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Abstract.  It is essential to update the model with reflecting observation or inspection data for reliability 
estimation of existing structures. Authors proposed updated reliability analysis by using Particle Filter. We 
discuss how to apply the proposed method through numerical examples on reinforced concrete structures 
after verification of the method with hypothetical linear Gaussian problem. Reinforced concrete structures in 
a marine environment deteriorate with time due to chloride-induced corrosion of reinforcing bars. In the case 
of existing structures, it is essential to monitor the current condition such as chloride-induced corrosion and 
to reflect it to rational maintenance with consideration of the uncertainty. In this context, updated reliability 
estimation of a structure provides useful information for the rational decision. Accuracy estimation is also 
one of the important issues when Monte Carlo approach such as Particle Filter is adopted. Especially Particle 
Filter approach has a problem known as degeneracy. Effective sample size is introduced to predict the 
covariance of variance of limit state exceeding probabilities calculated by Particle Filter. Its validity is shown 
by the numerical experiments. 
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1. Introduction 
 

Some model parameters are often difficult to determine in advance, or uncertainties of the 
parameters increase over time. The model parameters should be updated by inspection data or 
observation data in order to estimate current condition of existing structures properly. This paper 
proposes updating of reliability estimation of existing structures. It is composed of two parts, 
update of the model by observation or inspection data and estimation of limit state exceeding 
probability based on the updated model. The uncertainties of model parameters should be 
decreased depending on the quantity and quality of the observation/inspection data. Consequently 
more credible information can be provided for reasonable decision-making. Updating of model 
parameters is referred by several terminologies, such as parameter identification, inversion, back 
analysis, data assimilation and so on. Parameter updating or identification of a model is one of the 
hottest topics that have attracted attention from many researchers for decades (e.g., Yun and 
Shinozuka 1980, Hoshiya and Saito 1983, Honjo et al. 1994, Ge and Soong 1998, Au 2011). Only 

                                                       
∗Corresponding author, Professor, E-mail: iyoshida@tcu.ac.jp 

DOI: http://dx.doi.org/10.12989/sss.2013.11.1.103



 
 
 
 
 
 

Ikumasa Yoshida and Mitsuyoshi Akiyama 

representative value of the model parameters is often focused, but probabilistic nature of an 
updated model is important when we discuss update of limit state probabilities. The difficulties in 
obtaining solution in Bayesian updating depend on non-linearity of related equation and 
non-Gaussian PDFs of model parameters. In problems in which all equations are linear and all 
random variables are modelled by Gaussian, a closed form solution exists. They are known as 
Kalman filter algorithm in time domain or Kriging in spatial domain (Hoshiya and Yoshida 1996, 
Hoshiya and Yoshida 1998). 

When nonlinearity or non-Gaussian model parameters are involved, a rigorous theoretical 
approach is generally impossible to implement in realistic cases. An approximate solution can, 
however, be found by using several approaches. An idea of Gaussian sum is one of the approaches 
(Alspach et al. 1972). Weighted sum of Gaussian PDF (probability density function) is used to 
approximate arbitrary form of PDF. This is a good way to handle the nonlinear and non-Gaussian 
problem, but it has serious difficulty like numerical integration when the number of parameter is 
large. Several ideas are proposed to handle non-linear/non-Gaussian problems but most of them 
end up with same problem, so-called curse of dimensionality. Monte Carlo (MC) approach is in 
general used because of its versatility and usefulness to large dimension problem. Though an early 
idea of MC based methods for non-linear filtering technique can be found in late 1960s, the 
methods have been developed since 1990s intensively. MC based methods include Particle Filter, 
MC filter, Bootstrap filter, recursive MCS, sequential MCS, the Sampling Importance Resampling 
(SIR) method, and the Sequential Importance Sampling with Resampling (SISR) (Gordon et al. 
1993, Kitagawa 1996, Arulampalam et al. 2002, Ristic et al. 2004).  In this paper, the term 
Particle Filter (PF) is used in conjunction with time-dependent reliability assessment. Many 
researchers in various fields such as space physics, geophysics and medical science use PF to 
identify model parameters. Though they sometimes use a term, data assimilation instead of 
parameter identification, it is basically used in same meaning. An application of the PF for 
identification of structural model parameter is found also in civil engineering (Sato and Kaji 2002, 
Yoshida and Sato 2002). Ensemble Kalman filter (Evensen 1994) or unscented Kalman filter 
(Julier and Uhlmann 1997) are also developed to treat problems with nonlinearity. They are good 
 
