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Abstract.   Monitoring systems currently applied to concrete bridges include strain gauges, inclinometers, 
accelerometers and displacement transducers. In general, vertical displacements are one of the parameters 
that more often need to be assessed because their information reflects the overall response of the bridge span. 
However, the implementation of systems to continuously and directly observe vertical displacements is 
known to be difficult. On the other hand, strain gauges and inclinometers are easier to install, but their 
measurements provide no more than indirect information regarding the bridge deflection. 
In this context, taking advantage of the information collected through strain gauges and inclinometers, and 
the processing capabilities of current computers, a procedure to evaluate bridge girder deflections based on 
polynomial functions is presented. The procedure has been implemented in an existing software system – 
MENSUSMONITOR –, improving the flexibility in the data handling and enabling faster data processing by 
means of real time visualization capabilities. Benefiting from these features, a comprehensive analysis 
aiming at assessing the suitability of polynomial functions as an approximate solution for deflection curves, 
is presented. The effect of boundary conditions and the influence of the order of the polynomial functions on 
the accuracy of results are discussed. Some recommendations for further instrumentation plans are provided 
based on the results of the present analysis. This work is supported throughout by monitoring data collected 
from a laboratory beam model and two full-scale bridges. 
 

Keywords:    bridge monitoring; deflection evaluation; strain gauges; inclinometers; polynomial fitting 
 
 
1. Introduction 
 

Structural monitoring has been subject to increasing interest within the scientific and technical 
communities. At the same time, Bridge Health Monitoring Systems (BHMS) have been applied 
more intensively worldwide. Firstly, attention was focussed on sensors applications. However, the 
emphasis has recently been shifted to the practical implications regarding acquisition, storage and 
data processing (Van der Auweraer and Peeters 2003). Presently, it is possible to monitor, 
continuously and remotely, extensively instrumented structures with a high degree of automation. 
Present solutions are versatile enough to carry out remote surveillance tasks with moderate costs 
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(BRITE/EURAM 1997, Van der Auweraer and Peeters 2003). 
In recent years, the concept of “smart structures” has increasingly been attracting the interest of 

the civil engineering community (BRITE/EURAM 1997). Full-scale structures equipped with 
sensors, processing units and communication networks are a reality all over the world, and these 
complex systems might become a powerful instrument to support the surveillance and 
maintenance tasks inherent to bridges. 

Current monitoring systems applied to concrete bridges consist of strain gauges to measure 
local deformation, inclinometers to measure rotations, accelerometers to measure accelerations and 
displacement transducers to measure bearing displacements. Vertical displacements are one of the 
parameters that more often need to be monitored for short and long-term observation. Bridge 
deflections reflect the overall response of the structure providing essential information about the 
performance in service. However, it is well known how difficult it is to implement a measuring 
setup to observe vertical displacements in a bridge. The current solutions, available in the market, 
to measure vertical displacements are often difficult to use and require specialized operators. For 
example, traditional transducers need a reference base and are not suitable for several situations, 
e.g., on a river-bed. One of the most widely used methods to measure vertical displacements on a 
river-bed is the levelling system. However, it has disadvantages, such as the possible loss of 
reference marks and its cost in comparison with other methods. Attempts have been made to apply 
GPS technology to monitor displacements, however, these approaches are still far from being 
either accurate enough or effective. Therefore, there is a need for an alternative and expeditious 
approach to determine vertical displacements in bridges. 

Strain gauges and inclinometers are easier to install than systems to measure vertical 
displacements. Nonetheless, deformations and rotations are indirect information about bridge 
deflection. Taking advantage of the data collected with these sensors and the processing 
capabilities of the current computers, some authors have tried to estimate vertical displacements 
based on concrete deformations and rotations. Vurpillot et al. presented one of the first attempts to 
estimate vertical displacements using measurements collected by strain gauges and inclinometers 
(Vurpillot et al. 1998). Considering the Bernoulli beam theory, the authors present a formulation 
based on a polynomial function to approximate the beam deflection. The strain and rotation 
measurements worked as constraints to the polynomial function. The methodology was tested in a 
laboratorial load test and on a full-scale bridge under daily temperature variations during 24 hours. 
A similar application, in which only strains are used, is presented in (Chung et al. 2008). A 
prestressed concrete girder was instrumented with long optical strain gauges, and using the 
geometric relation between curvature and vertical deflection in a simple beam the deflection curve 
of the girder was estimated. Analogously, Hou et al. used only measurements of inclinometers to 
estimate the bridge deflection (Hou et al. 2005). Another example of estimating bridge deflection 
based on measurements of inclinometers can be found in (Burdet and Zanella 2000). 

