algorithm was developed. The HS algorithm is inspired 

by the performance of a musician who searches a better state of harmony in order to gain the full 

support of the listeners. The HS method has five main steps (Geem et al. 2001). 

 i. Initialization of HS algorithm parameters such as a possible range, harmony memory size 

(HMS), harmony memory considering rate (HMCR), pitch adjusting rate (PAR) and termination 

criterion.  

 ii. Generation of initial harmony memory matrix with random numbers. 

 iii. Generation of a new harmony vector. 

 iv. Replacing of the new harmony vector with the worst existing harmony vector in the 

harmony matrix, if the solution of the new vector is better than the worst one. 
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 v. Checking of the termination criterion or criteria. If not, the process must be continue from 

step iii until the termination criterion or criteria are satisfied.     

In the study of Bekdaş and Nigdeli (2011), the optimum mass, stiffness and damping 

coefficient of TMD were found for damped MDOF structures by using HS algorithm. A sinus 

loading was used in the optimization process for the dynamic analysis and the main aim of the 

optimization was to reduce the maximum first story displacement.  

The strategies used in this study are different from the previous one using HS for optimum 

TMD design. In the optimization process, six different earthquake records were used. Some of 

these earthquakes must be suitable to the design spectrum in codes and must represent the 

characteristics of the site. In addition to that, different types of earthquake records can be used to 

avoid seismic activity of blind-thrust and undetected faults.  

The program has three aims and the main one is to reduce maximum shear force value resulting 

from the earthquake excitations. The flowchart of the proposed method can be seen in Fig. 1. 

The program analyses time domain structural responses and frequency domain transfer 

functions of a MDOF structure with and without TMD. The maximum values of shear force (V), 

the first storey displacement (x1w/o TMD ) and acceleration transfer function of the first storey (TF w/o 

TMD) are saved for the most critical earthquake. Then, harmony vectors as many as HMS are 

generalized with random TMD parameters including mass, period and damping ratio of TMD. In 

that way, it is possible to optimize three variable of TMD including the mass of it. The program 

uses random values in a defined range for all three variables. A defined range can be affected by 

physical limitations of structure (i.e., axial force capacity of the structural members) and economic 

conditions (i.e., cost of the high damping). 

After the generation of the initial harmony vectors as many as HMS, new harmony vectors 

must be generated iteratively until the stopping criteria is satisfied. At all iterations, newly 

generated new harmony vector is replaced with the worst one if the generated one is better. 

Elements of the newly generated vector can be chosen either from existing vectors with a small 

different in value or from the whole solution range. Especially, while generating a new vector from 

the existing ones, the best vector has more chance. It is possible to overcome local optima problem 

with these techniques. The possibility to generate a new vector from an existing vector is HMCR. 

The same possibility is used when selecting the best one as the source of generation. The radius of 

the range is PAR of the general range for the generation of a new vector from the existing ones.  

Three stopping criteria have been used in this methodology. The most important one is to 

reduce the maximum shear force value resulting from the most critical earthquake. This value must 

be smaller than the entered value by the user. Also, the program chooses the worst vector 

according to maximum shear force value. The second criterion is about the ratio of maximum first 

storey displacements of structure with (x1wTMD )  and without (x1w/oTMD ) TMD (Eq. (11)). This 

value must be smaller than a desired value (DV) defined by user.  

TMDo/w

TMDw

R
x

x
x

1

1

1             (11) 

The program can lock if the user assigns a DV which is not physically possible to achieve 

within the desired range. In order to prevent this situation, after all 100 attempts, the program 

increases this value automatically with a 0.02 different. These values can be changed by user. For 

the last criterion, the maximum value of the acceleration transfer function of the first story for the 

structure with TMD (TFwTMD) must be smaller than the uncontrolled case in value. 
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When the all set of optimum results are suitable for the stopping criteria, the optimization 

process ends. The optimum results are the values corresponding to the lowest maximum shear 

force value. By reducing the maximum shear force value, it is possible to prevent brittle fracture of 

the structure.   