 

Fig. 1 Reliability estimation with update 

Reliability Estimation
Limit state function and 
its exceeding probability

Observation
zk=H(xk/k,vk)

Initial Condition
x0/0 , k=0

Time Updating
xk/k-1 =F(xk-1/k-1 , wk)

Observation Updating 
xk/k

End

k = k +1

gk/k-1=L(xk/k-1) 
pf,k/k-1=P(gk/k-1<0)

gk/k=L(xk/k) 
pf,k/k=P(gk/k<0)
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methods to estimate representative value. Their calculation cost is lower than that of PF. When 
limit state probability is concerned, however we cannot expect enough accuracy because they 
ignore 3rd moment or higher, which sometimes have significant influence on tail part of PDF, 
consequently limit state probability. 

Authors proposed updated reliability analysis by using Particle Filter (Yoshida et al. 2009, 
Akiyama et al. 2010). We discuss how to apply the proposed method through numerical examples 
on reinforced concrete (RC) structures after verification of the method with hypothetical linear 
Gaussian problem. Reinforced concrete (RC) structures in a marine environment deteriorate with 
time due to chloride-induced corrosion of reinforcing bars. In the case of existing structures, it is 
essential to monitor the current condition and to reflect it to rational maintenance with 
consideration of the uncertainty. In this context, updated reliability estimation of a structure 
provides useful information for the rational decision. 

 
 

2. Formulation of reliability analysis with update 
 

State space model consists of two processes, time updating process and observation updating 
process. The time updating process is the one step ahead prediction based on the information at 
(k-1)-th step. The predicted state vector is 

)( 111 k/kkk/k- ,wxFx −−=                              (1) 

where wk is system noise that is involved in the prediction process including modelling error 
effects or unforeseen disturbances. State vector xk-1/k-1 is model parameters with uncertainties at 
(k-1)-th step, which is updated reflecting observation data up to (k-1)-th step. It is assumed that 
observation information zk is a function of state vector xk/k and observation noise vk as 

),( / kkkk vxHz =                               (2) 

The PDF (Probability Density Function) of these noises, p(wk) and p(vk) are assumed known 
and independent. Updating of state vector xk/k from xk/k-1 with zk is called observation updating 
process. When the state and observation equations are linear and noises are Gaussian, Kalman 
filter algorithm provides exact solution. The real world problems, however, often involve 
nonlinearity and non-Gaussian noises. 

The filtering algorithm based on MCS attracted attention for nonlinear and/or non-Gaussian 
problems. Fig. 1 shows the outline of the algorithm. It starts by assuming samples drawn from the 
distribution at (k-1)-th step 

,n,j|Zxpx kk
j

/kk L1          , )(~ 11
)(

11 =−−−−                      (3) 

)( 1211 −− = kk ,z,,zzZ L                             (4) 

The superscript (j) denotes the generated j-th sample realization. Cumulative distribution 
)( 11 −− kk |ZxP  can be naturally expressed approximately by the generated samples. 
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where U is step function. The approximate PDF is obtained by differentiation with respect to x. 

∑
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n
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n
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1
1/1111 )(1)(

)(
δ                       (6) 

where δ denotes Dirac delta function which is derivative of step function U. This approximation 
form of PDF with sample realizations is called as empirical PDF. The samples of k-th step before 
observation updating are obtained by simply substituting the samples into Eq. (1) 
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The empirical PDF of k-th step before updating is similarly estimated by the sample realization 
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The PDF after updating is obtained by using Bayesian theorem. 
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Substituting Eq. (8) into Eq. (9), we have 
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Eq. (10) can be integrated by using the nature of a delta function. 
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The term )( j
ka  represents weight (likelihood ratio) of sample j after updating. 
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When a new observation is available, the weights are calculated again and the approximate 
posterior PDF is sequentially updated. However after a few steps the confidence in the estimated 
PDF sometimes deteriorates because many particles have normalized weights very close to zero. 
This phenomenon is called as weight degeneracy or sample impoverishment. To alleviate the 
sample impoverishment problem, a resampling step is introduced (Arulampalam et al. 2002, Ristic 
et al. 2004). A new set of samples )(

/
j

kkx , j=1, n, is obtained by resampling independently n 
samples from )(

1/
j

kk −x  proportional to the weight )( j
ka . The set of sample realization approximates 

updated PDF )( kk|Zxp . 

