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Abstract.   An efficient methodology using static test data and changes in natural frequencies is proposed to 
identify the damages in structural systems. The methodology consists of two main stages. In the first stage, 
the Damage Signal Match (DSM) technique is employed to quickly identify the most potentially damaged 
elements so as to reduce the number of the solution space (solution parameters). In the second stage, a 
particle swarm optimization (PSO) approach is presented to accurately determine the actual damage extents 
using the first stage results. One numerical case study by using a planar truss and one experimental case 
study by using a full-scale steel truss structure are used to verify the proposed hybrid method. The 
identification results show that the proposed methodology can identify the location and severity of damage 
with a reasonable level of accuracy, even when practical considerations limit the number of measurements to 
only a few for a complex structure. 
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1. Introduction 
 

As civil infrastructure ages, the early detection of damage in a structure becomes increasingly 
important for both life safety and economic reasons, which is a vibrant area of current research in 
the civil engineering community. Structural damage generally produces changes in the static and 
dynamic characteristics of the structures, such as strain, deformation, as well as the inherent 
characteristics changes in frequencies, vibration modes, etc. In the past few decades, a lot of 
research has been dedicated to detect changes in the physical and/or geometric properties of a 
structure from data gathered at two different states, a reference state, considered as the undamaged 
state, and the current state. Changes can be caused by damage present in the structure. Recently, 
research efforts have been substantially expended in exploring the novel system identification 
techniques for damage detection (Hajela and Soeiro 1990, Viola and Bocchini 2011). A vast 
majority of the literature focus on laboratory tests and numerical simulations revealed numerous 
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and diverse algorithms. The resulting literature was reviewed by Doebling et al. (1998), Sohn et al. 
(2003) and Peter and Fanning (2004). 

These conventional damage identification methods may work satisfactorily when applied in 
laboratory or simulated environment, but theirs practical application still encounters some 
technical challenges, such as noise-contaminated measurements, incomplete model information 
and so on. The process of structural damage identification is commonly considered as an 
optimization problem in which an error measure that defines the discrepancy between computed 
and observed structural responses is minimized by updating a parameterized model (Hjelmstad and 
Shin 1997). Recently, some researchers tried to use heuristic intelligent optimization algorithms to 
tackle damage detection problems. These intelligent algorithms possess several advantageous 
features compared to many previous methods. One of the most important characteristics of 
computational intelligence methods is their effectiveness and robustness in coping with uncertainty, 
incomplete information, and noise. Several studies have applied intelligent optimization 
algorithms successfully in system identification and damage detection. Evolution strategy (ES) 
algorithms have been presented for the identification of multiple DOF systems (Franco et al. 2004). 
Tang et al. (2008) have applied a differential evolution (DE) strategy to parameter estimation of 
structural systems. Simulated annealing (SA) and genetic algorithm (GA) have been implemented 
for finite element model updating (Levin and Lieven 1998). The GA identification strategy was 
extended for structural damage detection whereby the undamaged state of the structure is first 
identified and used to direct the search for parameters of the damaged structure (Koh et al. 2003, 
Perry et al. 2006, Koh and Perry 2009). Mares and Surace (1996) used GA to adjust the structural 
parameters by minimizing the equation error (residual force) for locating and identifying structural 
damage from measured natural frequencies and mode shapes. Chou and Ghaboussi (2001) 
employed GA to identify damage severity of trusses by using a small number of measured static 
displacements. Ostachowicz et al. (2002) utilized GA to identify the location and magnitude of an 
added concentrated mass on a simulated rectangular plate by using the shifts in the first four 
natural frequencies. Raich and Liszkai (2007) used GA to identify location and severity of 
structural damage by minimizing the error between measured and analytically computed frequency 
response functions obtained through finite element model updating. Chiang and Lai (1999), 
Moslem and Nafaspour (2002) and Guo and Li (2009) described a two-stage process where the 
residual force vector is used to locate the damage initially and then in a second stage, a GA is used 
to quantify the damage in the identified elements. Srinivas et al. (2010) presented a damage 
detection scheme using modal strain energy and GA to assess the location and extent of damage. 

