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Abstract. The objective of this paper is to develop on-line system parameter estimation and damage
detection technique from the response measurements through using the Recursive Covariance-Driven
Stochastic Subspace identification (RSSI-COV) approach. To reduce the effect of noise on the results of
identification, discussion on the pre-processing of data using recursive singular spectrum analysis (rSSA) is
presented to remove the noise contaminant measurements so as to enhance the stability of data analysis.
Through the application of rSSA-SSI-COV to the vibration measurement of bridge during scouring
experiment, the ability of the proposed algorithm was proved to be robust to the noise perturbations and
offers a very good online tracking capability. The accuracy and robustness offered by rSSA-SSI-COV
provides a key to obtain the evidence of imminent bridge settlement and a very stable modal frequency
tracking which makes it possible for early warning. The peak values of the identified 1* mode shape slope
ratio has shown to be a good indicator for damage location, meanwhile, the drastic movements of the peak
of 2" mode slope ratio could be used as another feature to indicate imminent pier settlement.

Keywords: stochastic subspace identification; singular spectrum analysis; recursive identification; bridge
scouring

1. Introduction

The major reason for bridge collapse during typhoon and flood is the bridge scoring and this
scoring may empty the foundation soil and cause the reduction of bridge bearing capacity, and is
the primary cause of bridge failures. Because lack of bridge monitoring system as well as the
monitoring techniques, it is impossible to send an early warning message before collapse. Based
on all damage cases and harsh environmental conditions, it is necessary to upgrade the current
bridge monitoring system on bridge structure, and develop reliable self-diagnosis monitoring and
early warning system.

For output-only measurements the Stochastic Subspace Identification (SSI) technique is a
well-known multivariate identification technique. It was proved by several researchers to be
numerically stable, robust to noise perturbation and suitable for conducting non-stationarity of the
ambient excitations although its assumption is violated (Michele et al. 2001). The stochastic
realization algorithm mainly focused on SSI-DATA was fully enhanced by (Van and De Moor
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1996, Bart 2000, Bart and Guido 2000), its application in understanding the dynamic characteristics
of a cable-stayed bridge had been studied (Weng et al. 2008). As opposed to SSI-DATA, the
SSI-COV algorithm avoids the computation of orthogonal projection; instead, it is replaced by
converting raw time histories in co-variances of the so-called Toeplitz matrix. The merits of SSI
are: (a) The identified modes are given in frequency stability diagram, from which the operator can
easily distinguish structural from the computational ones, (b) Since the maximum model order is
changeable for the operator, a relative large model order can improve the quality of the identified
modal parameters, (c) Mode shapes are simultaneously available with the poles, without requiring
a second step to identified them, (d) These methods are robust against non-stationary excitation
and thus are applicable to structural vibration study in the presence of ambient excitation.

Different from the off-line analysis, the on-line system identification and damage detection,
based on vibration data measured from the ambient vibration of structure has received
considerable attention recently. Therefore, the recursive stochastic realization by either the
classical Covariance-driven SSI algorithm (RSSI-COV) or Data-driven SSI algorithm (RSSI-DAA)
was proposed in (Goethals et al. 2004, Loh et al. 2011). In this paper, the recursive stochastic
subspace identification (RSSI-COV) are discussed and used to estimate time-varying system
natural frequencies directly from the response measurements. To avoid time-consumption of SVD
in RSSI, the Extended Instrumental Variable version (EIV-PAST) is applied in SSI-COV. In
addition, to consider the noise contaminated data, a recursive pre-processing technique called
recursive singular spectrum analysis technique (rSSA) is proposed in this studt to enhance the
accuracy and stability in the online tracking capability.

2. Stochastic subspace identification

Assuming a structure under consideration is being excited by un-measurable stochastic
input forces, the discrete time stochastic state-space-model can be expressed as

X = AX + W,
Y =CX +v,

(M

where x, e R?™ is the state vector and y, e %®"'is the measurement vector, wy and vy represent the

system noise and measurement noise respectively. Basic Covariance-Driven Stochastic Subspace
Identification method (SSI-COV) is to solve the problem through identifying a stochastic
state-space model (matrices A and C) from output-only data. For the application of SSI-COV,
instead of arranging the block covariances in the form of Toeplitz matrix, it must adopt the form of
a Hankel Covariance matrix, which is the way as it is outlined in ERA (Eigensystem Realization
Algorithm) (Caicedo et al. 2004). The Hankel Covariance matrix has the following factorization
properties