)(1)(
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j

j
kkkkk xx

n
Zxp δ                         (14) 

A limit state function g is given as a function of state vector x. 

)(xLg =                                 (15) 

A limit state exceeding probability can be calculated easily with the samples updated by up to 
k-th step observation data kZ . 

( )( )∑
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//,
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The procedure can be summarized as follows corresponding to Fig. 1, 
(a) Generate sample realization based on the initial PDF, njx j  ,1 ,)(

0/0 =  
(b) Perform time updating process with Eq. (7) 
(c) Calculate weight (likelihood) of each sample with Eqs. (12) and (13) based on given 

observation data 
(d) Re-sample according to normalized likelihood (weight) 
(e) Go to step (b) 

 
 
3. Verification with hypothetical linear Gaussian Model 
 

3.1 Limit state function and basic conditions 
 
Limit state exceeding probabilities can be obtained theoretically when limit state function, state 

equation and observation equation are linear and all related noises are modelled by Gaussian. In 
this section, validity of reliability estimation with PF is shown with a simple linear Gaussian 
problem through comparison with probabilities calculated theoretically. 

Hypothetical limit state function g is defined as 

kkkkkkkkkk xtxxLxg /,3/,2/,1// )( −×−==                   (17) 
where, 

)11(     ),( /,3/,2/,1/ −−== tLxxxx kkkkkk
T

kk                (18) 

where t is years after construction, x1, k/k, x2, k/k, x3, k/k are state variables (random variables) 
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involved in the limit state function, which are assumed to be independent and Gaussian. Subscript 
k stands for step number. It is noted that a vector xk/k is expressed in a bold font, while a 
component of vector x1, k/k, x2, k/k and x3, k/k are expressed in normal font. These random variables 
and the limit state function are hypothetical, and do not have any physical meaning, however, 
resistance R and action S are defined as follows for illustrative purpose. 

kkkkkkkkkk xStxxR /,3//,2/,1/      , =×−=                  (19) 

State equation is assumed to be stationary 

kk/kk/k wxx += −1                              (20) 

where noise w in a state equation is process noise which is also assumed to be independent and 
Gaussian. Assumed mean and variance are summarized in Table 1. Variances of process noise w2, 
w3 are 0.0, and that of w1 is 2.0, which represents increase of uncertainty as to x1 over time, 20 
years in this numerical example. 

Limit state value g is also Gaussian since noises are Gaussian and limit state function is linear. 
The limit state probability can be calculated easily when observation update is not considered. 
Mean and variance of g, and limit state probabilities just after the construction (t = 0) and at 20 
years after the construction (t = 20) are summarized in Table 2. 

 
3.2 Probabilities updated theoretically 
 
We assume the following hypothetical observation equation. 

v
x
x
x
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where v is observation noise which is assumed to be independent and Gaussian, of which variance 
is assumed to be 1.0. Let’s assume that observation data z is given at 20 years after construction. k 
= 0 means just after the construction, k = 1 means 20 years after construction in this numerical 

 
Table 1 Statistics of random variables 

 x0/0.,1 x0/0.,2 x0/0.,3 w1,1 w1,2, w1,3 
Mean 15.0 0.1 10.0 0.0 0.0 

Variance 1.0 0.01 4.0 2.0 0.0 
w1 shows 20 years variance 
 
Table 2 Statistics of limit state value g and limit state probabilities 

Year Mean Variance Reliability index Probability 
0 5 5 2.24 0.013 

20 3 11 0.90 0.18 
β: Reliability Index 
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example. Because all involved uncertainties are modelled by Gaussian and observation equation is 
also linear, PDF of the random variables can be updated theoretically. Please refer a textbook on 
Kalman filter or Hoshiya and Yoshida (1996) for more detail. 

Three cases of observation data z1 = 8, 11, 13 are assumed. If z at 20 years is calculated simply 
by the mean value shown in Table.1, we have z1 = 11 by Eq. (21). Therefore the three cases of 
observation z1 = 8, 11, 13 indicate bad, average, safe side for the limit state respectively. The limit 
state probabilities are calculated based on the state vector x updated by the observations. 