Considering these previous studies, the aim of this work is to demonstrate the suitability of the 
polynomial approach to estimate the deflection curve of full-scale concrete bridges. Measurements 
obtained from monitoring systems devoted to surveillance and maintenance, composed mainly of 
inclinometers over the supports and strain gauges at mid-span and near the supports, are used. 
Moreover, these measurements are concerned with short-term observations obtained during load 
tests. An automatic procedure was developed and implemented in software devoted to the 
management, treatment and analysis of monitoring results − MENSUSMONITOR (Sousa et al. 
2008). This option improves data handling, with the possibility of real time visualization. Firstly, 
the main steps of the procedure to estimate bridge deflections are presented. After that, their 
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application to a prestressed concrete beam is carried out in order to appraise its performance in 
laboratory conditions. Afterwards, the results obtained for two full-scale bridges – Sorraia Bridge 
and Lezíria Bridge – are shown and discussed in detail. In order to evaluate the suitability of 
polynomial functions as an approximate solution for deflection curves, a comprehensive analysis 
was carried out. The focus was not limited to the effect of the boundary conditions, but to the 
effect of the order of the polynomial functions on the results’ accuracy. Finally, a set of relevant 
conclusions are reported regarding the optimization of monitoring plans with the aim of estimating 
bridge deflections based on strain-gauge and inclinometer measurements. 
 
 
2. Procedure to estimate bridge deflections 

 
2.1 Introduction 
 
For a period between tinitial and tfinal, a database with a set of experimental registers is assumed, 

where each register contains the measurements performed by a set of sensors. This database 
contains measurements of concrete deformations and rotations of the most critical cross-sections 
of the bridge girder. These critical cross-sections – Si, i = 1, 2..., n – are generally located at the 
mid-span and near the bridge supports (Fig. 1). 

During the operational life, a linear elastic behaviour is expected and therefore, the bridge 
deflection might be accurately estimated with simple mathematical models. 
 
 

Fig. 1 Bridge deflection based on the monitoring of instrumented cross-sections 
 
 

Considering the Bernoulli hypothesis – plane sections after deformation – the deflection curve 
of a uniformly loaded beam of ‘m’ spans is expressed as a sequence of ‘m’ fourth degree 
polynomials, Pj

4(x). Each span is considered with constant inertia, uniformly loaded, and subjected 
to end forces and moments (Massonnet 1968). However, for full-scale bridges, material properties 
as well as the cross-section may vary along its length. Furthermore, the Bernoulli hypothesis is not 
valid either near the supports or in areas where concentrated loads are applied. Therefore, the 
function that expresses the bridge deflection is actually rational, namely because of the variability 
of the mechanical properties and the cross-section inertia along the bridge length. 

Nevertheless, for moderate loads, the bridge deflection is a smooth curve, where the vertical 
displacements are considerably low if compared with the length of span, even for failure scenarios. 
Hence, the approximation of the bridge deflection with a polynomial function is reasonable. 

The procedure adopted herein calculates a polynomial function based on two types of 
information previously known: (i) intrinsic characteristics of the bridge’s behaviour, namely zero 
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vertical displacement over the supports, and null curvature over the outer supports and (ii) 
curvatures and rotations based on measurements respectively performed with strain gauge and 
inclinometer sensors. In this context, the problem is solved according to the following steps. 

 
2.2 Calculation steps 
 
2.2.1 Section curvature 
The curvature, (x), is a function of the bridge deflection, (x), as expressed by Eq. (1) 

(Massonnet 1968). As aforementioned, if compared with the beam length, the vertical 
displacements are generally very small and consequently, for d(x)/dx small values are attained. 
Therefore, the value of (d(x)/dx)2 can be neglected and the denominator of Eq. (1) becomes 
unitary, so that the curvature might be expressed by Eq. (2). 
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For pure bending, the neutral axis is known a priori, and the curvature of a cross-section can be 
calculated with Eq. (3), where (x) represents the deformation of the fibre at distance ‘y’ from the 
neutral axis. 
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However, if the beam is not restricted to bending, the curvature can be calculated based on the 
deformations of two different fibres. This can be achieved by using appropriate strain gauges 
placed in the bottom and top fibres, denoted as, SG-bot and SG-top, respectively (Fig. 2). 
Afterwards, the curvature of the instrumented cross-section can be calculated by Eq. (4), where H 
represents the distance between those two fibres. 
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Fig. 2 Calculation of the cross-section curvature based on strain gauges measurements 
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As expressed by Eq. (5), a second-order constraint of the deflection curve is set by replacing Eq. 
(4) in Eq. (2). In other words, strain gauges allow the calculation of curvature, which might be 
used as a second-order boundary constraint for the polynomial function. 
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2.2.2 Section rotation 
The relation between the deflection curve, (x), and the rotation (x) is expressed by Eq. (6). 

However, the rotation of any cross-section is considerably small, normally in the order of 10-3 of a 
degree, due to the small magnitude of the vertical displacements as aforementioned. Therefore, Eq. 
(6) might be simplified to Eq. (7), and the rotations can be directly used as a first-order constraint 
for the polynomial function. 
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2.2.3 Polynomial function setting 
A polynomial function is set for each span, which means that ‘m’ polynomials are calculated for 

the ‘m’ bridge spans. This option allows a flexible modus operandi in the data handling and the 
required versatility to apply on bridges with a large number of spans. The process is repeated ’m’ 
times through a while-loop. The polynomial function is calculated based on boundary constraints. 