As a novel evolutionary computation technique, the particle swarm optimization (PSO) 
algorithm (Eberhart and Kennedy 1995, Kennedy and Eberhart 1995) has attracted much attention, 
owing to its simple concept, easy implementation and quick convergence. PSO has been 
successfully applied in many fields, such as function optimization, artificial neural network 
training, fuzzy system control, simulation and identification, structural reliability assessment, 
automatic target detection, optimal design and parameter estimation (Eberhart and Shi 2001, 
Kennedy et al. 2001, Hu et al. 2004, Elegbede 2005, Meissner et al. 2006, Liang et al. 2006, He 
and Wang 2007, Tang et al. 2007). Recently, many successful applications of damage detection 
using the PSO algorithm have been reported in the literature (Perera et al. 2010, Begambre and 
Laier 2009). 

The particle swarm optimizer shares the ability of the genetic algorithm to handle arbitrary 
nonlinear cost functions, but with a much simpler implementation. Boeringer and Werner (2003) 
have investigated the performance of GA and PSO for a phased array synthesis problem. The 
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results show that some optimization scenarios are better suited to one method versus the other, 
which implies that the two methods traverse the problem hyperspace differently. In another 
publication (Mouser and Dunn 2005), the authors compared the performance of GA and PSO for 
optimizing a structural dynamics model. The results show that PSO significantly outperformed GA. 
Also, PSO is much easier to configure than GA and is more likely to produce an acceptable model.  

When damage identification is cast as an optimization problem, especially for the identification 
of large-scale structures, great challenges arise such as large search domains and lack of sufficient 
information from tests performed on the structure. A large search domain will lead to excessive 
computational cost. This is because we have to evaluate the objective function at each stage of 
generation for the total population, which makes the computation very intensive and might involve 
problems of convergence. In order to reduce the computational cost of the optimization process 
and improve the convergence, it is therefore natural to reduce the dimension of optimization 
problem by considering the most potentially damaged elements as the search domains, instead of 
the total ones. For this purpose, the PSO algorithm combined with the Damage Signal Match 
(DSM) technique (Lam et al. 1998, Wang et al. 2001) can be utilized as an effective tool. 

Usually, the first few natural frequencies and static displacements can be obtained relatively 
accurately for structures. In this study, a multi-stage approach is adopted using the first-order 
approximation of changes in static deformation and natural frequencies to identify the damage in 
structures. The methodology consists of two main stages. In the first stage, the DSM technique is 
employed to quickly identify the most potentially damaged elements. In the second stage, these 
identified damaged elements are analyzed further for exact identification and quantification of the 
damage using PSO-based optimization approach. The effectiveness of the proposed methodology 
is illustrated by numerical simulation as well as experimental study of a full size steel truss, of 
which the incomplete static response and the natural frequencies are obtained experimentally. The 
numerical and experimental results demonstrate that the combination of the DSM technique and 
PSO can produce an efficient tool to identify the structural damages. 

 
 

2. Formulation of damage identification as an optimization problem 
 
For a linear structure, the mathematical model for the system can be described as 

fuαK )(                                 (1) 

where K() is the stiffness matrix of structure, defined as a function of a vector of damage 
parameters , u is the displacement vector under the applied static load vector f. The damaged 
stiffness, e

i
*k , corresponding to element i in the structure, can be computed from the undamaged 

stiffness, e
ik , and the corresponding damage parameter, )10(  ii  , as 

e
ii

e
i kk )1(*                                (2) 

The global stiffness matrix is assembled from individual element contributions as 





ne

i

T
i

e
ii

1

*)( AkAαK                             (3) 

where Ai is the stiffness connection matrix constructed using connectivity and geometrical data of 
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structure corresponding to the ith element, ne  is the total number of the elements. 
The displacement vector u can be calculated using 

fαKu 1)(                                 (4) 

Pre-multiply Eq. (4) by a Boolean matrix Q, the measured displacement mu extract from 
complete vector u is as follows 

fαQKu 1)( m                              (5) 

where um is a vector of measured displacement. Eq. (5) can be extended for multiple loading 
conditions as follows 

jmj fαQKu 1)(  , j=1, …, nlc                        (6) 

where nlc is the total number of the loading cases. The number of unknown damage parameters is 
still unchanged, but the number of equations is increased. If the total numbers of measurements are 
equal to the number of unknown parameters, the solution of Eq. (6) is determined and gives the 
damage parameters. In real applications, not all the degrees of freedom in a structure are usually 
measured. This gives rise to situations in which the number of parameters to be identified is larger 
than the number of measurements, resulting in a large number of possible solutions. Therefore, 
instead of solving Eq. (6), an alternative is to formulate the identification problem as an 
optimization problem and seek the best fit solution for Eq. (6). 