 

 

4. Numerical example 
 

A three story symmetrical reinforced concrete (RC) structure with three spans in both 

horizontal directions was analyzed for the application of a TMD. The length of the spans is 4 m 

and the height of the each story is 2.8 m. All of the RC columns and beams have 400x400 mm and 

500x200 mm cross-sections, respectively and the thickness of the slabs is 100 mm. The dead load 

on the slabs including the self-weight is 7.5 kN/m
2
 and the live load is 2.5 kN/m

2
. In that case, the 

maximum axial force on interior columns at the first floor is 585.72 kN. The total mass of a story 

of the building is 163.8 t. 

Five different characteristic strength of concrete (8, 10, 12, 14 and 16 MPa) was investigated in 

order to check the feasibility and the efficiency of the proposed method and the other methods 

using basic formulas. Low compressive strengths of the concrete were taken into consideration so 

the building is in danger of brittle fracture in all cases. Also, the axial force capacity of the 

columns is low. The main aim of the application is to prevent brittle fracture by reducing 

maximum shear forces without exceeding the axial force capacity of the columns. The maximum 

shear and axial force capacity of the structure have been described in several regulations. 

In ACI318 (2005) , the maximum shear force capacity of a column (Vn,max)  is given in Eqs. 

(12) and (13). Also, the maximum shear force capacity in Turkish Earthquake Code (TEC2007) 

(2007) can be seen in Eq. (14). In these equations, fc
'
, fcd and Ac are the characteristic strength of 

concrete, the design strength of concrete and the cross sectional area of a column. The design 

strength of concrete can be obtained by dividing fc
'
 to a safety coefficient of 1.5 (TS500 2001).  

c
'
cmax,n Af.V 20             (12) 

cmax,n A.V 55              (13) 

ccdmax,n Af.V 220                (14) 

The maximum axial force capacity of a column (Nn,max)  described in TEC2007 is given in Eq. 

15. By using this equation, it is possible to find the maximum allowed mass of TMD by 

subtracting the axial force resulting from dead and live loads from Nn,max.  

c
'
cmax,n Af.N 50                    (15) 

In Table 1, the stiffness of each storey (k), period of the structure (T), mass ratio (µ), mass of 

TMD (md,max ) and the maximum allowed values of shear and axial force are given for different 

characteristic strength of the concrete. The damping was assumed as 5% and Rayleigh damping 

was used at the analyses. 
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Table 1 Properties of the structural models 

fc
'
 (MPa) k (kN/m) T(s) 

ACI318 TEC 2007 
µmax 

 

ΣVn,max (kN) ΣVn,max (kN) Nn,max (kN) 
md,max (t) 

8 198569 0.406 3072 2253 640 0.041 20.3 

10 207862 0.396 3840 2816 800 0.163 80.3 

12 216263 0.389 4608 3379 960 0.285 140.2 

14 223994 0.382 5376 3942 1120 0.407 200.2 

16 231175 0.376 6144 4506 1280 0.529 260.1 

 

 

The HS optimization process was conducted by using six earthquake records including a record 

of recent 23 October 2011 Van (Turkey) earthquake (Table 2). Also, the other methods were 

compared under these earthquakes. The chosen earthquakes show different characteristics of near 

and far fault regions. The optimization earthquakes can be selected according to geophysical 

condition of the region. In this study, the present approach was demonstrated by using a general 

solution because a structure in a region with high seismic activity can be effected by near and far 

faults excitations in different period of time. The Van earthquake record was taken from METU 

EERC and the other ones was taken from PEER database. 

 

 
Table 2 Earthquake records used in the HS optimization 

Earthquake Date Station Component PGA (g) PGV (cm/s) PGD (cm) 

Kobe 1995 0 KJMA KJM000 0.821 81.3 17.68 

Imperial Valley 1940 
117 El Centro 

Array #9 
I-ELC180 0.313 29.8 13.32 

Erzincan 1992 95 Erzincan ERZ-NS 0.515 83.9 27.35 

Van 2011 6503 Muradiye NS 0.182 33.8 9.19 

Northridge 1994 24514 Sylmar SYL360 0.843 129.6 32.68 

Loma Prieta 1989 16 LGPC LGP000 0.563 94.8 41.18 

 

 

According to Turkish Earthquake Code (TEC 2007), at least three different earthquake records 

which are suitable to design spectrum, must be selected. The average spectral acceleration values 

of these records at zero period must be bigger than acceleration of gravity (g) multiplied with 
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effective ground acceleration coefficient (Ao). Between 0.2T1 and T1 according to first period of 

structure (T1), average of the spectral acceleration values shall not be less than 90% of elastic 

spectral accelerations (Sae(T)).  