R, R, .. R C
R, R . R CA i

Hcov — 2 3 i+l :Oigi _ [G AG AI—IG] (2)
Ri Ri+1 . RZi—l CAFI

where 0, e®"™" is the same observability matrix and Q; eR*™ is the stochastic
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controllability matrix. The observability matrix can be obtained by applying SVD to the Hankel
covariance matrix, and then the system matrices and modal parameters can be extracted in the
same manner than that presented in SSI-COV off-line analysis. The Hankel Covariance matrix can
be constructed by arranging the output measurements data vectors as follows

HY = E[ypy, 1= ZYkYk
k 2i
Yia Yie 0 Ynbw yi Yi—l Y1
_ Yi:+2 Yi:+3 YN:i+2 Y¥+1 Y|T y; :Y;ij (3)
Ya Yaia 0 YN YL—i yL—i—l YL—zm

where y; e R™ and y." c %" . | is the number of sensors and i is number of block rows which
forms the Hankel covariance matrix, and K is ranging over the entire set of available data and p
is an optional normalization parameter (5 =1, in this study). The software library LAPACK is used

in MATLAB to compute SVD, which uses the classical algorithms like Householder reflections
and QR algorithm (Golub et al. 2006), but it is not suitable for on-line application. The need of an
online application of SVD for implementing to SSI-COV becomes an important issue for
continuous monitoring.

3. Recursive stochastic subspace identification

Instead of solving the SVD problem using classical approaches, a new approach called
Projection Approximation Subspace Tracking (PAST) was initially developed by Yang (1995), who
takes advantage of a mathematical lemma to find the required column subspace as an unconstrained
optimization problem and try to update the column subspace. The PAST is originally a fast
dominant-eigenvectors updating algorithm which is based on the following unconstrained cost
function

= 3 o) W e @

where z(t)e ®™' is a random vector. To adapt the solution to a Recursive Least Square (RLS)
approach, an “approximation” is introduced

h(k)=wW"(k —1)z(k) 5)

which replace W™ (t)z(k), and the assumption under this approximation is that the signal

subspace is slow varying comparing to the sampling rate of data point. With this assumption, since
the dominant subspace w" (k —1) is already known from the previous step k-1, the original cost

function is converted to a quadratic criterion
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VW)= znz(k) w(t)h(k)|| (6)
which is a typical optimization function in Least Square problems and can be minimized by

W()=TU'(t)=C,t)c, ) (7

where C, is the covariance matrix formed by z(k) and h(k)

(1)= 3" 2h" (k)= €t - 1)+ 20" () (7a)

k=1

Ch(t):Zt:h(k)hH(k):Ch(t—1)+h(t)hH(t) (7b)

k=1

Thus, when there is a new incoming data at instant t, the matrix inversion lemma can be applied
to Eq. (7) and the well-known RLS algorithm can be easily derived for updating W(t).

In output-only SSI, the input source Bu, is unknown, and assumed to be a stationary and
spatially white noise. For this type of noise, it was proved in (Soderstrom and Stoica 1989) that the
normal least square formulation will lead to a biased solution and it is not appropriate to handle
this type of problem; instead, an Extended Instrumental Variable (EIV) approach must be used.
The word “Extended” means that to solve the ill-conditioned for the inversion of cross-covariance
matrix and to obtain a stable condition in the inversion process. The cost function to be minimized
can be replaced by its corresponding EIV formulation

jz(k)gwk)_w(t)jh@w

k=1 k=1

2

— 2
TIw()- Jes0-woeLtf  ®
where the subscript ¢ denotes the Frobenius norm defined as \/trioc . ' C, (t) and C, ‘ (t) are

defined as follows

F

C,.(t—1)+z(t)e" (t) (8a)
h&k (k)=Cpe(t—1)+h(t)l" (1) (8b)

- M

Chg(t)

7\_

The least square solution of (8) is readily found to be

W(t) =Uy (t) 2& t)C [Chg t)C T ©

The effect of the extra-added Frobenius norm, which is able to fulfill the need of Recursive
Least Square (RLS) via matrix inversion lemma, is applied in EIV-PAST.
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4. Application of EIV-PAST to RSSI-COV

Let the random vector z(t) in EIV-PAST formulation be replaced by the corresponding data
y; € R™; on the other side, the substitution of the instrument &(t) is evidently y;" e %™ . For
convenience in notation, a new variable s = 2i — 1 is introduced. EIV Solution to the cost function
will become
2

> yvivie W)Y bk + sy, (10)

k=2i k=2i

vIwi)- [ - wi

F

2
F

where  h(k+s)=W"(k+s—1)y; is the above mentioned approximation, and

t _ t _ T
H = 1 Z YLy ;T is the definition of Hankel covariance matrix, and H;*" = Zh(k +sly, .
P k=i k=2i
The dominant eigenvectors can be found by

o _ -1
W= 0,0 e i) o

It is derived to update the dominant eigenvectors of the covariance matrix.
However, the SVD of a Hankel Covariance matrix is defined as

S, 0y V'
H =USV' =(U, U,) ! ! 12
Uf 2)(0 oj(v;] (12)

where U and V are orthonormal matrices, S is a diagonal matrix containing the singular values.