The unknown damage parameters  are obtained by minimizing an objective function 
formulated by the error between the computed response and the measured displacements of 
multiple tests. The error function used in this article is defined as 







nlc

j mj

cjmj

nlc
E

1 )max(

1
)(

u

uu
α                           (7) 

where, nlc is the total number of the static load cases; umj and ucj are the measured and computed 
displacement vectors of the structure at sensor locations under the same load fj, respectively. The 
difference between displacements should be normalized to get a better representation of the 
relative change in response. The maximum displacement of all sensors is selected as the 
normalization parameter to cancel out spurious effects of very small displacements. 

The optimal damage parameters, , are obtained by solving the following constrained nonlinear 
optimization problem 

neits

EMin

i ,,1,10..

)(

 
α

α                         (8) 

It is worth pointing out that, if total elements were treated as possible damage on the structure, 
the number of possible damages would be very large. This gives rise to the situation in which the 
search space of the identification optimization problem Eq. (8) is very large, resulting in much 
greater computational costs and problems of convergence. 
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3. PSO-based two-stage structural damage identification method 
 
3.1 Identification of damage location 
 
The main problem of damage identification using the optimization approach is that it imposes 

much computational effort to the process. In order to reduce the computational cost of the 
optimization process, some useful techniques should be employed. In this study, the DSM 
technique (Lam et al. 1998, Wang et al. 2001) is adopted to reduce the dimension of the 
optimization problem by considering the most potentially damaged elements instead of the total 
ones. 

Generally, the structural damage can cause changes in the stiffness matrix by an amount K . 
As it is assumed that damage does not change the mass of the structure, the changes in the 

displacements and the natural frequencies 2
j due to the existing damage can be evaluated from 

the following first-order approximation, respectively 

 fKKKu 11                                (9) 

j
T
j

j
T
j

j Mφφ

Kφφ 
 2                              (10) 

where K is the stiffness matrix of structure, M is the mass matrix; j  is the jth order of circular 

natural frequency and jφ  is the jth mode shape of the structure. 

In order to identify the damage locations, the idea of DSM technique is adopted (Lam et al. 
1998): If the changes of the static or dynamic response for all possible damage cases are predicted 
using an analytical model, the measured response changes can be compared with them one by one. 
Then, the damage location can be assessed by matching the Measured Damage Signatures (MDS) 
with the Predicted Damage Signatures (PDS) for different possible damage cases. The ratio of 
changes in static responses vector to changes in natural frequencies is defined as the Damage 
Signature (DS). In the proposed method, the MDS of load case i is defined from Eqs. (9) and (10) 
as 

 
m

i
iMDS

2ω

u




                              (11) 

where the subscript m denotes that the measured data are employed. The change in one of the first 
few order frequencies is generally used as the reference value, in practicing. 

Similarly, the PDS under load case i, assume that element k is damaged, can be calculated from 
Eqs. (9) and (10) as 

   
 

pk

ki
ikPDS

2ω

u




                            (12) 

where the subscript p denotes that the value is predicted analytically. 
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It should be noted that calculations of MDS and PDS in the abovementioned equations involve 
only the DOFs where measurements have been made. The unmeasured DOFs of the changes of 
displacement can be set to zero or removed from the global vector. Then, the incomplete measured 
data will not influence the process described above, which is very useful in real application. 

Finally, the total discrepancy between the measured and the predicted damage signature for 
possible damage in element k is defined as 

   



nlc

i
iikk MDSPDSD

1

                        (13) 

where nlc is the total number of the static load cases. 
For each possible damage location identified by DSM technique, the corresponding predicted 

damage signatures are compared with the measured damage signatures. The possible damage case 
with the smallest discrepancy Dk is believed to be the actual damage scenario on the structure. In 
another word, smaller Dk indicates the higher possibility of damage in the kth element. 

 
3.2 Damage identification using PSO algorithm 
 
In the first stage, possible localization of the damage was achieved by using the DSM technique 

so as to reduce the number of parameters of the searching space in the optimization approach. 
After obtaining the possible damage location, the reduced damage identification problem is solved 
using a particle swarm optimization method to truthfully determine the extents of actual damaged 
elements. 