Fig. 3 shows a generic bridge span and its deflection, highlighting the constraints at mid-span 
and support cross-sections. However, some constraints may not exist for real cases, depending on 
the instrumentation available for each span. 
 
 

 
Fig. 3 Span deflection and boundary constraints 
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For a generic span j, if ‘n + 1’ boundary constraints are known, an ‘n’ degree polynomial 
function, Pj

n(x), as expressed by Eq. (8), can be fitted to obtain the vertical displacement j(x). For 
the generic case presented in Fig. 3, seven boundary constraints are known and a 6th order 
polynomial function can be defined, which is the maximum degree that the polynomial function 
can attain. If compared with a unique polynomial function for the entire length of the bridge, using 
a polynomial function for each span leads to lower degree polynomial functions and therefore, 
problems of overfitting are avoided (Björck 1996). 
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The polynomial coefficients cj,p, in Eq. (8) are the unknowns, which are calculated considering 
the abovementioned boundary constraints, namely: (i) null vertical displacements over the 
supports and null curvatures over the outer supports; (ii) curvatures and rotations derived from the 
sensor readings. Therefore, with the ‘n + 1’ boundary constraints known for the generic span ‘j’, a 
system of linear equations can be set as expressed by Eq. (9) in matrix notation. 

  jjj bcA }{][                                       (9) 

The matrix [A] depends on the span geometry, namely, the location of the instrumented 
cross-sections, xi, and the span length, L. The span length dependence is only due to numerical 
aspects. The cross-section location is normalized to x/L, which limit the possible locations from 
zero to one. In this context, the matrix coefficients are more homogeneous and potential instability 
in the matrix inversion is prevented. The vector {c}j  contains the problem unknowns − the 
polynomial coefficients − and the vector {b}j the boundary constraints. The problem solution is 
given by Eq. (10), for which it must be assured that the matrix [A] is not singular. This can be 
assured by considering linearly independent constraints. 

jjj bAc }{][}{ 1                                      (10) 

 
2.2.4 Calculation of the bridge deflection shape 
Finally, the vertical displacements, , are calculated for a set of cross-sections (1,2, …, z), in 

order to arrive at the deflection shape. At this stage, the polynomial functions are perfectly known 
and therefore, the vertical displacement can be calculated using Eq. (11) for any bridge 
cross-section, 

kxxS  , by solving P(x = xk). Moreover, rotations, , and curvatures, , can also be 
calculated by simply taking the derived functions P(x = xk) and P (x = xk) as expressed, 
respectively, by Eqs. (12) and (13). 
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2.3 Software implementation 
 
The aforementioned calculation steps were implemented in an existing piece of software, 

specifically devoted to the treatment, processing and analysis of data concerning the Structural 
Health Monitoring of bridges – MENSUSMONITOR (Sousa et al. 2008). Data access through 
database consulting and data pre-treatment, as well as real-time visualization capabilities, are 
features already available in this software. Therefore, the implementation in this software makes 
its application easier and faster when compared with usual commercial tools such as spreadsheets. 

Moreover, the calculation steps can be automatically extended, by a temporal cycle, for an 
observation period [tinitial,tfinal], where a generic register, occurred at instant t, contains all sensor 
measurements, namely deformations, , and rotations, . Fig. 4 presents a flowchart of the 
calculation steps within a temporal cycle. 

 
2.4 Validation on a simply supported beam 
 
The procedure was first assessed on a simply supported prestressed concrete beam with a 150 

mm × 200 mm cross-section and an effective span of 3.96 m (Fig. 5). A concrete of class C40/50 
and steel of class S500 were used. The longitudinal reinforcement consists of 412 mm, while for 
the transversal direction the reinforcement is set by 26 mm 10 cm spaced. Additionally, the beam 
was prestressed with a force of 172 kN, by using a seven-wire strand with a 1.40 cm2 cross-section 
and yield stress of 1857 MPa (Sousa 2002). 
 
 

 
Fig. 4 Flowchart of the calculation steps 

 
 

As illustrated in Fig. 5, three cross-sections, S1, S2 and S3, are monitored with six electric 
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strain gauges each, two sensors being embedded into concrete (CD) and the remaining four 
bonded to the reinforcement bars (SD). Additionally, the vertical displacements on cross-sections 
SA, SB and SC were measured with LVDT’s, and the rotations at the two end cross-sections were 
also measured using electric inclinometers. The environmental temperature was also measured. An 
automatic acquisition system was provided to collect and register the values measured by all 
sensors (Sousa 2002, Cavadas et al. 2009). 

The beam was loaded on cross-sections SA and SC with two point loads, F1 and F2, 
respectively (Fig. 5). Table 1 summarizes the two load cases considered for this work, each one as 
a combination of loads F1 and F2. The condition of L/2000 was established as the maximum 
deflection in order to ensure elastic behaviour during the tests. 