The covariance matrices of random variables before update are 
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P0/0 represents covariance matrix of state vector just after construction (t = 0). P1/0 represents 
covariance matrix at 20 years (t = 20) before observation updating. The covariance matrix after 
update P1/1 is 

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=+=

−

−−−

200000
0130
0301275

500
1

4
100
01000

00
3
1

0401
0
40
1

)(

1

11
01

1
1/1 /

T PHRHP     (23) 

where R is covariance matrix of observation error. It does not appear in right hand side of the 
equation, because it is 1 × 1 matrix and its variance is 1.0. When z1 = 11, mean of random variables 
are updated as follows. 
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In a linear Gaussian problem, updated variables are also Gaussian. Consequently the limit state 
function value g1/1 is Gaussian because the limit state function is also linear. Its mean E [g1/1] and 
variance Var [g1/1] are obtained easily. 

0.3][][ 1/11/1 == LxEgE                          (25) 

95.4]Var[ 111/1 == T
/ LLPg                         (26) 

From above information, limit state probability P (g 1 / 1 <0) is 0.089. In the same way, when z1 
= 8, 13, limit state probabilities are 0.27, 0.033 respectively. 
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(1) Before update (2) Updated by observation z = 8 

(3) Updated by observation z = 11 (4) Updated by observation z = 13 
Fig. 2 Sample realizations for hypothetical problem by particle filter 

 
 
3.3 Probabilities updated by Particle Filter (PF) 
 
The same problem is solved by using PF following the procedure stated in Chap. 2. In step (a), 

sample realization x0/0
(j) are generated according to the statistics in Table 1. In step (b), x1/0

(j) is 
obtained by simply adding the process noise, because time update process is stationary as shown in 
Eq. (20). In step (c), likelihood of sample realization j is calculated with x1/0

(j) as follows, because 
the observation noise is modelled by Gaussian distribution. 
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where vσ  is standard deviation of observation noise. Normalized likelihood, namely weight a1
(j) 

is obtained by using Eq. (12). Finally, x1/1
(j) is re-sampled according to weigh a1

(j). 
Sample realizations of x1/0

(j) are shown in Fig. 2 with sample size 1000. Fig. 2 (a) indicates two 
kinds of figure at 20 years before update. One is a distribution of samples in x1,1/0 and x2,1/0 space. 
The other is the distribution in resistance R and action S space, which are defined in Eq. (19). The 
samples above the diagonal line shown in the figure exceed the limit state. From the number of the 
limit state exceeding samples, limit state probability can be calculated easily. The procedure so far 
is same as ordinary MCS procedure. 

Figs. 2(b), (c) and (d) show sample realizations after observation update by z = 8, 11 and 13 
respectively. In Fig. 2(b), because observation z1 = 8 (dangerous side, namely highly deteriorated 
condition) is given, mean and variance of updated resistance is reduced, the limit state probability 
becomes large from the balance of both. Fig. 2(c) shows the results when observation data z1 = 11  
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Fig. 3 Updated probabilities by particle filter 
 

(average state) is given. Mean of updated resistance R seems not to be changed but its variance is 
decreased. Thus samples in limit state exceeding area is decreased, consequently the limit state 
probability becomes small. Fig. 2(c) indicates the case when observation z1 = 13 (safe side, namely 
less deteriorated condition) is given. Mean of updated resistance is increased, and its variance is 
reduced. Consequently the limit state probability becomes small. 

Since MCS based methods use random number, probabilities obtained by PF depends on a seed 
of random number. In order to examine the accuracy of the estimated probabilities, the simulation 
by PF with a different seed is performed ten times. Sample size of each simulation is 1000 or 
10000. Obtained limit state probabilities are shown in Fig. 3 with theoretical probabilities 0.27, 
0.089 and 0.033 for z1 = 8, 11 and 13 respectively, which are stated above. When the sample size is 
1000, the variance is naturally large compared with cases with 10000 samples, but obtained 
probabilities are plotted around the theoretical value, which means that unbiased solutions are 
obtained. Thus we can confirm the validity of conditional reliability estimation with PF. It is noted 
that strong correlation between x1, 1/1 and x2, 1/1 is observed. From the standpoint of inverse problem, 
it is impossible to determine the two parameters from one observation data, namely so-called 
underdetermined problem. However, in terms of updated reliability estimation, the few observation 
data is still useful to update probabilities. 