4
Since H*H " can also be expressed as
HH™ =USVTVSTUT = u(ss™ JuT =u(ssT Ju™! (13)

which indicated that U can also be obtained from the ED of the Hankel Covariance matrix
multiplied by its transpose. From the relationships shown above, the desired observability matrix
O; is the same as the column subspace U, extracted from Hankel Covariance matrix using SVD.
Hence, the so-called Extended Instrumental Variable Recursive Least Square (EIV-RLS) algorithm
can be applied to solve the EIV-PAST problem, which fulfills the SVD-updating requirement of
RSSI-COV to track the time-varying subspace U,(t). The explicit formulas to be implemented in
RSSI-COV are shown below. Complete derivation of these formulas of EIV-RLS algorithm can be
found in (Soderstrom and Stoica 1989), and listed as follows:

(1) From an initial SVD one can initialize the recursive algorithm with U,(t), P(t) and H,
H=U(tH, & Pit)=[@ 8] (14a)
(2) Given a new incoming data vector Yy,,,, U;(t+1), P(t+1), and using the following algorithm

h(t+1)=U](t)y;, , w(t+1)=H,y,, (14b)
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vit+) =y, yi,| and w(t+1)=[w(t+1) W(+1)] (14¢)
A(t-i—l)ziz{ yt+1 ym :l (14d)

Y7
K(t+1)= [ A+ 1)+ e+ 1) Pyt + )] v+ De() (140)

Ul(t+1)=U1() [vit+1)- U, @+ DK (E+1) (149)
P(t+1)_ [(t) P(t)y(t+1K(t+1)] (14g)

ﬁul = ﬂﬁt + H(t + 1)<yt_+1)T and Ht+1 = IUHt + yt++1(yt_+1)T (14h)

Then H,, and H,,, can be updated.

The use of moving window technique implies the same procedure shown above has to be done
twice for each new incoming data: after adding the new incoming data (up-dating), the oldest data
has to be subtracted from the moving window (down-dating). The same formulas can be applied
for updating by setting forgetting factor equal to one, meanwhile several sign changes in the last
four formulas.

5. Recursive singular spectrum analysis (RSSA)

SSA is a novel non-parametric technique used in the analysis of time series based on multivariate
statistics. This method was firstly applied to extract tendencies and harmonic components in
meteorological and geophysical time series (Alonso et al. 2005). Except the extraction of tendency,
SSA can be applied to eliminate noise effect, or to detect the singularities, e.g., to extract structural
residual deformation (Loh et al. 2010). Basically, this method is capable of decomposing the
original series into a summation of principal components, so that each component in this sum can be
identified as a tendency, periodic components (stationary), non-stationary signal or noise. The SSA
procedure starts from: (1) Embedding, (2) Singular Value Decomposition, (3) The plot of the
singular values in descending order is called the singular spectrum and is essential in deciding the
index from where to truncate the summation, (4) Grouping. To be able to apply SSA in online
filtering of vibration measurements, an on-line version of the algorithm that describe the current
structure at each time instant is required. For subspace-based algorithms, the moving window
approach is adopted and the number of block rows i’ is kept constant, meanwhile a new data point
is appended as a new column to the moving window Hankel matrix

YN-L 41 Y N-L 42 e YNz YNzie
X(N +1): Y N-L 42 Y NL 43 v Ynciv2| YNis (15)
YNLwit YNLwier o Yn YN+

= [XN—L'+i' XN—L'+i‘+1 N |XN+1] [X(N )|XN+1]
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where X(N ) e K , | is the number of sensors, i’ is the sliding window vector order, i.e., number
of block rows of the Hankel data matrix; L’ is the length of moving window, K=L’-i’+1 is the
number of columns, with K > i’.

By applying SVD to the Hankel data matrix X(N +1), the left singular vectors U can be
computed via Eigen-Decomposition (ED) of the covariance of sliding window vectors
XT

N—L"+i'

Cesn(N+1) = ZXN L+I+jX-|l:l L'+i'+ _X(N)XT(N)+XN+1XT

N+1
j=1

-X (16)

N-L'+i'

where Cssa(N+1) is the covariance matrix of the sliding window vector Xy.+i+j. Since the
eigenvectors of the covariance matrix Cssa(N+1) correspond to the desired column subspace, this
is actually a typical rank-two modification of the symmetric eigen-problem. The above-mentioned
projection approximation subspace tracking (PAST) algorithm is suitable to be implement to rSSA,
because it is able to update in a recursive fashion the dominant eigenvectors of the signal
covariance Cssa(N+1), i.e., the subspace of X(N+1).