For the first-degree seismic zone with effective ground acceleration coefficient (Ao) of 0.4, 

residential building with 1.0 importance factor (I) and local site class of Z4 defined in TEC2007, 

the graph of Sae(T) is given together with the average spectral acceleration plot of 4 near fault 

earthquakes (Kobe, Erzincan , Northridge, Loma Prieta) for 5% damping in Fig. 2. 

 

 

 

Fig. 2 Elastic spectral accelerations and average spectral acceleration of 4 earthquakes 

 

 

The average spectral accelerations are higher than Sae (T) for the period zero and the period 

range described in TEC2007.  

The HS algorithm parameters HMS, HMCR and PAR are taken 5, 0.5 and 0.1 respectively. By 

taking HMCR as 0.5, equal probability was given to generate a new vector from the whole domain 

or existing ones. Increasing the HMCR value may shorten the optimization process but an average 

value was used to prevent the results in local regions. The value of PAR was taken as small to find 

more precise optimum results.     

The maximum responses of the uncontrolled structure can be seen in Table 3. Instead of 

checking maximum base shear divided by R (numerical coefficient representative of the inherent 

over strength and global ductility capacity of lateral force-resisting systems), the shear forces at a 

story in which the numerical value is the maximum, was checked in the analysis of the three story 

RC building. For a three story RC building, the maximum base shear may be three times of the 

story shear, while R is equal to 3.5 for an ordinary RC building at ACI318. This approximation 

was applied in order to investigate the structure for different suggests in regulations in which the 

value of R was approached differently. The main aim of the study is to reduce shear forces to a 

desired value without exceeding the desired axial force. For all characteristic strength of the 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

S
p

ec
te

ra
l 
A

cc
el

er
a

ti
o

n
 (

g
)

Period (s)

Sae(T)

Average of 4 earthquakes

145



 

 

 

 

 

 

Sinan Melih Nigdeli and Gebrail Bekdas 

concrete, the maximum shear force value of the structure exceeds the allowed maximum values in 

TEC2007 under Northridge earthquake.  

 

 
Table 3 The maximum responses of the uncontrolled structure 

fc
'
 (MPa) Response 

Earthquake Record 

Kobe 
Imperial 

Valley 
Erzincan Van Northridge 

Loma 

Prieta 

8 
x1max (cm) 4.91 1.38 1.77 1.38 5.92 3.13 

Vmax (kN) 4133.80 1283.00 1480.38 1216.97 5323.53 2630.03 

10 
x1max (cm) 5.07 1.41 1.72 1.33 5.71 2.79 

Vmax (kN) 4513.55 1302.81 1486.41 1226.54 5397.76 2555.80 

12 
x1max (cm) 5.04 1.36 1.68 1.32 5.54 2.48 

Vmax (kN) 4739.93 1350.82 1496.31 1246.97 5442.36 2470.26 

14 
x1max (cm) 4.90 1.33 1.65 1.30 5.39 2.22 

Vmax (kN) 4830.50 1379.43 1512.06 1269.55 5472.31 2377.82 

16 
x1max (cm) 4.75 1.33 1.62 1.26 5.27 2.06 

Vmax (kN) 4873.97 1405.03 1531.50 1264.57 5497.44 2309.65 

 

 

The compared methods were investigated for the mass ratio between 1% and 20%. In order to 

adapt these methods for MDOF structures, the first vibration mode and modal mass was taken into 

account. The first modal mass is 301.6 t. In that case, the optimum period and damping ratio of 

TMD for different methods can be seen in Table 4. The comparison of present approach with TMD 

design formulas may not be fair because these formulas were developed SDOF systems. For 

MDOF systems, the TMD damping ratio is also approximately equal to the TMD damping ratio 

computed for a SDOF system multiplied by Ф according to Sadek et al. (1997). In this study the 

value of Ф is 0.82. This value is lower than 1, so the multiplication of this value with damping 

ratio decreases
optd . By using this procedure, it is not possible to obtain better displacement and 

shear force solutions if Ф is lower than 1. 