Fig. 6 plots the results obtained, in which the vertical displacements measured with LVDT’s 
(grey circles) and the beam deflections calculated with the polynomial function (black line) are 
overlapped. A 4th degree polynomial function was used, based on the null vertical displacements 
and the measured rotations at the beam-ends and the curvature at cross-section S2. A good 
conformity between the polynomial function and the measurements was achieved for both load 
cases, with a maximum error of + 2.1% in cross-section SA (Fig. 6(a)) and - 4.9% in cross-section 
SB (Fig. 6(b)) for LC1 and LC2, respectively. Nevertheless, it should be noted that the 
experimental tests were conducted with a different purpose (Cavadas et al. 2009). 
 
 
Table 1 Load cases (kN) 

Load Case F1 F2 

LC1 4.42 0.19 

LC2 0.97 3.79 

 

 
(a) elevation 

 
(b) cross-section (S1, S2 and S3) (c) sensors’ installation 

Fig. 5 Simply supported prestressed concrete beam 
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(a) LC1                                                                            (b) LC2 

Fig. 6 Beam deflections for two different load cases 
 
 
3. Full-scale applications 
 

3.1 Introduction 
 
The deflection of a bridge span is highly influenced by the behaviour of cross-sections near the 

mid-span and support zones. Moreover, a failure scenario normally starts in these zones due to the 
high strain level. Generally, higher curvatures are measured in cross-sections near the mid-spans 
and support zones, while for rotations, the higher values are measured for cross-sections close to 
the deck supports. 

Two bridges − Sorraia Bridge and Lezíria Bridge − provided with monitoring systems were 
subject to analysis to evaluate the presented procedure in full-scale structures. These structures are 
part of two important motorways in Portugal. The monitoring systems were designed to aid the 
surveillance and maintenance operations. The vertical displacements were measured only at the 
mid-span cross-sections. However, in order to get a more comprehensive insight into the bridge 
deflection, this analysis is also supported by results obtained from numerical models, which were 
developed based on finite element techniques. Therefore, the estimated vertical displacements can 
be confronted, not only in the cross-sections where the measurements were taken, but also 
throughout the bridge length taking advantage of the results from the numerical models. With this 
strategy, the results obtained from the polynomial functions can be analysed and discussed more 
accurately. 

 
3.2 Sorraia Bridge 
 
Sorraia Bridge, which is situated at Salvaterra de Magos as part of the Portuguese A13 

motorway, is a prestressed concrete bridge with two parallel and identical structures – east and 
west bridges with a total length of 1,666 m each (Fig. 7). Focussing on the main bridge of the east 
side, this structure, with a total length of 270 m, was constructed using the balanced cantilever 
method. The structure has three spans, two end spans of 75 m length and a central span of 120 m 
length (Fig. 8). The bridge deck is a box girder whose height ranges between 2.55 m, at mid-span, 
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and 6.00 m at the support zone, and is supported on piers 7.50 m height through unidirectional 
bearings. Pilecaps of five piles, each one with 2.0 m diameter and 30 m long, support each pier. 
 

Fig. 7 Sorraia Bridge 
 

As aforesaid, a long-term monitoring system was installed in the east deck of Sorraia Bridge, 
which was set up under the scope of a consortium project between BRISA − Auto-Estradas de 
Portugal, S.A. and two R&D institutions, LABEST-FEUP and INESC-PORTO, and partially 
funded by AdI – Innovation Agency (Perdigão 2006). Long-term observation of the bridge’s 
behaviour started in the early construction phase. The main instrumentation is based on 
strain-gauges that encapsulate simultaneously electric and optical sensors (Fig. 9(a)) (Sousa 2006) 
and temperature sensors, in a set of cross-sections. The environmental temperature and relative 
humidity, inside and outside the box girder (Fig. 9(b)), are also monitored. In addition, a temporary 
monitoring system was provided during the load test, to observe other important parameters, 
namely, vertical displacements and rotations. Further, data collected by this temporary system was 
very useful to assess the bridge’s behaviour as well as to evaluate the performance of the 
permanent monitoring system through cross analysis of data. Fig. 8 and Table 2 illustrate and 
detail the monitoring plan for this case. 

Focussing the assessment of the bridge’s behaviour during the load test, a numerical model was 
built based on finite element techniques. The effective properties of the applied materials and the 
loads applied during the load test were taken into consideration. Moreover, a two-dimensional 
beam model, in accordance with the Timoshenko theory, was developed to simulate the concrete 
elements of the bridge, which is a reasonable approach to analyse the overall behaviour of the 
bridge. 
 