The PAST is a fast dominant eigenvector updating algorithm. To conduct the rSSA the cost
function can be defined as

VIW(N +1)]= ZL\

- W(N+DW (N + DX | (17)

+i'

By introducing the same approximation, F(k )= w " (k - I)X « » the original cost function
is converted into a quadratic criterion

VIW(N +1)]= Z\

k=N -L"+i'

2

- W (N +Dh'(k) (18)

This became a typical optimization function in Least Square problems which can be minimized
by

W(N+1)=U(N+1)=C, ~(N+1)C, +(N+1) (19)
where C AXE is the covariance matrix formed by the sliding window vector X and H’(k), and
Cgsa 18 the covariance matrix formed by h'(k) and h'(k)’

SSA X' (N+1) = CSSA,XH’(N)+XN+1h'J+1 N-L'+i' h'r\T L'+i" (20a)
Cognir (N +D=Coqu (N)+hiy B =Bl I (20b)

When the matrix inversion lemma is applied to (19), the well-known RLS algorithm can be
easily derived. The procedures are listed as follows:

(1) From the initial SVD the recursive algorithm can be initialized with U;(N), later

SSAh ,(N) and P( ) can be computed
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Co 7 (N =[O (NOX(N)JUT (N )x(N)] (21a)

P'(N)=[Cg, 7 (NI (21b)

(2) Given a new incoming sliding window vector Xys1, UT(N+1), P(N+1) and h'(N +1)
can be updated using the following algorithm

H'(N + 1)* = U;T (N)XN+1

(22a2)
, - (N +1)TP(N)

KN = N PR 1] .

Ui (N 1) =GN+ [X o, = U ()R (N 1) (1) 220

PN +1) = &J[pf(N)_ P(NYR(N + 1 KN +17] 224)

Therefore, after the column subspace U;(N + 1) is updated, the filtered sliding window vector
X,, canbe computed by the projection

~

Xy =UHN+DUTN 1) X (23)

where X , 1s the reconstructed data vector. Hence, for each new incoming data, a new vector
column Xy, is appended, the column subspace is updated to U;(N +1), and the reconstructed

data vector X can be obtained by procedure shown above. Finally, elements of the same

N +1
time instant in Hankel data matrix (in the anti-diagonal direction) are averaged to reconstruct the
signal

‘\“}U;_\;-L‘,L,r"”?_\_‘i‘—z o Vyoier ?.’\"—r’;—)"‘
b2’ & e e

(N +1)= Y\b—. Y.\'—;‘, =3 ’5’\4—,1 ‘Y.\':f 23 (24)
Vyrer  Vnde i 51 Vv | Y

6. Application of rSSA-RSSI-COV method to bridge scouring monitoring

From experimental study, consider a four span bridge with its steel decks simply supported on
three cylindrical piers as shown in Fig. 1. The piers are buried with 30 cm of depth and confined
by coarse sand. The goal of the experiment is to monitor the state of the bridge under continuous
scouring, and to extract its vibrating features directly using output-only vibration measurements
which allow for early warning of the pier settlement or failure of the bridge foundation as well as
to locate damage. In order to create a local damage caused by scouring at a single bridge pier,
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(a) A schematic diagram of the test flume which shows the location of sensors and the
dimension of the test flume
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(b) Model structure during the scouring test in
the large flume

(c) Model structure after the scouring test

Fig. 1

brick wall was used in flume bed so as to enhance the bridge scouring at a single bridge pier. Fig.
1(c) shows the final state of the bridge pier after scouring test. A total of twelve VSE-15D velocity
sensors (Tokyo Sokushin Corporation) as well as twelve acceleration sensors (AS-2000) were
installed uniformly in the longitudinal direction and along the center line of the deck, as shown in
Fig. 1. To analyze the vibration data from the measurement of the bridge under scouring test, the
time-varying modal frequencies will be extracted along time axis to identify the abnormal change
of the bridge system natural frequencies. Not only the rSSA-SSI-COV algorithm will be the main
tool to carry out this analysis, but also the RSSI-COV algorithm is applied for comparison
purpose.

