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Abstract.  This study proposes an innovative control approach to suppress the responses of a beam 
structural system under moving forces. The proposed control algorithm is a synthesis of the adaptive input 
estimation method (AIEM) and linear quadratic Gaussian (LQG) controller. Using the synthesis algorithm 
the moving forces can be estimated using AIEM while the LQG controller offers proper control forces to 
effectively suppress the beam structural system responses. Active control numerical simulations of the beam 
structural system are performed to evaluate the feasibility and effectiveness of the proposed control 
technique. The numerical simulation results show that the proposed method has more robust active control 
performance than the conventional LQG method. 
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1. Introduction 
 

To control the magnitude of bridge vibrations it is critically important to be able to accurately 

predict the bridge response to the action of crossing vehicles. The dynamic response of structures 

under moving loads is an important problem in bridge design and reliability evaluation. There are 

many research works (Yau 2009, Reis and Pala 2009, Chang et al. 2009, Yang et al. 2010, Huang 

et al. 2011, Simsek 2011) devoted to vehicle-induced vibration in suspension bridges. To control 

the magnitude of bridge vibrations it is critically important to be able to accurately predict the 

bridge response to the action of crossing vehicles and the resulting vehicle responses. Under such 

conditions the control concept applied to a beam structural system requires serious consideration. 

Control approaches have rapidly developed over the last two decades to provide structural safety 

and serviceability. 

The control approaches for structures are clustered into three main categories, passive, 

semi-active and active control techniques. Passive techniques are normally performed using 

dynamic vibration absorbers or isolators. In terms of passive control technique, the unwanted 

vibration problem can be effectively solved using passive control techniques. In semi-active 

techniques viscous dampers are installed in the structure (Onoda et al. 1996). Active control 

technology has played an important role in suppressing the dynamic responses of continuous or 

discrete structural elements especially under unpredictable excitations. The control forces in active 
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control techniques are generated by electric actuators imposed on the tendons or on a stiff 

cantilever fixed to the end of a beam (Frischgesel et al., Reckmann et al. 1998). A valuable 

literature survey on active control theory has been provided by Meirovitch (1997). The vibration 

control of structural systems under moving loads was investigated using various active control 

algorithms(Kwon et al. 1998, Wang et al. 1998 and 1999, Klasztorny 2001, Zribi et al. 2006, 

Nikkhoo et al. 2007, Yu et al. 2008, Şimşek et al. 2009). Song et al. (2006) reviewed piezoelectric 

application as a smart material in civil structure control.Rofooei and Nikkhoo (2009) recently 

studied the dynamic behavior of a smart Kirchhoff plate excited by a moving mass traveling at 

arbitrary trajectories.In their study a full state linear classical optimal algorithm was applied to 

control center point deflection of the plate using piezoelectric patches as actuators. They proved 

the efficiency of such a control system under various load cases. Stancioiu and Ouyang (2011) 

investigated the structural modification problem to feedback control design. 

Zarfam et al. (2012) proposed a linear optimal control algorithm with displacement- velocity 

feedback as a solution to suppress the beam response on an elastic foundation. Min et al. (2012) 

intends to explore the dynamic interaction behaviors between actively controlled maglev vehicles 

and guide way girders by considering the nonlinear forms of electromagnetic force and exact 

current. In all of the above-mentioned methods the control force is obtained using the 

displacement and velocity feedback responses of the structures. In other words, the external load 

influence is not considered in the optimal controller design because the external load disturbances 

are immeasurable or inestimable in the control force calculation. The first objective in this study is 

to develop a novel method for the required control forces in a complete active control system. 