 

Fig. 8 Location of the instrumented cross-sections in Sorraia Bridge 
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The assessment of the vertical displacements with the stated procedure was made based on 
measurements collected during the load test that was performed at the end of construction. Without 
puting the bridge’s elastic behaviour at risk, trucks, fully loaded and of controlled weight were 
used to carry out the load tests. These tests comprised a set of configurations with the trucks 
immobilized at specific positions of the bridge. Among all configurations, three load cases, Load 
Case 1, 2 and 3 that explored the maximum curvature of the three mid-span cross-sections (Fig. 8), 
are considered for this work. 

The polynomial functions were calculated based on the measurements and the intrinsic 
characteristics of the bridge, namely null vertical displacements above piers and null curvature at 
the end support of the outer spans (span 1 and span 3). 
 
 

 (a) Electric/Optical strain-gauge     (b) Interior of the box-girder      (c) Acquisition Node 

    Fig. 9 Monitoring system of Sorraia Bridge 
 
Table 2 Instrumentation typology and quantities – Sorraia Bridge 

Parameter S1 S2 S3 S4 S5 S6 S7 

Vertical displacement 1 - - 1 - - 1 

Rotation - 1 - - - 1 - 

Deformation 4 - 6 6 6 - 4 

Temperature - - - - 2 - - 
 
 

Fig. 10(a) shows the vertical displacements obtained for the three load cases, namely the 
measured values (bullet points), the deflection curves using the polynomial functions (continuous 
lines) and those obtained with the numerical model (dashed lines). In addition, the relative errors 
are also presented (text boxes), for which the measured value was taken as reference. Comparing 
the predicted values with the measured ones, the best result occurs in cross-section S4, which was 
obtained with a 6th degree polynomial function. In contrast, the use of a 4th degree polynomial 
function led to poorer results for span 1 and 3. This result was already expected due to the higher 
number of instrumented cross-sections in span 2 (Fig. 8). The error, lower than 1%, obtained for 
cross-section S4 is a good indicator, taking into account that the real span deflection is not 
rigorously interpreted by a polynomial function. However, for spans 1 and 3, the relative errors for 
cross-sections S1 and S7 are greater than 10%. This decrease in the quality of the results can be 
explained by the different constraints available for these spans, namely for the span ends, for 
which only one curvature and one rotation is known. This contrasts with the knowledge of the 
rotations and curvatures at both ends of span 2 (Fig. 8). For a better understanding of the results, 
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Fig. 10(b) presents the rotation diagrams obtained by the procedure, according to Eq. (12), and the 
corresponding ones obtained by the numerical model. The higher deviations are clearly seen for 
zones near the piers P1 and P2. Particularly for LC1 and LC3, higher rotations in cross-sections of 
spans 1 and 3 near the piers P1 and P2 are computed by the polynomial functions. This leads to 
higher displacements in these zones, which influence and overestimate the spans’ deflection. 
 
 

(a) vertical displacement diagrams (b) rotation diagrams 

Fig. 10 Sorraia Bridge results for LC1, LC2 and LC3 (case 0) 
 
 

3.3 Lezíria Bridge 
 
Lezíria Bridge is part of the A10 motorway in Portugal. With a total length of 39.9 km, this 

motorway is an outer periphery bound to the Lisbon Metropolitan Area. The main bridge structure 
has a total length of 970 m (Fig. 11), with eight spans of 95 + 127 + 133 + 4×130 + 95 m length, 
respectively, and seven piers supported by pilecaps over the riverbed (Fig. 12). The bridge deck is 
a box girder with variable inertia - approximately 30.00 m wide and height raging from 4.00 m to 
8.00 m. The box girder core was segmentally built using a movable scaffolding system, while the 
side cantilevers were subsequently constructed with a specific movable scaffolding and metallic 
struts fixed on the bottom slab of the box girder. The concrete piers are formed by four walls with 
constant thickness and variable width and supported by pilecaps. 
 
 

Fig. 11 Lezíria Bridge − construction stage in May 2007 
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The bridge has an integrated monitoring system devoted to the management and surveillance of 
the structure (Sousa et al. 2011). Several cross-sections are instrumented with embedded and 
external sensors that measure a set of quantities such as static, dynamic and durability parameters. 
Among all sensors, only the strain gauges (Fig. 13(a)), inclinometers (Fig. 13(b)) and displacement 
transducers (Figueiras et al. 2010) are considered for this analysis. Moreover, only the first three 
spans, between piers TP and P3, were selected to carry out this analysis. Fig. 12 and Table 3 
summarize the most relevant information about the instrumentation plan for this case. 

Concerning the assessment and surveillance of the bridge, a numerical model was implemented 
based on finite element techniques. Similar to the Sorraia Bridge case, a two-dimensional beam 
model was adopted to simulate the concrete elements of the bridge. 