The maximum x1R and Vmax values are given in Table 5 for fc
'
=8 MPa for compared methods. 

These maximum values are for the most critical earthquake record. All compared methods are not 

effective on reducing the maximum shear force value to the values calculated according to design 

codes (exceeding values shown in italic). The control of the structure may be possible if the 

damping ratio of the TMD is bigger. But, in order to use these methods and obtain bigger damping 

ratios, the mass ratio must be increased. This situation is not possible for this problem with fc
'
=8 

MPa because the axial force capacity is over the limit for the mass ratio bigger than 0.06 

(exceeding values shown in bold). By using a numerical search instead of using design formulas, 

it possible to find an optimum value without exceeding this limit. 
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Table 4 The optimum period and damping ratio for the methods 

µm md (t) 
Den Hartog Warburton Sadek et al. Leung and Zhang 

optdT (s) 
optd  

optdT (s) 
optd  

optdT (s) 
optd  

optdT (s) 
optd  

0.01 3.02 0.38 0.06 0.38 0.05 0.37 0.15 0.36 0.05 

0.02 6.03 0.38 0.09 0.39 0.07 0.37 0.19 0.36 0.07 

0.03 9.05 0.39 0.10 0.39 0.09 0.37 0.22 0.35 0.09 

0.04 12.06 0.39 0.12 0.39 0.10 0.36 0.24 0.35 0.10 

0.05 15.08 0.39 0.13 0.40 0.11 0.36 0.27 0.34 0.11 

0.06 18.09 0.40 0.15 0.40 0.12 0.36 0.29 0.34 0.12 

0.07 21.11 0.40 0.16 0.41 0.13 0.36 0.30 0.33 0.13 

0.08 24.13 0.41 0.17 0.41 0.14 0.35 0.32 0.33 0.14 

0.09 27.14 0.41 0.18 0.42 0.15 0.35 0.33 0.32 0.14 

0.10 30.16 0.41 0.18 0.42 0.15 0.35 0.35 0.32 0.15 

0.11 33.17 0.42 0.19 0.43 0.16 0.34 0.36 0.32 0.16 

0.12 36.19 0.42 0.20 0.43 0.17 0.34 0.37 0.31 0.16 

0.13 39.21 0.42 0.21 0.44 0.17 0.34 0.38 0.31 0.17 

0.14 42.22 0.43 0.21 0.44 0.18 0.34 0.39 0.30 0.18 

0.15 45.24 0.43 0.22 0.45 0.18 0.33 0.40 0.30 0.18 

0.16 48.25 0.44 0.23 0.45 0.19 0.33 0.41 0.29 0.19 

0.17 51.27 0.44 0.23 0.46 0.19 0.33 0.42 0.29 0.19 

0.18 54.28 0.44 0.24 0.46 0.20 0.32 0.43 0.28 0.20 

0.19 57.30 0.45 0.24 0.47 0.20 0.32 0.44 0.28 0.20 

0.20 60.32 0.45 0.25 0.48 0.21 0.32 0.45 0.27 0.21 

 

 

 

 Fig. 3 Time history plots for fc
'
 =8 MPa 
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Table 5 Maximum x1R and Vmax for the methods (fc
'
=8 MPa) 

Mass 

Ratio (µ) 

Den Hartog Warburton Sadek et al. Leung and Zhang 

x1R Vmax (kN) x1R Vmax (kN) x1R Vmax (kN) x1R Vmax (kN) 