In this study, we first investigate active control technique application to reduce a beam 

structural system subjected to moving forces. The active control technique is a synthesis algorithm 

of the AIEM and LQG controller. The AIEM uses the recursive form to process the measurement 

data. As opposed to the batch process, using the recursive form is an on-line process that has 

higher efficiency. The feasibility of the proposed method is verified using numerical active 

vibration control simulations for a beam structural system under moving forces. The AIEM first 

estimate on-line moving forces; meanwhile, an active LQG controller applies the same inverse 

control forces on a beam structural system. The control results show that the proposed method is 

more effective in suppressing vibration in a beam structural system than the conventional LQG 

method.   
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Fig. 1 The bridge structure model of the multi-vehicle input moving forces 
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2. Problem formulation 
 
Numerical simulations of a bridge structure are investigated here to illustrate the practicability 

and accuracy of the proposed approach in estimating unknown input moving forces. As shown in 

Fig. 1 the bridge structure is modeled as a simple beam with a total span length L , constant 

flexural stiffness EI , constant mass per unit length  and viscous proportional dampingC .  

The active control force inputs on a beam structural system. The unknown input can be 

inversely estimated first using the adaptive input estimation method; meanwhile, the conventional 

LQG method is then used to find the active control force.The beam is assumed to be a 

Bernoulli-Euler beam in which the shear deformation and rotary inertia effects are not taken into 

account. Considering a group of vehicle forces moving from left to right at a constant speed, a 

beam structural system under moving forces and control forces,the equation of motion can be 

expressed as (Tommy et al. 2006) 

2 4

2 4
1

( , ) ( , ) ( , )
( ) ( ( )) ( )

N

k k

k

u x t u x t u x t
A C EI F t x x t U t

tt x
 



  
    

 


         

(1) 

where A  is cross section of the beam, ( , )u x t  is the beam displacement, ( )kF t  is the vehicle 

forces, ( )t is Dirac delta function, ( )k kx t v t  is the position of the kth vehicle force, kv  the 

speed of the kth vehicle and ( )U t the control force vector,respectively. Based on modal 

superposition the solution for Eq. (1) can then be expressed as 

( , ) ( ) ( )n n

n

u x t x Y t



                               (2) 

where ( )n x  is the nth mode shape function and ( )nY t  is the nth modal amplitude of the beam. 

Substituting Eq. (2) into (1) and multiplying each term by ( )r x , integrating it over the beam 

length and then applying orthogonal conditions, the equation of motion in terms of the modal 

amplitude can be rewritten as 

( ) ( ) ( ) ( ) ( )n n n n n n n nM Y t C Y t K Y t F t U t   
                    

(3) 

where 

2

0
[ ( )]

L

n nM A x dx                             (4) 

2

0
[ ( )]

L

n nK EI x dx                             (5) 

0
1

( ) ( ) ( ( ))[ ( )]

NL

n k k n

k

F t F t x x t x dx


  
                    

(6) 

 
0

( ) ( ) ( )
L

n nU t U t x dx                            (7) 

, , ( )n n nM K F t , ( )nU t are the modal mass, modal stiffness, modal force and modal control force of 
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the nth mode, respectively, and n n nC M K    is modal proportional damping, where ,  are 

constants with proper units.                                    

Input estimation is based on the state-space analysis method. We must construct a state-space 

model of the beam structural system before applying the input estimation method. In converting to 

the state-space model the state variables of the second order dynamic system with n degrees of 

freedom are represented by a 2 1n state vector, i.e., ( ) ( )
T

X Y t Y t    . From Eq. (1), the 

continuous-time state equations and measurement equations of structure system can be written as: 

( ) ( ) ( ) ( )n nX t AX t BF t EU t                           (8) 

( ) ( )Z t HX t                               (9) 

where 

1 1

0n n n n

n n n n

I
A

M K M C

 

 

 
  

   

, 

1

0n n

n

B
M





 
  
  

, 

1

0n n

n

E
M





 
  
  

 

 2 2n nH I   

 1 2 2 1 2( ) ( ) ( ) ( ) ( )
T

n nX t X t X t X t X t   

A , B and E  are constant matrix composed of mass, damping and stiffness of the beam structure 

system, ( )X t is the state vector, ( )Z t is the observation vector and H is the measurement matrix. 