When the possible damage location is roughly determined, assuming the total number of 
possible damage elements in identification of damage location is np, the global stiffness matrix Eq. 
(3) will be rewritten as 





ne

npi

T
i

e
ii

1

)( AkAKαK                       (14) 

where np is the total number of the possible damaged elements and 





np

i

T
i

e
ii

1

*)( AkAαK                           (15) 

Based on Eqs. (7), (8), (9) and (15), the model of Eq. (8) can further be cast into the following 
optimization problem for determining the damage extent,  = {1, 2,…, np}. 

npits

EMin

i ,,1,10..

)(

 
α

α                        (16) 

Generally, np << ne, therefore, the dimension of solution parameters for the model of Eq. (16) 
can be reduced greatly comparing with the model of Eq. (8), which leads to the saving of 
computational resources and time, especially when dealing with large-scale structures. In this 
study, the PSO algorithm is proposed to solve this optimization problem. 
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3.3 Particle Swarm Optimization (PSO) algorithm 
 
Particle swarm optimization algorithm is a population based stochastic optimization technique 

developed by Eberhart and Kennedy (1995), inspired by social behavior of animals such as bird 
flocking, insect swarming and fish schooling. It involves a number of particles which are 
initialized randomly in the search space of an objective function. These particles are referred to as 
swarm. Each particle of the swarm represents a potential solution of the optimization problem. The 
particles fly through the search space and their positions are updated based on the best positions 
(pbest) of individual particles in each iteration. The fitness values of particles are obtained to 
determine which position in the search space is the best. The best value is a global best and is 
called gbest. The particle swarm optimization concept consists of, at each time step, changing the 
velocity of (accelerating) each particle toward its pbest and gbest locations. 

In the illustrative examples presented in this paper, the searching procedure adopted is 
illustrated as following: 

Let RRf m : be the fitness function that takes a particle's solution with several components in 
higher dimensional space and maps it to a single dimension metric. Let there be n particles, each 
with associated positions m

i Rx  and velocities m
i Rv  , i=1,…,n.. Let 

ipbest  be the current best 

position of each particle and let gbest be the global best. 
Initialize

ix  and 
iv for all i. One common choice is to take  jjji baUx ,,  and 0iv for all i and 

j=1,…,m, where 
ja ,

jb  are the limits of the search domain in each dimension, and U represents 

the Uniform distribution. 

ii xpbest   and .,,1  ),(minarg nxixfgbest iixi

  

While the convergence is not met. 
For each particle ni 1 : 
Create random vectors r1, r2: r1j and r2j for all j, by taking  1,0, 21 Urr jj   for j=1,···, m. 

Update the particle velocities: 

)(
)(

22

11

i

iiii

xgbestrc
xpbestrcvv


  

Update the particle positions: iii vxx  . 

Update the local bests: If ),()( ii pbestfxf  .ii xpbest   

Update the global best If ),()( gbestfxf i   .ixgbest   

End For 
End While 
 

where, c1 and c2 are the acceleration constants reflecting the weighting of stochastic acceleration 
terms that pull each particle toward pbest and gbest positions, respectively. w is the particle inertia 
weight. The inertia weight is used to balance the global and local search abilities. For more 
information about the PSO algorithm, please refer to Eberhart and Kennedy (1995). 

In this article, PSO parameters are set as 30 particles (swarm size), maximum of 500 
generations (iterations), a linearly decreasing inertia function from 1.1 to 0.6 and acceleration 
constants are set to 2.05. 
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Fig. 1 Geometry for planar truss 

 
Table 1 Load cases for the planar truss 

Load case Load at node 

1 ④ 

2 ⑥ 

3 ⑧ 

4 ⑥，⑧，⑩，⑫ 

5 ④，⑧ 

6 ⑥，⑫ 

 
Table 2 Damage cases for the planar truss 

Damage case Damaged element (Damage extent) 

A 5(20%*) 

B 23(20%) 

C 5(20%), 16(20%) 

D 5(20%), 16(20%), 23(20%) 

E 5(20%), 16(10%), 23(50%) 

*Note: 20% reduction in EA 
 
4. Case studies 
 

4.1 Numerical verification 
 
Firstly, a mathematical model of a planar truss (Fig. 1) is used to verify the proposed method. 