0.01 1.01 4987.18 1.04 5104.20 0.94 4185.61 1.01 5137.07 

0.02 0.98 4567.65 1.01 4712.92 0.92 3782.84 1.06 4769.86 

0.03 0.97 4258.54 0.98 4423.08 0.90 3509.21 1.11 4483.28 

0.04 0.95 4008.68 0.97 4188.48 0.89 3303.61 1.15 4246.49 

0.05 0.95 3797.56 0.96 3990.05 0.89 3141.60 1.18 4046.89 

0.06 0.94 3614.72 0.95 3818.09 0.88 3010.16 1.20 3876.58 

0.07 0.93 3453.79 0.95 3667.21 0.88 2901.26 1.22 3730.68 

0.08 0.93 3310.77 0.95 3534.05 0.88 2809.62 1.24 3606.46 

0.09 0.93 3182.88 0.95 3416.23 0.88 2731.68 1.26 3501.62 

0.10 0.93 3068.33 0.95 3312.03 0.89 2664.51 1.28 3452.05 

0.11 0.93 2965.23 0.95 3220.03 0.90 2606.34 1.30 3485.97 

0.12 0.93 2872.26 0.95 3138.97 0.91 2575.72 1.32 3516.96 

0.13 0.93 2788.51 0.95 3067.80 0.92 2587.11 1.34 3546.23 

0.14 0.93 2712.92 0.96 3005.61 0.94 2597.36 1.36 3574.40 

0.15 0.93 2644.53 0.96 2951.29 0.95 2606.52 1.38 3601.77 

0.16 0.93 2582.87 0.96 2903.94 0.96 2614.69 1.40 3628.64 

0.17 0.93 2527.09 0.96 2863.05 0.98 2621.89 1.42 3654.75 

0.18 0.93 2476.60 0.97 2827.75 0.99 2628.09 1.44 3680.09 

0.19 0.93 2431.08 0.97 2797.36 1.00 2633.30 1.47 3704.40 

0.20 0.94 2389.77 0.97 2771.60 1.02 2637.54 1.49 3727.39 

 

 

As seen in Table 6, for the limit of µ  ≤0.04 and ξd ≤ 0.5, the maximum shear force of the 

structure for fc
'
 =8 MPa can be under the maximum values determined in the design codes. It is not 

physically possible to reduce shear force values for a damping ratio less than 0.49. For the 

optimum TMD values md=19.008 t,
optdT =0.4198 s and 

optd =0.4928,  the maximum x1R and shear 

force of the structure for fc
'
 =8 MPa are 0.7871 and 2154.13 kN, respectively. Also, the optimum 

parameters and maximum results of the structures with different fc
'
 can be seen in Table 6 for two 

different cases. Also, the ratios between first story acceleration transfer functions of controlled and 

uncontrolled structure (TFR) are given in Table 6. The maximum responses given in this table is 

for the most critical earthquake. The maximum shear force values occur under Northridge 

earthquake but the maximum x1R values occur under Erzincan earthquake except for the case µ 

≤0.1, ξd ≤ 0.3 and fc
'
 =16 MPa. In this case, Loma Prieta excitation is the most critical earthquake 

148



 

 

 

 

 

 

Optimum tuned mass damper design for preventing brittle fracture of RC buildings 

for maximum x1R. For fc
'
 =8 MPa, the time history displacement responses of the first storey (x1) 

obtained by using present approach can be seen in Fig. 3 under Northridge and Erzincan 

earthquake excitations. 

 
Table 6 Optimum TMD parameters and maximum responses obtained by using present approach 

Case fc
'
 (MPa) 

optdm (t) 
optdT (s) 

optd  x1R Vmax (kN) TFR 

µ  ≤0.04, ξd ≤ 0.5 8 19.008 0.4198 0.4928 0.7871 2154.13 0.714 

µ  ≤0.1, ξd ≤ 0.3 

 

10 48.935 0.413 0.2893 0.8805 2186.85 0.332 

12 48.973 0.4148 0.2958 0.8689 2218.95 0.299 

14 48.602 0.4138 0.2973 0.8592 2258.94 0.280 

16 48.2481 0.4063 0.2977 0.9049 2277.55 0.286 

µ  ≤0.1, ξd ≤ 0.4 

10 49.053 0.4177 0.3876 0.8454 1973.28 0.388 

12 47.719 0.4124 0.386 0.835 2034.12 0.387 

14 48.839 0.3984 0.3883 0.8288 2045.76 0.398 

16 49.088 0.4124 0.3919 0.815 2057.01 0.360 

 
Table 7 Maximum x1R and Vmax for the methods (fc

'
=10 MPa) 