Noise interference exists in the practical circumstances. The noise interference was not 

considered in Eqs. (8) and (9). In order to approximate to the truth, the statistical characteristic 

noise interference was added in the state equations and measurement equations of structural 

system. This random noise interference was represented by Gaussian white noise. The statistical 

characteristic of a random variable was described in detail with the probability distribution and 

density function. However, the statistical characteristic of a random process can be represented 

with the mean and variance characteristic value of the random variable (Fun 1995). For the above 

reasons Eq. (8) is discretized over time intervals of length t  and created the statistical 

mathematical system dynamic modal of the state-vector associated with process noise input 

(Bogler 1987). Eq. (8) then becomes 

( 1) ( ) [ ( ) ( )] ( )X k X k F k w k U k                      (10) 

where 

 1 2 2 1 2( ) ( ) ( ) ( ) ( )
T

n nX k X k X k X k X k   

exp( )A t    
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  
( 1)

exp ( 1)
k t

k t
A k t Bd 

 


      

 1 2 1( ) ( ) ( ) ( ) ( )
T

n nF k F k F k F k F k   

 1 2 1( ) ( ) ( ) ( ) ( )
T

n nU k U k U k U k U k   

 1 2 1( ) ( ) ( ) ( ) ( )
T

n nw k w k w k w k w k   

( )X k represents the state vector, is the state transition matrix, Γ and   are the coefficient 

matrices of ( )F k and ( )U k , respectively. 1( )F k isthe deterministic moving dynamic input 

sequence. ( )U k is the control force vector. t is the sampling interval. The ( )w k process noise 

vector is assumed to be zero mean and white noise with variance  ( ) ( )T
kjE w k w k Q , 

2 2W n nQ Q I   .  

Here Q  is the discrete time process noise covariance matrix and kj is the Kronecker Delta. 

In order to consider the measurement noise the measure Eq. (9) is expressed as 

( ) ( ) ( )Z k HX k v k                               (11) 

where 

 1 2 2( ) ( ) ( ) ... ( )
T

nZ k Z k Z k Z k  

 1 2 2( ) ( ) ( ) ... ( )
T

nv k v k v k v k  

( )Z k is the observation vector, ( )v k represents the measurement noise vector. ( )v k isassumed to 

be zero mean and white noise with variance  ( ) ( )T
kjE v k v k R , 2 2V n nR R I   , R  is the 

discrete time measurement noise covariance matrix and H is the measurement matrix. 

 

 

3. AIEM combined LQG control technique design 
 

For standard linear quadratic Gaussian problems the system under control is assumed to be 

described by the stochastic discrete-time state space equations as shown below (Lewis 1972) 

( 1) ( 1)( ) ( 1)X X F k w kk k                          (12) 

where ( )w k  is zero-mean white noises with variances Q . In general the input forces sequence 

( )F k  are neglected or assumed to be zeros in conventional LQG controller design. From Eq. (12) 

the conventional LQG control methodology for a system without input forces term was obvious.  

That is to say, the system, Eq. (12) is not satisfactory for modeling most dynamic structures 

because there usually are external excitation forces. Therefore, we considered the case where the 

input forces were not zeros, i.e., Eqs. (8) and (9). However, the conventional LQG control 

methodology is not applicable to structures without neglecting the input disturbance forces 

because the entire input dynamic loads histories are not known a priori. 
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The conventional LQG controller has a specific level of interference suppression. It is weak in 

maintaining high performance in the suppression of external loads; which are complex and 

arbitrary style disturbances. In other words, in Eq. (8), if a time-varying load ( )G k  exists, the 

optimal control method combining the Kalman filter and the LQG regulator will not be able to 

obtain the optimal control forces. To resolve this situation this study proposes combining the 

AIEM with the LQG control technique for active vibration control of the beam structural system. 

The AIEM can estimate the unknown dynamic inputs while the active LQG controller can apply 

the same inverse control forces on the structural system. 