The FEM analysis is carried out to simulate the experimental data by using two-node linear bar 
elements. The lumped-mass representation is adopted to generate the mass matrix for calculating 
the natural frequencies. Total numbers of elements and nodes are 25 and 14, respectively. The 
axial rigidity stiffness of each member in the structure, EA = 3.8 × 107 N, density= 7849 kg/m3. 
Load cases are shown in Table 1, here, applied loads(vertically downward) at nodes are chosen to 
be 1000 N. Damage is simulated by reducing the axial rigidity stiffness of the member. Several 
damage cases for the planar truss are considered. Five damage cases shown in Table 2 are 
investigated, including single and multiple damage cases. Measurement locations for this example 
under the corresponding load case are selected. Here, horizontal displacement measurements of 
nodes 7 and 8 and vertical displacement measurements of nodes 5, 6, 9, 10, 11 and 12 are selected. 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 

6×1.5m

0.
8m
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15 16 17 18 19 20 21 22 23 24 25 
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⑭
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5% noise is added to the process of numerical simulation. The change in the first-order frequency, 
i.e., 1 , is used as the reference value, in practicing. 
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Fig. 2 Damage location results of damage case A 
 

 

5 10 15 20 25
0

20

40

60

80

100

 
 

Fig. 3. Damage location results of damage case B 
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Fig. 4. Damage location results of damage case C 
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Fig. 5. Damage location results of damage case D 
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Fig. 6. Damage location results of damage case E 

 
 

Usually the discrepancy Dk values are very small. For convenience, 1/ Dk is defined as damage 
index to judge the existence of damage in element k, when 1/ Dk is large, it can be thought that the 
possibility of damage in the kth element is very high. For each damage case, the 1/ Dk value, is 
normalized by the largest one of all candidates. All possible damages were calculated and shown 
in Figs. 2-6 respectively. From Figs. 2 and 3, it can be found that the proposed approach is very 
effective for the cases of single damage. For damage Case C, the result of damage location 
assessment is shown in Fig. 4. Although the damaged elements 5 and 16 can be identified 
obviously, the damage location figure becomes obscure in Fig. 4, and more wrong possible 
damaged elements, such as elements 15, 17 and 23 are also identified in this case. As we all know, 
the limited load paths and the sparsity of the measurements in damage identification problems lead 
to ill-posed inverse problems in which solution uniqueness is not guaranteed, consequently 
resulting in a large number of possible solutions. This problem can only be partially overcome by 
optimizing the scheme of loading and measurement according to the proper pre-analysis. For 
damage case D and E, the results are identical to those of damage case C shown in Fig. 4. 

For assessing the damage extent, the estimated results of cases A, B, C, D and E are listed in 
Table 3. Results in Table 3 show that the exact value can be obtained using the particle swarm 
optimization algorithm, even in the case of multiple-damage. In general, for all cases studied, the 
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results show small errors, only the element 16 in damage case E shows slightly high. These results 
show that the location and extent of damage can be identified successfully with an acceptable 
accuracy by using the proposed PSO-based two-stage damage identification method. 

 
4.2 Experimental verification 
 
To verify the ability of this method on detecting damage of structures in practical engineering, 

experiments on a full-scale steel truss structure were carried out. The elevation of the steel truss 
structure is shown in Fig. 7, and the experimental set-up is shown in Fig. 8. The truss is 
constructed from steel pipe truss members, whose material constants are the Young’s modulus E = 
2.1×102 GPa, the section area of truss member A = 2.135×10-4 m2 and the mass density   = 
57.93103 kg/m3. The finite element model of the structure consisting of 41 nodes and 128 bar 
elements is shown in Fig. 9. The node and member number of web, top and bottom chords for the 
experimental space truss are also shown in Fig. 9. The damage of the truss member is simulated by 
replacing a smaller cross-section with original members A14, B27 and C52 (marked in Fig. 9) and 
the stiffness of these members is reduced by 23.7%. Five damage cases shown in Table 4 are 
investigated, including the chord and web damage cases. 