Mass 

Ratio (µ) 

Den Hartog Warburton Sadek et al. Leung & Zhang 

x1R Vmax (kN) x1R Vmax (kN) x1R Vmax (kN) x1R Vmax (kN) 

0.01 1.00 5088.23 1.01 5208.42 0.94 4272.08 1.01 5242.43 

0.02 0.98 4663.18 1.00 4811.99 0.92 3866.81 0.99 4878.02 

0.03 0.97 4344.94 0.98 4511.68 0.90 3591.70 1.05 4591.34 

0.04 0.95 4087.58 0.97 4268.49 0.89 3385.66 1.12 4355.36 

0.05 0.95 3870.94 0.96 4064.07 0.89 3223.78 1.17 4156.43 

0.06 0.94 3683.70 0.95 3887.87 0.88 3092.81 1.21 3986.64 

0.07 0.93 3519.06 0.95 3733.57 0.89 2984.67 1.25 3841.53 

0.08 0.93 3373.05 0.94 3597.16 0.91 2894.11 1.28 3718.56 

0.09 0.92 3242.21 0.94 3476.02 0.92 2817.11 1.30 3615.66 

0.10 0.92 3124.44 0.94 3368.42 0.93 2751.18 1.33 3531.27 

0.11 0.92 3018.30 0.94 3272.87 0.95 2694.09 1.36 3463.87 

0.12 0.92 2922.14 0.94 3188.08 0.96 2644.62 1.38 3480.31 

0.13 0.92 2835.15 0.94 3112.99 0.98 2601.44 1.41 3515.82 

0.14 0.92 2756.26 0.95 3046.98 1.00 2594.02 1.43 3550.75 

0.15 0.92 2684.64 0.95 2988.90 1.01 2608.92 1.46 3585.39 

0.16 0.92 2619.78 0.95 2937.90 1.03 2623.03 1.48 3619.82 

0.17 0.92 2560.75 0.95 2893.66 1.04 2636.20 1.50 3653.85 

0.18 0.92 2507.38 0.95 2855.06 1.06 2648.60 1.53 3687.39 

0.19 0.92 2458.73 0.96 2821.76 1.08 2660.12 1.55 3720.18 

0.20 0.92 2414.80 0.96 2793.09 1.09 2670.76 1.57 3751.99 
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In Table 7, the maximum x1R and Vmax values are given for fc
'
=10 MPa. For the methods of Den 

Hartog , Warburton, Sadek et al. and Leung and Zhang the maximum shear forces are 2414.80 kN, 

2793.09 kN, 2594.02 kN and 3463.87 kN, respectively. Leung and Zhang (PSO) is not effective on 

reducing the shear force under regulations values. By using proposed method, for the cases with 

maximum 30% and 40% damping ratio , the maximum values of x1R are 0.8805 and 0.8454 and 

shear force are 2186.85 kN and 1973.28 kN, respectively. The compared methods have bigger 

masses and damping ratios for some mass ratios. Optimum values obtained by the present 

approach are more effective on reducing structural vibrations and shear forces because the 

optimization process was conducted for MDOF systems.  

For the other characteristic strength of the concrete (fc
'
=12, 14 and 16 MPa), x1R and Vmax values 

obtained by the compared methods are given in Appendix. The maximum x1R and shear force 

obtained by the present approach are lower than the other methods except the case µ  ≤0.1, ξd ≤ 0.3 

and fc
'
=16 MPa for the maximum x1R. For masses bigger than 39.21 t, the maximum x1R is 0.89 

when using Den Hartog formulas. When the limit values of mass and damping ratio of TMD are 

10% and 30% for fc
'
=16 MPa, the maximum x1R obtained by the present study is 0.9. But, the main 

objective maximum shear force values are lower than the compared methods.  

 

 

5. Conclusions 
 

The objective of this paper is to prevent the risk of brittle fracture of RC buildings by adding a 

TMD on the top of the structure. Structures with different compressive strength of the concrete 

were chosen as case study and all structures are under trouble of brittle fracture. Also, their axial 

force capacities are limited for a heavy TMD application. The challenge of the methodology is to 

find optimum TMD values for reduction of shear forces without exceeding the axial force capacity 

of the structure according the rules of seismic codes.  