 
 

4. Application to RC Structure in a marine environment 
 

4.1 Limit state functions of RC structure 
 
Reinforced concrete (RC) structures in a marine environment deteriorate with time due to 

chloride-induced corrosion of reinforcing bars. Because of the presence of uncertainties, it is 
necessary that structural long-term performance be treated based on reliability concepts and 
methods (Ellingwood 2005, Frangopol 2009). Three limit state functions are introduced as to 
deterioration of RC structure due to chloride attack. All uncertainties are denoted by x, which are 
summarized in Table 3. Please refer Akiyama et al. (2010) for more detail. 

(1) Limit State 1: Corrosion initiation of rebar, g1 

0.01
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0 1 2 3 4

P
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Theoretical Value
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PF(10000)

without update(=0.18)
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The limit state for rebar corrosion can be defined using the equation g1. 

( )tDCcCCxg cT ,,, 071 −=                           (28) 

where 
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CT is the critical threshold value of chloride concentration for initiation of rebar corrosion, x7 is 
a random variable representing uncertainty associated with estimation of CT, C is chloride 
concentration at rebar (kg/mm3), C0 is chloride concentration at concrete surface, x6 is a random 
variable related to estimation of C, Dc is apparent diffusion coefficient (cm2/year), t is the time 
after construction (year), c is concrete cover specified in design (mm), x5 is a random variable 
representing construction error of cover c, erf is error function. C0 and Dc are given by 

379.0
40 988.0 airCxC =                             (30) 

( ) ( ) 14.310.1077.6,10 2
3 −+−== CWCWqxD q

c                   (31) 

where, x4 is a random variable representing uncertainty related to estimation C0, Cair is airborne 
chlorides (mdd), x3 is a random variable representing uncertainty associated with estimation of Dc, 
W/C is water cement ratio (%). Cair is estimated by the following attenuation equation with respect 
to the ratio of sea wind r (the breezing time ratio of sea wind), the average wind speed u (m/sec), 
and a distance from coastline d (m). 

( ) 952.0386.0
12 29.1 −= duxrxCair                          (32) 

where, x2 is a random variable representing model uncertainty of attenuation relationship. All 
involved uncertainties x1 to x7 are summarized in Table 3. 
 

(2) Limit State 2: Corrosion crack occurrence, g2 
The limit state g2 is defined as 

WW SRg −= 22                                (33) 

where, RW2 is the critical threshold of corrosion associated with crack initiation, SW is corrosion 
rate (%). RW2 is estimated from corrosion quantity Wc (mg/mm2). 
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where, x8 is a random variable related to the estimation of Wc, ρs is iron density (=7.85 mg/mm3), γ 
is expansion rate due to corrosion (=3.0), φ  is diameter of rebar (mm), cf ′  is concrete 
compressive strength (N/mm2), Ec is concrete stiffness (N/mm2), wcr is crack width. 1100 ,,, βαβα  
are coefficients in order to consider the effect of cover, iron diameter and concrete compressive 
strength. 
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Action side of iron corrosion rate SW is estimated as follows. 
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where, v1 and v2 are corrosion velocities before and after crack initiation, x9 a random variable 
related to the corrosion velocities. The velocities v1, v2 are assumed to have following relation. 

12 vv Vα=                                  (39) 

The coefficient αV is assumed to be 13.0, based on the experimental data. 
 
(3) Limit State 3: Degradation of member strength, g3 
It is assumed that when the corrosion rate reaches 20% (= RW3), the member strength is 

degraded significantly for numerical demonstration. This third limit state is simply defined by iron 
corrosion rate SW and the critical threshold value RW3 (= 20%) 

WW SRg −= 33                               (40) 
 
4.2 Modeling of observation data 
 
The deterioration of reinforced concrete members in important structures such as marine 

structures, bridges and high-rise towers is routinely monitored using a variety of inspection 
techniques, ranging from visual inspection, surface sounding, coring for chloride profiling. Visual 
inspection is most common practice among them. This type of inspection generally gives a rank 
(category) of deterioration as output. Deterioration rank by visual inspection and profiling of 
chloride concentrations through depth by coring test are formulated as observation equation in this 
study. 