The AIEM is composed of a Kalman filter without the input term and the adaptive weighting 

recursive least square algorithm. The detailed formulation of this technique can be found in the 

research of Tuan et al. 1996. The Kalman filter optimal estimation equations are as follows: 

The optimal estimate of the state is 

( 1/ ) ( / 1) ( ) ( ) ( / 1)X X Xk k k k K k Z k H k k
   

  
                  (13) 

The bias innovation produced by the measurement noise and input disturbance is expressed by 

( ) ( ) ( / 1)Z Xk Z k H k k


                             (14) 

The Kalman gain is 

1

( ) ( / 1) ( )( ) ( 1/ ) ( / 1) ( ) TT H k P k k H k RK k k k P k k H k


     
        

 (15) 

The covariance of residual is ( )S k  

( ) ( / 1) TS k HP k k H R                            (16) 

The prediction error covariance matrix is  

1

( 1/ ) ( )

( ) ( 1/ )

( 1/ ) ( 1/ ) ( / 1) ( 1/ ) ( / 1)

( ) ( / 1) ( ) ( / 1)

( 1/ ) ( 1/ )T

T T

T T

k k k

k R k k

P k k k k P k k k k P k k H

H k P k k H H k P k k

k k Q k k



 

   



       

   

   

       (17) 

The recursive least square estimator equations are as follows: 

The sensitivity matrices are ( )B k  and ( )M k  

( ) [ ( 1) ]B k H M k I                               (18) 

( ) [ ( ) ][ ( 1) ]M k I K k H M k I                            (19) 

The correction gain is expressed as 

111 1 1( ) (( ) ( ) ( ) ( ) ( ) )T T

b b b
B B k BK P k k k k kk P S 

  
                (20) 

The error covariance of the input estimation process is 

1( ) 1( ) ( ) ( )b b bI K B k PP k k k                            (21) 
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The estimated earth motion acceleration is 

( ) ( 1) ( ) ( ) ( ) ( 1)bF k F k K k Z k B k F k
   

     
 

                     (22) 

According to Eq. (14) the innovation with variation is caused by the measurement noise and the 

unknown input noise. If a large input variation exists ( )Z k  can be set as the abnormal or long-tail 

distribution. Huber used the least favorable probability density function (PDF), ( ( ))f v k , to 

describe in a flexible manner the residual, which is either normal or abnormal. In this study, 

( ) ( )Z k v k . Here, the least favorable PDF ( ( ))f v k  is defined as follows 

 
 2 2

( )

1
/ 2 ,

2

,
2

( ) ( )

( )

( )
Z k

e c

f

e c

Z k Z k

Z k

Z k





 


 

 
 


                    (23) 

where c is the adjustable constant to adjust the robustness of the estimator. According to Eq. (23), 

if ( ) cZ k  , ( ( ))f v k  is a normal distribution; if ( ) cZ k  , ( ( ))f v k  is a long-tail distribution. 

By adopting double-exponent density function to describe the possible abnormal samples and to 

lower the influence to the weight of estimation, the robustness can be obtained. Therefore, c can 

be regarded as a threshold, which is to functioning, c  , which is a reasonable threshold.  is 

the standard deviation of the measurement error. In Eqs. (20) and (21),  is a weighting factor 

using the adaptive weighting function in this study, which is formulated in (Tuan et al. 1998). That 

is 

1, ( ) ,
( )

/ ( ) , ( ) .

Z k
k

Z k Z k




 

 
 



                          (24) 

The weighting factor, ( )k , as shown in Eq. (24), can be adjusted according to the 

measurement noise and input bias. In industrial applications the standard deviation   is assumed 

as a constant value. The magnitude of the weighting factor is determined according to the modulus 

of bias innovation,  Z k . The unknown input prompt variation will cause a large bias innovation 

modulus. In the meantime a smaller weighting factor isobtained when thebias innovation modulus 

is larger. Therefore, the estimator accelerates the tracking speed and produces larger vibration in 

the estimation process.On the contrary, a smaller variation of unknown input causes a smaller bias 

innovation modulus. Meanwhile, the larger weighting factor isobtained according to the smaller 

bias innovation modulus.  