In practice, several design formulas for tuning of TMDs have been used for improving the 

seismic performance of multi-story structures although these design formulas were developed for 

the minimization of single degree of freedom systems based on different optimum criteria and 

external excitation. Although these formulas are derived for SDOF systems, some modifications 

for using these formulas for MDOF systems were proposed. In order to find the best and suitable 

optimum value by considering the physical properties of the structure and construction site, a 

numerical search algorithm is the best suitable tool for this aim. A random search method like HS 

is a great source for the specific structures by using correct stopping and checking criteria under 

suitable external excitations. 

The case study was investigated for reduction of the maximum values of shear force, first story 

displacement and acceleration transfers function. It must be noted that the optimum solutions may 

vary when different criteria, external excitations and structure is employed for the research. The 

design structure must be also checked for the resistance of overturning moment for possible 

restriction of axial force capacity. The HS optimized TMD can be used for the retrofit of weak 

structures in mean of insufficient shear force safety.  
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Appendix 
 

 

 

 

 
Table 8 Maximum x1R and Vmax for the methods (fc

'
=12 MPa) 

Mass 

Ratio (µ) 

Den Hartog Warburton Sadek et al. Leung and Zhang 

x1R Vmax (kN) x1R Vmax (kN) x1R Vmax (kN) x1R Vmax (kN) 

0.01 1.00 5154.37 1.00 5277.59 0.94 4327.08 1.04 5301.88 

0.02 0.98 4728.03 0.99 4881.06 0.91 3921.47 1.05 4941.75 

0.03 0.98 4403.30 1.01 4572.88 0.90 3646.53 1.05 4660.34 

0.04 0.98 4139.73 1.01 4321.78 0.89 3441.37 1.08 4429.12 

0.05 0.97 3917.93 0.99 4111.13 0.91 3280.77 1.14 4233.61 

0.06 0.95 3726.60 0.97 3930.36 0.92 3151.53 1.19 4066.67 

0.07 0.93 3559.17 0.94 3772.66 0.94 3045.27 1.24 3924.79 

0.08 0.92 3410.40 0.94 3633.60 0.96 2956.50 1.28 3805.30 

0.09 0.92 3277.36 0.94 3510.29 0.97 2881.67 1.33 3706.61 

0.10 0.91 3157.51 0.93 3400.34 0.99 2817.71 1.37 3626.65 

0.11 0.91 3049.14 0.93 3302.17 1.01 2762.89 1.41 3563.64 

0.12 0.91 2950.93 0.93 3214.95 1.03 2715.46 1.45 3515.89 

0.13 0.91 2861.63 0.93 3137.29 1.04 2674.34 1.48 3481.44 

0.14 0.91 2780.54 0.93 3068.31 1.06 2638.72 1.52 3497.00 

0.15 0.91 2706.63 0.94 3007.58 1.08 2607.98 1.55 3536.27 

0.16 0.91 2639.49 0.94 2953.93 1.10 2607.41 1.58 3575.69 

0.17 0.91 2578.23 0.94 2906.96 1.12 2625.67 1.61 3615.14 

0.18 0.91 2522.58 0.94 2865.91 1.14 2643.25 1.64 3654.39 

0.19 0.91 2471.82 0.94 2830.20 1.16 2660.07 1.66 3693.30 

0.20 0.91 2425.69 0.95 2799.35 1.18 2676.16 1.69 3731.54 
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Table 9 Maximum x1R and Vmax for the methods (fc

'
=14 MPa) 

Mass 

Ratio (µ) 

Den Hartog Warburton Sadek et al. Leung and Zhang 

x1R Vmax (kN) x1R Vmax (kN) x1R Vmax (kN) x1R Vmax (kN) 