Visual inspections generally check length and width of crack on concrete surface, grade of 
surface damage, rust fluid and so on. Among these information, crack width and length are 
relatively easy to quantify, and have clearer relation with corrosion rate of rebar. In the following 
numerical simulations, Table 4 is used as the model that shows the relation between deterioration 
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Fig. 4 Distribution of chloride content 

 
rank by visual inspection and corrosion rate of rebar. The rank is assumed to be classified into four 
states following inspection practice in Japan. Corrosion rate of rebar of rank 1, 2, 3 and 4 are less 
than 2.3%, 2.3 to 5%, 5 to 20%, larger than 20% respectively. The corresponding boundary values 
with respect to crack widths are 0.1, 0.2 and 0.5mm, for each rank. Since we assume discrete rank 
by visual inspection, the observation equation has to be given in the form of table. Each column in 
Table 4 denotes ranking by visual inspection, namely rank based on crack width, while each line 
denotes rank based on corrosion rate. In the process of observation update in PF, we need to 
calculate likelihood of every sample depending on given observation data. The likelihood can be 
obtained for each sample realization by Table 4 based on rank given by visual inspection. For 
example, if the visual inspection result (observation data) is III and corrosion rate of a sample is  
4% which is categorized in rank II, the likelihood of the sample is 0.313. In the same way, a 
sample with 1% corrosion rate has likelihood 0.031. An exceptional rule is applied to a sample 
with 0 % corrosion. Its likelihood is 0.0 when observation is II, III or IV because corrosion crack 
never occur unless corrosion initiates. 

When profiling of chloride concentrations through depth by coring test is given, the observation 
equation is 

v
tD

derfCxxz
c

air +
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
−=

2
1.01988.0 379.0

46                    (41) 

where z is observed chloride concentration at depth of d, v is observation noise. Other notations are 
same as mentioned earlier. 
 

4.3 Numerical examples of updated reliability estimation 
 
4.3.1 Basic conditions and observation scenario 
It is shown how the proposed method can be used to predict stochastic deterioration relating to 

the long-term chloride corrosion in a reinforced concrete bridge pier. It is assumed that the bridge  
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Year

(1) Case 1 (visual inspection I) 

 
Year

(2) Case 2 (visual inspection II) 

 
Year

(3) Case 3 (visual inspection III) 
Fig. 7 Three kinds of limit state probabilities over time 

 
Table 5 Scenario of observation data set 

Case Years after construction
Observation data 

Chloride profile Visual inspection 
1 30 - I 
2 30 - II 
3 30 - III 
4 30 B II 
5 30 C II 
6 30 D II 

 
 
locates near coastline in Niigata city of Japan. Basic conditions such as water cement ratio and 
concrete cover are summarized in Table 5. 

The assumed profiling data A to D for observation data are shown in Fig. 4, in which 10, 50,  
90% lines are percentile of chloride concentration obtained by ordinary MCS with given random 
variable information in Table 3. Referring those percentile values, observation profiling A, B, C 
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and D are assumed. Chloride contents at 10, 30, 50, 70 90 mm from concrete surface are used as 
observation data for illustrative examples by PF. Observation noise v in Eq. (41) is assumed to be 
1.0 and independent each other for the simplicity. 

Six cases of observation scenario are shown in Table 6. Three kinds of limit state probabilities 
described in section 4.1 are calculated from 5 years to 50 years after construction by PF with 
10000 samples. 

 
4.3.2 Limit state probabilities updated by PF 
Sample realizations of action and resistance of the limit state 1 are shown in Fig. 5. They are 

chloride concentration at rebar as shown in Eq. (28). The broken line in the figure indicates the 
limit state line for the initiation of rebar corrosion. Samples above the line exceed the limit state, 
namely indicate initiation of rebar corrosion. The chloride contents become large over time, 5, 10, 
20, 30 years, consequently the number of samples exceeding the limit state gradually increases. 
After updating at 30 year, the exceeding samples are slightly reduced. Fig. 5 shows the result of 
the case with inspection rank I. Similarly samples for limit state 2 and 3 are shown in Fig. 6. 