 
 

Fig. 12 Location of the instrumented cross-sections in Lezíria Bridge 
 

  
(a) Electric strain-gauge (b) inclinometer installation (c) Acquisition node 

Fig. 13 Monitoring system of Lezíria Bridge 
 

Table 3 Instrumentation typology and quantities – Lezíria Bridge 

Parameter S1 S2 S3 S4 S5 S6 S7 

Vertical displacement 1 - - 1 - - 1 

Rotation - 1 - - - 1 - 

Deformation 6 - 8 8 6 - 6 

Temperature 2 - 8 8 - - 2 
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Similarly to that which was presented for Sorraia Bridge, the vertical displacements were 
estimated based on measurements collected during the load test performed at the end of 
construction. Fully loaded trucks were used in order to carry out the load tests, which comprised a 
set of truck configurations immobilized at positions that caused maximum curvature of mid-span 
cross-sections. With interest for this analysis, three load cases are explored, namely, Load Cases 1, 
2 and 3 (Fig. 12). 

The polynomial functions were calculated based on the aforementioned measurements and the 
intrinsic characteristics of the bridge, namely null vertical displacements above piers and null 
curvature at the end support of the outer span (span 1). 

Fig. 14(a) shows the results for the vertical displacements. In the light of the results, the 
estimation obtained for cross-section S4 with a 6th degree polynomial function presents a good 
conformity with the measured one. On the contrary, poorer results were attained for spans 1 and 3, 
for which a 4th and 3rd degree polynomial function was respectively used. The error lower than 5% 
obtained for cross-section S4 is a good indicator, taking into account that a polynomial approach 
was used to assess the real bridge deflection. Again, the different number of instrumented 
cross-sections for each span can explain these differences in errors, which indicates that the error 
increases as the polynomial degree decreases. Observing the rotation diagrams in Fig. 14(b), the 
highest deviations occur again near piers P1 and P2. Focussing on LC1 and LC3, the rotations 
computed with the polynomial functions seem to be overestimated for spans 1 and 3 near piers P1 
and P2, respectively. This might justify the error magnitudes obtained for cross-sections S1 and S7. 
Moreover, the results for span 3 are completely out of bounds, which can be explained by the few 
constraints that are known for the girder cross-section above the pier P3. This shows that using 
only a null vertical displacement in a support cross-section is insufficient to attain acceptable 
results. Therefore, without additional information about the span behaviour over pier P3, it is not 
possible to estimate the bridge deflection for span 3 with an acceptable degree of accuracy. 
 
 

(a) vertical displacement diagrams (b) rotation diagrams 

Fig. 14 Lezíria Bridge results for LC1, LC2 and LC3 (case 0) 
 
 
4. Strategies to improve the evaluation of bridge deflections 
 
4.1 Based on data extrapolation of curvatures 
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If Figs. 8 and 12 are carefully scrutinized, the two girder cross-sections instrumented near piers 
S3 and S5 are not exactly above the pier axis but inside of span 2. The preference for these two 
cross-sections instead of the girder cross-sections over supports S2 and S6 is due to the fact that 
the deformation field of the latter does not follow the Bernoulli hypothesis. Therefore, 
cross-sections over supports are avoided in measuring strains because they are not suitable for 
estimating cross-section curvatures. Hence, only one cross-section instrumented with strain gauges 
is available for each span, 1 and 3. In spite of the fact that a 4th order polynomial function may be 
used to estimate the span deflection, the quality of the results obtained for spans 1 and 3 is poor, as 
previously presented in Figs. 10(a) and 14(a). Therefore, the curvature of cross-sections near the 
intermediate supports is crucial information for accurate predictions. To overcome this limitation 
imposed by the monitoring systems, the curvature of these cross-sections was estimated with the 
polynomial function obtained for span 2 and therefore, the degree of the polynomial functions 
used for spans 1 and 3 could be incremented by one. 

Accordingly, Fig. 15(a) presents the results for Sorraia Bridge, where a considerable 
improvement is attained for spans 1 and 3. The relative error for cross-sections S1 and S7 decrease 
from + 12.9% to – 4.5% and from 14.2% to – 1.9%, respectively. As a result, the curvatures of 
cross-sections S2 and S6, calculated with the polynomial function obtained for span 2, is a valid 
strategy. Moreover, concerning the rotations, the errors also decrease near piers P1 and P2, as can 
be confirmed by the rotation diagrams shown in Figs. 10(b) and 15(b). 

As far as Lezíria Bridge is concerned, the results for span 3 are not satisfactory due to the 
scarce information on the deck behaviour over pier P3, as already mentioned. Therefore, the use of 
the deck curvature over piers, obtained with the polynomial function of span 2, is only applied for 
cross-section S2 (span 1). Fig. 16(a) shows the vertical displacement results, which are 
significantly better than the ones presented in Fig. 14(a). The relative error decreases from +34.3% 
to +3.3% for cross-section S1. The deviations observed for the rotations near piers P1 also 
decrease, which is the main reason for the improvement in results, as can be confirmed if the 
rotation diagrams shown in Figs. 14(b) and 16(b) are compared. 