In the optimal estimation portion of the LQG optimal control method, by substituting ( )F k


 of 

Eq. (22) for ( )F k  and substituting the control input in Eq. (13), the optimal state estimation 

equation can be rewritten as 

ˆ ( ) ( )( 1/ ) ( / 1) ( ) ( ) ( / 1)X X X F k U kk k k k K k Z k H k k
   

   
            (25) 
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The performance index is defined as 

1

0 1 2

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

T TN
T

i

k i

J F E X N Q X N X k Q X k U k Q U k

   



   
    

    
            (26) 

where 1 0Q  , 2 0Q  and 0 0Q  are all symmetric weighting matrices. The optimal feedback control 

force vector can be obtained by using the separation theorem (Kwakernaak et al. 1972)  

( ) ( ) ( / 1)rU k K k X k k


                            (27) 

Here the regular gain ( )rK k  is given by 

1

2 2 2( ) ( 1) ( 1)T T
rK k P k Q P k


       
 

                  (28) 

where 2 ( )P k  is the discrete-time Ricatti equation solution. The Ricatti equation is shown below 

 1

2 2 2 2 2 2 1( ) ( 1) ( 1) ( 1) ( 1)T T TP k P k P k P k Q P k Q


            
 

, k N          (29) 

2 0( )P N Q                               (30) 

According to Eq. (29), 2 ( )P k can be obtained by inversely calculating from k N to 1,k  . 

The method combining AIEM and the LQG active controller is presented using the AIEM to 

estimate ( )F k


 and combining Eq. (25) to obtain the optimal state estimate, ( 1/ )X k k , which 

can be further substituted in Eq. (27). The combination of AIEM and the LQG controller is 

illustrated in Fig. 2. 
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Fig. 2 Flowchart of the AIEM combined with the LQG 
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4. Results and discussion 
 

To verify the practicability and accuracy of the proposed approach in estimating unknown 

moving input forces, the bridge structure is modeled as a simple beam with a total span length

30L m , constant flexural stiffness 11 21.27914 10EI Nm  , constant mass per unit length
41.2 10 /kg m    and the modal proportional damping n n nC M K   , where 0.01, 0.001   , 

the mode shape function sin( / )n kx L  . The initial conditions of the error covariance are given 

as 4(0 / 0) [10 ]p diag  for the KF and 4(0) 10bp   for the adaptive weighting recursive 

least-squares estimator. The simulation conditions are taken as: sampling interval 0.001t  s, 

sensitivity matrix (0)M  is null, the weighting factor is adaptive weighting function. 

 

4.1. Singular-vehicle input moving force estimation and control 
 

The singular-vehicle input moving force is simulated as a vehicle with a static weight 

400kF KN  acting on the bridge structure, at a constant velocity of 10 / seckv m  over the bridge. 

From Eq. (6) the time-varying input moving force is simulated as follows  

sin( / )
( )

0 0 ,

k k i d
n

i d

F v t L t t t
F t

t t t t

  
 

  
                    (31) 

where it  represents start time of the vehicle entering the bridge, it is delayed by 0.3 s to clearly 

identify the simulation results, /dt L v  represent the terminal time the vehicle leaves the bridge. 

The dynamic responses of the bridge are solved using a numerical method with system noise and 

measurement noise. The parameters used in the numerical model are given as follows: covariance 

matrix of process noise 2 2w n nQ Q I   , 810Q  , covariance matrix of measurement noise 

2 2w n nR R I   , 2 1010R    , state weighting matrices 0 1 1 1sQ Q Q I    , 51 10sQ   , control 

weighting matrices 2 1 1cQ Q I   , 1cQ  . Fig. 3 shows the time histories of the singular-vehicle 

input moving force estimation result, measured and estimated displacement at the middle span. 

The result reveals very good estimating ability. The estimation values converge to exact values 

quickly. The estimation results have demonstrated the validity of the present inverse estimation 

algorithm on the singular-vehicle input moving force. Fig. 4 shows that a smaller weighting factor 

can be chosen in the recursive least square method when a larger unknown is input into the system. 