 
 

Table 3 Damage cases for the planar truss and identification results 

Damage case Possible damaged element Damage extent 

A 5 5(21.06%) 

B 23 23(19.75%) 

C 5, 15, 16, 17, 23 5(19.45%), 15(0%), 16(22.26%), 17(0%), 23(0%) 

D 5, 7, 12, 14, 15, 16, 17, 23 
5(23.22%), 7(0%), 12(0%), 14(0%), 15(0.12%), 

6(21.45%), 17(0.13%), 23(18.25%) 

E 2, 3, 4, 5, 15, 16, 17, 22, 23 
2(0.12%), 3(0%), 4(1.65%), 5(20.40%), 15(0.15%), 

16(3.68%), 17(0.21%), 22(0.17%), 23(50.31%) 

 

Fig. 7 Elevation of the steel truss structure 
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Fig. 8 Experimental set-up 
 

Table 4 Damage cases for the experimental space truss 

 
Table 5 Load cases for experimental space truss 

Load case Load at node 
1 11, 12, 13, 16, 17, 18, 22, 23 
2 12, 16, 17, 18, 22, 34, 35, 38, 39 
3 12, 17, 22, 34, 35, 38, 39 
4 13, 14, 18, 19, 23, 24, 36, 40 
5 31, 32, 33, 35, 36, 37, 39,40 
6 22,23,34,35,36,38,39,40 
7 6,7,11,12,13, 17,18,22,38 

 

Table 6 Damage identification results of the experimental truss 

Damage case Possible damaged element Damage extent 

A14 (23.75%) A1, A14, A23, C1, C14 A1(0%), A14(34.32%), A23(0.01%), C1(0%), C14(0%)

C52 (23.75%) 
A1, A2, A3, A13, A14, A22, 

A23, C1, C14, C52, C63 

A1(0%), A2(0%), A3(0%), A13(0%), A14(0.02%),  
A22 (0%), A23(0%), C1(0.04%), C14(0%),  

C52(28.4%), C63(0%) 

B27 (23.75%) 
A1, A2, A3, A13, A14,  

A23, C1, C14, C63 
A1(0%), A2(0.12%), A3(0%), A13(0.18%),  

A14(0%), A23(0%), C1(0%), C14(0%), C63(0%) 
A14 (23.75%), 
C52 (23.75%) 

A10, A11, A14, A15, C52 
A10(0%), A11(0%), A14(28.71%),  

A15(0.15%), C52(45.96%) 

A14 (23.75%), 
C52 (23.75%), 
B27 (23.75%) 

A2, A11, A14, A23,  
C1, C14, C52, C63 

A2(0.07%), A11(0.13%), A14(31.86%), A23(0.09%), 
C1(0.12%), C14(0%), C52(49.62%), C63(0.13%) 

Damage case Damaged element (Damage extent) 
A A14(23.75%) 
B C52(23.75%) 
C B27(23.75%) 
D A14(23.75%)，C52(23.75%) 
E A14(23.75%), C52(23.75%), B27(23.75%) 

New Hanging weights Load 

Position Sensor 
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Fig. 9 Geometry for experimental truss 

 

 
As we all know, selections of measurement locations and load cases have an important 

influence on the result of the damage detection. In this article, the method based on stored strain 
energy in elements and Fisher Information Matrix (Bakhtiari-Nejad et al. 2005) is used to select 
the load cases and measurement locations, respectively. Vertical loads are applied by hanging 
weights directly on the nodes. Applicable loads at the vertical degree of freedom are selected to be 
1000 N. Seven groups of loads are listed in Table 5. Considering the measured information in real 
application is incomplete, and the vertical displacement meters are arranged only at the nodes (11, 
12, 13, 16, 17, 18, 22, 23, 34, 35, 38 and 39) inside the dotted line part as shown in Fig. 9. The 
experimental results of the changes in deflections due to all damage cases under the 7 load cases 
are plotted in Figs. 10-14. A DASP-V10 modal test device was used for modal analyses. An 
accelerometer (EBM-941B) was employed to detect the dynamic response induced by the impulse 
hammer excitation and ambition vibration. The experimental frequencies and the static responses 
in 7 load cases of the intact and damaged structures were obtained. The change in the first-order 
frequency is used in this example. 