0.01 1.03 5191.98 1.05 5316.95 0.93 4358.87 1.07 5328.85 

0.02 0.98 4766.65 1.00 4922.86 0.91 3954.47 1.12 4973.27 

0.03 1.00 4439.03 1.02 4610.92 0.91 3681.43 1.14 4699.72 

0.04 1.02 4171.42 1.05 4354.15 0.93 3478.56 1.14 4474.74 

0.05 1.03 3945.72 1.06 4138.29 0.94 3320.63 1.12 4284.37 

0.06 1.02 3751.29 1.04 3953.29 0.96 3194.08 1.16 4122.48 

0.07 1.00 3581.08 1.02 3792.36 0.98 3090.56 1.21 3986.27 

0.08 0.98 3430.20 1.00 3651.11 1.00 3004.90 1.26 3872.97 

0.09 0.96 3295.31 0.97 3525.74 1.02 2932.80 1.31 3780.64 

0.10 0.94 3173.82 0.94 3413.91 1.04 2871.85 1.36 3707.18 

0.11 0.92 3063.94 0.92 3314.27 1.06 2819.68 1.41 3650.37 

0.12 0.90 2964.18 0.92 3225.08 1.08 2774.92 1.46 3608.04 

0.13 0.90 2873.40 0.92 3145.46 1.11 2736.44 1.51 3578.49 

0.14 0.90 2790.71 0.92 3074.68 1.13 2703.28 1.56 3559.89 

0.15 0.90 2715.22 0.92 3011.64 1.15 2674.82 1.60 3550.98 

0.16 0.90 2646.43 0.93 2956.10 1.17 2650.57 1.64 3550.71 

0.17 0.90 2583.50 0.93 2906.99 1.19 2630.40 1.68 3558.37 

0.18 0.90 2526.26 0.93 2864.01 1.21 2621.92 1.72 3600.05 

0.19 0.90 2473.84 0.93 2826.38 1.24 2643.08 1.76 3643.21 

0.20 0.90 2426.16 0.93 2793.79 1.26 2663.63 1.79 3686.16 
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Table 10 Maximum x1R and Vmax for the methods (fc

'
=16 MPa) 

Mass 

Ratio (µ) 

Den Hartog Warburton Sadek et al. Leung and Zhang 

x1R Vmax (kN) x1R Vmax (kN) x1R Vmax (kN) x1R Vmax (kN) 

0.01 1.05 5211.75 1.07 5337.27 0.95 4377.93 1.07 5340.04 

0.02 1.03 4788.17 1.04 4945.73 0.92 3975.45 1.15 4988.45 

0.03 0.99 4460.86 1.01 4633.94 0.91 3705.21 1.18 4721.75 

0.04 1.03 4191.38 1.06 4374.47 0.93 3505.47 1.18 4502.42 

0.05 1.05 3963.34 1.08 4154.85 0.95 3350.82 1.17 4317.66 

0.06 1.05 3766.32 1.08 3966.37 0.97 3227.58 1.15 4162.06 

0.07 1.04 3593.81 1.07 3802.45 0.99 3127.50 1.15 4032.75 

0.08 1.03 3440.99 1.05 3658.79 1.01 3045.02 1.20 3926.92 

0.09 1.01 3304.34 1.02 3531.50 1.03 2976.13 1.25 3842.16 

0.10 0.99 3181.47 0.99 3418.07 1.06 2918.12 1.30 3775.97 

0.11 0.96 3070.13 0.96 3316.89 1.08 2868.93 1.35 3725.85 

0.12 0.94 2969.23 0.93 3226.15 1.10 2826.90 1.40 3689.47 

0.13 0.92 2877.14 0.91 3145.09 1.12 2790.96 1.45 3664.98 

0.14 0.89 2793.27 0.91 3072.62 1.15 2760.30 1.50 3650.52 

0.15 0.89 2716.55 0.91 3007.99 1.17 2734.17 1.55 3644.91 

0.16 0.89 2646.41 0.92 2950.70 1.19 2712.15 1.60 3646.94 

0.17 0.89 2582.33 0.92 2899.86 1.22 2693.93 1.65 3655.99 

0.18 0.89 2523.56 0.92 2855.25 1.24 2679.22 1.70 3671.53 

0.19 0.89 2470.05 0.92 2815.96 1.27 2668.07 1.75 3693.45 

0.20 0.89 2420.98 0.92 2781.85 1.29 2660.56 1.79 3721.52 
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