Note that the faster the forgetting effect is, the lower the smoothing effect will be, that is, it 

introduces oscillation. The adaptive weighting factor ( )k  is employed to compromise between 

the tracking capability upgrade and the loss of estimation precision. Fig. 5 shows the overall time 

histories of the control forces required for the proposed method and LQG method. By applying the 

active dynamic reaction which contains noise to the presented control algorithm, the time histories 

of the beam structural system responses with and without control are shown in Fig. 6. The AIEM 

combined with the LQG controller has better effective and precision performance than the 

conventional LQG controller. The effectiveness of the proposed active control technique was 

further demonstrated by tuning the process noise covariance matrix, 610Q  , measurement noise 

covariance matrix, 2 1010R    . The case has been compared using process noise variance 
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610Q  as shown in Fig. 7. From Fig. 7 we can see that the process noise covariance matrix will 

influence the ability of tracking true values. It shows that if the process noise variance Q  

decreases it will influence the estimation resolution. A smaller process noise variance will affect 

the  time-varying force inputs tracking capability. The time histories of the beam structural 

system responses with and without control are shown in Fig. 8. The AIEM combined with the 

LQG controller has better effective and precision performance than the conventional LQG 

controller. 

 

 

Fig. 3 Time histories of the estimated and true singular-vehicle input moving force and middle span 

displacement ( 810Q  , 1210R  ) 

 

 

Fig. 4 Thevariance in the adaptive weighting factor. ( 810Q  , 1210R  ) 
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Fig. 5 Time histories of the control forces of a beam structural system under singular-vehicle input 

moving force ( 810Q  , 1210R  ) 

 

 

 
Fig. 6 Time histories of the displacements using the singular-vehicle input moving force( 810Q  ,

1210R  ) 
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Fig. 7 Time histories of the estimated and exact singular-vehicle input moving force and middle span 

displacement ( 610Q  , 1210R  ) 

 

 

4.2. Multi-vehicle input moving forces estimate 
 
Three input moving forces are simulated using multiple vehicles with the static weight of the 

first vehicle input moving force 1 200( )F KN , the second vehicle 2 150( )F KN  and the third 

vehicle 3 100( )F KN acting on the bridge structure. The velocity of the first vehicle is 1 8 / secv m , 

the second vehicle 2 7 / secv m  and the third vehicle 3 6 / secv m over the bridge, respectively.  

The Kalman estimation parameters are 910Q  , 2 1210R    .The bridge total span length 

20L m . The start time it  of the first vehicle entering bridge was delayed 0.3 s to clearly identify 

the simulation results. The interval time of among vehicles entrancing bridge is 0.5 s. From Eq. (6), 

the time-varying input moving forces are simulated as follows 

sin( / )
( )

0 0 ,

k k i d
n

i d

F v t L t t t
F t

t t t t

  
 

  
                      (32) 

where 1~3/d kt L v   represents termination time of the vehicles leaving bridge. The dynamic 

responses of the bridge were solved using a numerical method with system noise and measurement 

noise. The time histories of the multi-vehicle input moving forces estimation result were measured 

at middle span are shown in Fig. 9. Fig. 10 shows the overall time histories of the control forces 

required for the proposed method and LQG method. By applying the active dynamic reaction 

which contains noise to the presented control algorithm, the time histories of the beam structural 

system responses with and without control are shown in Fig. 11. According the simulation results 

the proposed control method, which combines the FIEM and the LQG controller, is suitable for 

dealing with the optimal control problem in the time-varying system model. 
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Fig. 8 Time histories of the displacements using the singular-vehicle input moving force( 610Q  ,

1210R  ) 

 

 

 
Fig. 9 Time histories of the estimated and exact mutli-vehicle input moving force and middle span 

displacement ( 910Q  , 1210R  ) 
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Fig. 10 Time histories of the control forces of a beam structural system under the multi-vehicle input 

moving force ( 910Q  , 1210R  ) 

 

 

 
Fig. 11 Time histories of the displacements using the multi-vehicle input moving force( 910Q  ,

1210R  ) 
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5. Conclusions 
 

This study developed an active control technique for moving forces control in a beam structural 

system. Combing the excellent AIEM with LQG controller produced a feasible control approach 

that effectively reduces the beam structural system response3s.The control performance of the 

developed technique was evaluated through numerical simulations of the beam structural system 

under moving forces. The simulation results demonstrate that proposed technique is more effective 

in reducing the beam responses than the conventional LQG controller. Future work is being 

conducted to extend this application to a nonlinear structural system. 
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