For the damage location detection, the identification results of damage location using the DSM 
technique in the first stage are listed in Table 6. The results show that almost all damage cases, 
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Fig. 10 Experimental results of the changes in deflections due to damage case A under 7 load cases 
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Fig. 11 Experimental results of the changes in deflections due to damage case B under 7 load cases 
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Fig. 12 Experimental results of the changes in deflections due to damage case C under 7 load cases 

 
 

except for the damaged element B27, can be detected clearly when using the static test data and 
the first-order frequency. It should be noted that although several undamaged elements may be 
estimated as damaged ones, there have a lower numbers of damage variables compared to original 
ones. 

82



 
 
 
 
 
 

Multi-stage approach for structural damage identification using particle swarm optimization 

 
 

11 16 12 13 18 23 22 34 38 35 39 17

-400

-300

-200

-100

0

100

200

节点编号Number of node 

   
 
 
 
 
 
 

 1
2
3
4
5
6
7

C
ha

ng
e 

of
 d

ef
le

ct
io

n(
×

0.
01

m
m

) 

 
Fig. 13 Experimental results of the changes in deflections due to damage case D under 7 load cases 
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Fig. 14 Experimental results of the changes in deflections due to damage case E under 7 load cases 

 
Table 7 The first-order natural frequencies of the experimental truss after the removing of elements A14, 
C52 and B27 

Damage case The first-order frequency（Hz） 

original 12.285 

A14 removed 9.188 

C52 removed 4.749 

B29 removed 12.182 

 
 
The damage extent is estimated by choosing the possible damaged member. The estimated 

results of all damage cases are shown in Table 6. Apart from the damaged element B27, 
verification with these damage cases (single and multiple damages in the structure) proves the 
proposed method gives very satisfactory results. From this table, it can be observed that there are 
obvious errors in the damage extent, maximum error about 110% by comparing with the accurate 
damage extent, i.e., 49.62% reduction in stiffness of the damaged element C52. Although there are 
obvious errors in the damage extent, this step would be particularly valuable for removing the 
undamaged members from the possible candidates detected in the first step. 
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For the case that there is single or multiple damages in structure using the experimentally 
obtained data, the damage of element B27 cannot be detected, although almost the other damaged 
elements can be identified obviously. To illustrate this, a series of ambition vibration tests on this 
truss were carried out for sensitivity analysis. The first-order experimental natural frequencies of 
structure after the removing of elements A14, C52 and B27 are given in Table 7. From this table, it 
can be found that there is almost no change of the first-order natural frequency when the element 
B27 is removed. This means that the element B27 is insensitive to the integrated dynamic 
characteristics. For a real structure, the damaged components which have fairly little contribution 
to structural deformations under a certain load case will be difficult to be identified. Another main 
problem in the static identification methods lies in the effect of the damage may be concealed due 
to the limitation of load paths. This problem can be practically overcome by optimizing the 
loading scheme according to the proper pre-analysis or adopting several groups of loads 
synthetically. 

 
 

5. Conclusions 
 

In this study, an efficient two-stage damage identification technique is proposed to properly 
identify the damages in structural systems, which employs the incomplete measured information 
of structural static deformation and the first several natural frequencies. In the first stage, the basic 
idea of the DSM technique is employed for effectively detecting the damage locations. In the 
second stage, the damage identification problem, having a lower numbers of damage variables 
compared to original ones, is transformed into an optimization problem. These identified damaged 
elements were analyzed further for exact identification and quantification of the damage using 
PSO-based optimization approach. The efficiency of the proposed methodology has been 
demonstrated using two illustrative test examples: a numerical planar truss model and an 
experimental full-scale truss structure. From the identification results, it can be found that the 
proposed approach is very useful for identifying location and extent of damage in structures with 
sufficient accuracy. 

It should be noted that single damage or multiple damages in the real structure using the 
experimentally obtained data, usually only the one whose location is the most important to the 
structural deformation can be identified. One of the main reasons is that the effect of the damage 
may be concealed due to the limitation of load paths. This problem can be practically overcome by 
optimizing the loading scheme. Future studies will aim to address this issue. 

Although the proposed technique estimates the damage extent with approximate results when 
using experimentally obtained data, the damage extent prediction in the practical application may 
be useful for eliminating the undamaged members from the possible damaged candidates detected 
in the first step. This approach would be particularly valuable for large-scale and complex 
structures, where little information exists about the damage state, few measurements can be 
obtained in each test, and tests are very costly. 
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