The results presented in both Figs. 15 and 16 correspond to specific registers from all that are 
stored in the database. However, visualization over time is also possible by plotting sequentially 
the deflection curves calculated for all registers collected during the observation period [tinitial,tfinal]. 
Fig. 17  shows the evolution of vertical displacements during the load test for both bridges in 
cross-sections S1, S4 and S7 (S7 for Sorraia Bridge only). Two results are plotted: (i) calculated 
with polynomial functions (continuous line), and (ii) the sensor measurements (marker shapes). In 
general, the computed values and the measured ones exhibit good conformity, namely the trend 
evolution that is clearly identical. It is worth mentioning that the time window in the Sorraia 
Bridge case (Fig. 17(a)) includes two other load positions that have not been discussed in the 
present analysis. 

 
4.2 Based on rotation measurements 
 
Although the vertical displacements are satisfactorily estimated for cross-sections S1, S4 and 

S7 (error less than 4.5%), the same cannot be said for the deflection curves. Observing the 
deflection shape near the inner supports P1 and P2 of both bridges (Figs. 15(a) and 16(a)), a 
deviation of the normal curvature’s evolution is clearly visible. Moreover, the deflection curves 
estimated by the polynomial functions exhibit a higher curvature near the pier supports if 
compared with the numerical results, as shown in the rotation diagrams presented in Figs. 15(b) 
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and 16(b). For example, in the LC2 presented in Figs. 15 and 16, an inflection of the deformed 
shape above pier P1 is clearly noticeable. 

On the other hand, strain gauges measure local deformations, which could give unreliable 
readings to estimate bridge deflections if cracks occur in the instrumented zone. To avoid this 
problem, long gauges are preferable in order to get average deformations, which is not the case in 
the examples herein presented. Therefore, the installation of additional inclinometers might be a 
valid alternative to improve the quality of the estimated deflection shapes. If compared with strain 
gauges, which are commonly installed before the concrete is poured, with the higher cost and 
effort of embedded cables in the concrete, inclinometers are easier to install. 
 
 

(a) vertical displacement diagrams (b) rotation diagrams 

Fig. 15 Sorraia Bridge results for LC1, LC2 and LC3 (case 1) 
 
 

In this context, the bridge deflection evaluation based on rotations is discussed. Due to the 
absence of additional field rotation measurements, the subsequent analysis is throughout supported 
by the numerical results. In order to seek the best fitting for the bridge deflection, a parametric 
analysis was performed using rotations at different cross-sections. For each span, and accordingly 
with Fig. 18, two rotations above the piers – fixed inclinometers – and, at variable positions, four 
inclinometers in the case of inner spans (symmetrically positioned relative to the mid-span 
cross-section) and two inclinometers in the case of the end spans – movable inclinometers – are 
considered. The different configuration adopted for the end spans is related to the discontinuity at 
one of the end cross sections, which is an additional constraint (null curvature) for solving the 
problem. On the other hand, the shift of the cross-section with maximum vertical displacement to 
the side of deck discontinuity justifies the adopted inclinometers’ positioning. The movable 
inclinometers were successively moved 5 m apart (approximately 5% inner span length), in order 
to explore several possible configurations (Fig. 18). 
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(a) vertical displacement diagrams (b) rotation diagrams 

Fig. 16 Lezíria Bridge results for LC1, LC2 and LC3 (case 1) 
 

(a) Sorraia Bridge (b) Lezíria Bridge 

Fig. 17 Vertical displacement time-series during the load test 
 

 

(a) end spans                                   (b) inner spans 

Fig. 18 Parametric analysis for the bridge deflection calculation based on rotations 
 
 
Fig. 19 presents the results of the parametric analysis performed for Sorraia Bridge. For each 

span, the results show the average error committed, which is calculated as the quotient between the 
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average of the absolute differences between the vertical deflection calculated by the polynomial 
function and the one obtained by the numerical model, and the maximum vertical displacement 
(Eq. (14)). For each pair entry, the column height represents the average error when the 
inclinometers 1 and 2 are respectively positioned at a distance of L1 = 1L and L2 = 2L of the pier 
(Fig. 18). 
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The results show that the optimal position for inclinometers 1 and 2 are at L1 = 0.14L and L2  = 

0.42L in the case of the end spans, while for the inner spans the optimal positions are at L1 = 

0.12L and L2 = 0.30L. As Fig. 19 indicates, the average errors are about 1% for the three spans, 
which corresponds to a local minimum. 
 
 

(a) span 1 (b) span 2 (c) span 3 

Fig. 19 Results of the parametric analysis for Sorraia Bridge
 
 

Considering these optimal positions for the inclinometers, Fig. 20(a) shows the bridge 
deflection estimation that exhibits a close agreement with the results from the numerical model 
and the measured ones. The rotation diagrams presented in Fig. 20(b) also exhibit good conformity, 
with slight deviations near piers P1 and P2 that might be explained, again, by the higher variation 
of the cross-section inertia in these zones. For cross-sections S1, S4 and S7, the relative error, 
between the value predicted by the polynomial function and that by the numerical model is less 
than 2%. 