 
 

 
Year

(1) Case 4 (visual inspection I + profile B) 

 
Year

(2) Case 5 (visual inspection I + profile C) 

 
Year

(3) Case 6 (visual inspection I + profile D) 
Fig. 8 Three kinds of limit state probabilities over time 
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The limit state 2 indicates the initiation of concrete crack at surface, and the limit state 3 
indicates the significant degradation of member strength. The limit state functions are constructed 
with respect to corrosion rate of rebar as shown in Eqs. (33) and (40). The samples are plotted in 
space of corrosion rate of rebar and the critical threshold value for the limit state 2 (crack 
initiation). Since the resistance value for the limit state 3 is given as deterministic value 20%, the 
limit state line is expressed by the horizontal broken line in the figure. The number of plotted 
samples in the figure is small at 5 year since samples exceeding the limit state 1 (initiation of rebar 
corrosion) are yet few. The samples exceeding the limit state 3 can be seen at 30 years before 
updating, however they vanish after the updating. Samples exceeding the limit state 2 are also 
reduced clearly. 

Counting the number of samples exceeding the limit state, we can calculate the limit state 
probabilities. Figs. 7 and 8 show limit state probabilities over time, which are updated at 30 years 
after construction by visual inspection and chloride concentration profiling. The random variables 
of the model (Table 3) are updated by the assumed observation scenario in Table 6. Consequently 
the limit state probabilities are also updated based on them. Probabilities without any observation 
updating are calculated and shown in the figure for comparison. 

In Case 1 which uses visual inspection rank I as observation data, the probabilities of all limit 
states are decreased after the observation updating. In Cases 2 and, 3, the probabilities are 
increased after the updating naturally since rank II, III means observation of crack on concrete 
surface. It is noted the probabilities can be updated though the information obtained by visual 
inspection is too small to identify model parameters. This difficulty in inverse or parameter 
identification problem is well known as ill-posedness or multicollinearity problem. 

In addition to visual inspection result I, chloride concentrations through depth by coring test are 
considered as observation data in Case 4, 5 and 6. The assumed profiling is small in the sequence 
of A, B, C as shown in Figure 4. Naturally the updated probabilities are supposed to be large in the 
same sequence. Figs. 8(a) and (b) shows probabilities updated by profiling B (case 4) and C 
(case5). In both cases the probabilities are decreased by the updating at 30 years. The updated 
probabilities by profiling B is smaller than those by profiling C. Profile D has a special distribution 
that the chloride content is small near concrete surface, whereas large near rebar compared with 
profiling C. This difference of profiling suggests that the deterioration of the case with profiling D 
is more severe at just after the updating (30 years), however, in future less severe compared with 
the case of profiling C. Reflecting this feature, the limit state probabilities updated by profiling C 
is larger than those updated by profiling D at 30 year (just after updating), however the 
probabilities at 50 year (future) are smaller than those with profiling D. 

 
 

5. Degeneracy in particle filter 
 

Particle Filter (PF) has a problem known as degeneracy or sample impoverishment, which 
causes reduction of accuracy. In observation updating process by PF, the likelihood of each sample 
is estimated. The likelihood expresses the consistency between observed data and calculated data. 
The estimated likelihood of specific sample sometimes becomes very large especially when the 
assumed observation error (e.g., v in Eq. (41)) is small. In such a situation, accuracy of estimated 
probability is deteriorated significantly. 

For the simplicity, only profiling of chloride concentrations by coring test is considered as 
observation data for numerical demonstration. It is assumed that observation is profile type C at 30 
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(1) Before updating (2) After updating, St. Dev. 1.0 (3) After updating, St. Dev. 0.5 
Fig. 9 Distributions of resistance and action of limit state 1, updated by profile C at 30 years 

 

 
(1) Mean (2) COV 

Fig. 10 Probabilities updated by Profile C; St.Dev. 1.0, Effective Sample Ratio 0.05 
 

Fig. 11 Effective Sample Ration Reff and RCOV; RCOV: Ratio to Theoretical lower limit COV 
 
 
years and its standard deviation of the observation error is 1.0 or 0.5. Sample realizations of 

action and resistance of the limit state 1 at 30 years are shown in Fig. 9. The parameter for the 
limit state 1 is chloride concentration at rebar depth as shown in Eq. (28). The broken line in the 
figure indicates a limit state line for the initiation of rebar corrosion. The number of samples looks 
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fewer after the updating because of degeneracy in which samples with large likelihood is drawn 
many times and samples with small likelihood are discarded in the resampling process. Such a 
concentration or degeneracy is severe when the observation error is small, like the case with 
standard deviation 0.5 as shown in Fig. 9(c). 