Regarding the Lezíria Bridge case, the results from the parametric analysis are shown in Fig. 21. 
The optimal position of the inclinometers 1 and 2 are at L1 = 0.15L and L2 = 0.41L for end spans, 
while for inner spans the best positions are at L1 = 0.11L and L2 = 0.31L. For the three spans, the 
average errors are approximately 1.4%, corresponding in all to a local minimum as can be 
observed in Fig. 21. 
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(a) vertical displacement diagrams (b) rotation diagrams 

Fig. 20 Sorraia Bridge results for LC1, LC2 and LC3 (case 2) 
 
 

Based on these optimal positions for the inclinometers, Fig. 22(a) shows the bridge deflection 
obtained, in which an almost perfect agreement is observed between data. The rotation diagram 
presented in Fig. 22(b) also exhibits good conformity, with slight deviations near the piers P1 and 
P2, which can again be explained by the higher variation of cross-section inertia in these zones. 
For cross-sections S1, S4 and S7, the relative error, between the value predicted by the polynomial 
function and that by the numerical model is less than 3%. 
 
 

(a) span 1 (b) span 2 (c) span 3 
* error > 15 % 

Fig. 21 Results of the parametric analysis for Lezíria Bridge
 
 

The similar patterns achieved for the bridge deflection calculated with the polynomial functions 
and the numerical model is the most relevant improvement. If the results of both bridges are 
compared, the relative location of the movable inclinometers is practically the same for both 
bridges, which is also very important to note. Therefore, taking into account these results, Fig. 23 
draws the optimal configuration for the inclinometers positioning with the purpose of estimating 
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the bridge deflection: (i) four inclinometers for end spans and (ii) six inclinometers for inner spans. 

(a) vertical displacement diagrams (b) rotation diagrams 

Fig. 22 Lezíria Bridge results for LC1, LC2 and LC3 (case 2) 
 

(a) extreme spans                               (b) inner spans 

Fig. 23 Optimal positioning of the inclinometers to estimate the bridge deflection 
 
 
5. Conclusions 

 
The present work focuses on the evaluation of bridge deflections based on polynomial 

functions using strain and rotation measurements. The procedure to estimate the bridge deflections 
is presented and applied to a prestressed concrete beam and two full-scale bridges built using the 
balanced cantilever method – the Sorraia Bridge and the Lezíria Bridge. The results are compared 
with the sensor measurements and those obtained by applying suitable bridge numerical models. 
Some relevant conclusions could be drawn: 

1.  The data processing is a computationally heavy task, namely if long periods of observation 
are handled. However, software implementation, such as the one provided by 
MENSUSMONITOR, revealed to be efficient and flexible for data input/output. The time spent 
in data handling was significantly shortened, if compared with traditional tools such as 
spreadsheets. Moreover, it offers the advantage of making real time visualization possible by 
directly connecting to acquisition systems or monitoring databases. 
2.  The procedure herein described was first applied to a simply supported beam subjected to 
two different load cases. Satisfactory results were attained with a maximum relative error of 
4.9%. 
3.  Concerning the full-scale bridges, the spans with the highest number of instrumented 
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cross-sections, i.e. span 2 in the examples, exhibit the best results with errors below 4.5% for 
the cross-section located at mid-span. These results show that a 6th degree polynomial function, 
based on three cross-sections instrumented with strain gauges and two cross-sections 
instrumented with inclinometers, can satisfactorily predict the vertical displacement of the 
mid-span cross-section. 
4.  The consideration of the curvatures above piers P1 and P2, extrapolated from the 
polynomial function determined for span 2, led to an improvement of the quality of results with 
relative errors lower than 4.5% for the vertical displacements of the adjacent spans.  In this 
case, good results can be attained with a 5th degree polynomial function, derived from three 
curvatures and one rotation. 
5.  The bridge deflections calculated with the polynomial functions deviate slightly from the 
results obtained with the numerical model, namely because of the unsatisfactory results 
obtained for the rotations near the support piers. However, the initial aim of the instrumentation 
plans was not the estimation of the deflection curves with polynomial functions. Furthermore, 
the real bridge deflection is a rational type function instead of a polynomial type, which is a 
critical aspect near the supports due to the high variation of inertia that can negatively affect the 
approximation with a polynomial function. Nevertheless, the estimated deflections present a 
satisfactory conformity with the ones obtained with the numerical models. 
6.  An alternative approach using inclinometer measurements was numerically tested. A 
parametric analysis was performed, with several configurations that comprised four 
inclinometers for the end spans and six inclinometers for the inner spans. The optimal solution 
conducted to a maximum relative error lower than 3%, and a perfect matching of patterns was 
achieved between the bridge deflection computed with the polynomial functions and the one 
obtained by the numerical model. Based on rotation measurements, suitable results might be 
achieved with a 5th and a 7th degree polynomial function for the end and the inner spans, 
respectively. 
7. Regarding the evaluation of the bridge deflection based on rotation measurements, the 
obtained results allowed for the definition of the relative position of the inclinometers for both 
bridges erected using the balanced cantilever method. 
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