COV (Coefficient of Variance) of probability p calculated by ordinary MCS can be estimated 
by 

np
pCOV −

=
1                                (42) 

where n is the number of sample in MCS. This equation is obtained assuming that each sample is 
perfectly independent. Eq. (42) indicates theoretical lower limit of COV of a probability calculated 
by PF. The degree of degeneracy can be estimated by following indicator, effective number Neff 
(Ristic et al. 2004). 

( )∑
=

= n

i

j
k

eff

a
N

1

2)(

1 
                              (43) 

where ak
(j) is likelihood ratio. See Eq. (12). When likelihood of all samples are same, we have
na j

k /1 )( = , consequently Neff = n. When likelihood of one specific sample is 1.0 and those of the 
other are 0.0 as opposite extreme case, we have Neff = 1. Effective sample ratio Reff is introduced to 
discuss the accuracy of estimated probability. 

n
N

R eff
eff =                                 (44) 

In order to examine the accuracy depending on the degeneracy level Reff, the calculation of 
probabilities updated by PF is repeated 100 times with different seed of random number. COV of 
estimated probabilities is calculated based on the 100 estimated probabilities. Sample size of 
SMCS is 100, 300, 1000, 3000 or 10000. Used observation is profile type-C and standard 
deviation of observation error is 1.0. Fig. 10 shows the mean and COV of probabilities obtained 
from the 100 simulations depending on the sample size. The mean is almost flat for sample size 
larger than 300. The lines of COV calculated by PF are parallel to the theoretical lower limit given 
by Eq. (42) but around three times larger than them. COV of probability obtained by 10000 sample 
case is 3.3 times larger than theoretical COV for limit state 1, while 2.6 times for limit state 2. 
Parameter RCOV that shows efficiency or accuracy is introduced and defined as ratio of obtained 
COV to the theoretical COV. The efficiency RCOV of limit state 1 and 2 are 3.3 and 2.6 respectively. 
The effective sample ratio Reff in this simulation is 0.052. In the same way, we estimate COV when 
standard deviation of observation error is 2.0. The RCOV is 2.1 and 2.0 for limit state 1 and 2 
respectively. The effective sample ratio Reff is 0.20, which is larger than that of the case with 
observation error 1.0 because larger standard deviation makes the variation among likelihood of 
samples smaller relatively. Changing the standard deviation, type of observation, we obtained 
many sets of Reff and RCOV, which are shown in Fig. 11. The obtained RCOV is almost proportional 
to effective sample ratio Reff in logarithmic space. It indicates that we can predict accuracy level, 
namely, COV of probabilities calculated by PF, substituting effective number Neff obtained by Eq. 
(43) into Eq. (42). 
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6. Conclusions 
 

It is essential to update the model with reflecting observation or inspection data for reliability 
estimation of existing structures. The reliability estimation methodology by using Particle Filter 
(PF) are proposed and verified by hypothetical Gaussian linear model. It is also demonstrated 
through a numerical simulation on deteriorating RC structures due to chloride attack. Accuracy 
estimation is one of the important issues when Monte Carlo approach is adopted. Especially PF 
approach has a problem known as degeneracy. Effective sample size is introduced to predict the 
COV of limit state exceeding probabilities calculated by PF. The validity is shown by the 
numerical experiments. 

There are several remaining future topics. Advanced Particle Filter is proposed to alleviate 
degeneracy problems. Merging Particle Filter (Nakano et al. 2007) is one of the advanced PF 
methods. It is simple but effective method to alleviate the degeneracy problem. This method 
conserves first and second moment of the original PDF. However, higher than second moment are 
not conserved. Though we examined the applicability of Merging Particle Filter to reliability 
estimation, the result is not good because probabilities are strongly influenced by tail part of PDF, 
which is sensitive to higher moment. The development of method that can alleviate the degeneracy 
and conserve the higher moment is one of the future topics. 
As shown in this paper, modelling of observation error has strong influence on estimated 
probabilities. Modelling of spatial correlations of crack and chloride concentration are also one of 
the remaining problems. We need to accumulate the data of deteriorating structures for 
construction of more detailed stochastic model. 
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