In this study all the acceleration data from twelve sensors was used simultaneously. The
acceleration data was filtered in the field by an analog band-pass filter having its plateau zone in



Chin-Hsiung Loh and Yi-Cheng Liu
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Fig. 2 (a) Singular spectrum for different choices of singular values in rSSA, (b)~(e): Distribution of singular
spectrum in SSI-COV analysis by using different number of singular spectrum from rSSA

Table 1 Model parameters for rSSA-SSI-COV and RSSI-COV analysis from the 2011/03/29 test

rSSA-SSI-COV
Parameter SSA RSSLCOV RSSI-COV used alone

Window length L’ =3000 points L = 5000 points L = 5000 points

Block rows i”=100 i =80 i =100
Order First 45 singular values  First 44 singular values  First 46 singular values
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Fig. 3 Evolution of bridge modal frequencies traced by both (a) RSSI-COV and (b) rSSA-SSI-COV,
applying stability criterion, test conducted in 2011/03/29 measured by accelerometers

the frequency response function between 0.02 Hz and 50 Hz. To apply the SSA the order must be
determined in advance. The singular spectrum was first constructed using the initial data set. Fig.
2(a) shows the distribution of the singular spectrum from the test data of 2011/03/29. Using
different order chosen from SSA, the singular spectrum constructed in SSI-COV was generated. It
is proved that the subspace order selected from SSA which shows the appearance of a jump in the
distribution of singular spectrum of SSI-COV can lead to a better choice of for the system order.
Fig. 2(b) to Fig. 2(e) show the constructed singular spectrum from SSI-COV by using the
reconstructed data using different singular value of SSA (from Fig. 2(a)). From these figures it is
observed that a clear jump appears at 44 SV in the singular value distribution of SSI-COV analysis
by using 45 SV chosen from SSA (as shown in Fig. 2(c)). However, the jump becomes more clear
with less SV be chosen from SSA. To be conservative and try to identify all the excited modes, the
order shown in Fig. 2(c) is chosen. The model parameters for rSSA-SSI-COV are shown in Table
1.

Fig. 3 shows a comparison between the outcome of using RSSI-COV and rSSA-SSI-COV with
the same stability criteria. Evidently the addition of rSSA to determine the system order before
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adopting RSSI-COV can enhance the tracking capability and stability. The pattern shown in the
time-frequency plot indicated that the water head arrivals at about 860 seconds, after that the
modal frequencies slowly decrease until the occurrence of the first settlement of the bridge pier
which occurred at 5057 seconds.

A close picture was taken to the identified traces between 4500 and 5500 seconds, as shown in
Fig. 4. The 4™ mode appears at about 4650 seconds and decreases rapidly at about 4950 seconds.
At the same moment in which the traces of the 1®' and 2™ mode modal frequency are almost
completely lost. This indicates that there is a very unstable dynamic behaviour before the 1%
settlement which occurs at 5057 seconds. This phenomenon together with the fast decrement of the
4™ mode constitutes a good indicator to identify the imminent bridge settlement. During the time
period with successive settlements between 5057 and about 6000 seconds, the traces of modal
frequencies are also very diversified and the reduction in 3™ modal frequency is evident. However,
after 6000 seconds the modal frequencies slowly increase because the decks are getting stuck each
other.

A close look on the identified time-varying system frequencies, as also shown in Fig. 4, there
are about two identified frequency traces for 3™ mode, three traces for 2" mode and about six
traces for 1% mode. All are very close one to another. These closely-spaced frequencies also
indicate the time varying characteristic of the bridge natural frequencies under the scouring test.

7. Damage location indicator: mode shape slope ratio

The curvature of mode shape has been widely used to figure out the damage location by many
researches. Larger curvature can be identified at node where the loss of stiffness loss occurred.
Since the mode shape is a relative quantity which can be scaled arbitrary, however, the mode
shape curvature is not independent of the scaling criteria and consequently, therefore the
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Fig. 4 Zoom in from Fig. 3(b) from time scale of 4500 sec to 5500 sec
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identification of damage location depends on how one scale the mode shape.

Taking into account of this fact, the curvature of the mode shape can be modified to a quantity
which is independent of scaling. To cancel out arbitrary scaling, ratio between two consecutive
slopes can be used to replace the rate of change of the slope of mode shape. Moreover, sign of the
curvature indicates the concavity, and from the identified mode shapes the sign changes introduced
in the concavity due to imperfection in the shape could make it difficult to identify the damage
location. To avoid all these inconveniences, a new damage indicator defined as the mode shape
slope ratio is presented:

Ifm;/miy > 0 and m; > m;, —>  slope ratio(i)= m;/ M
Ifm;/mie; > 0 and m; < myy; —>  sloperatio(i)=m/ m;
Ifm;/miq < 0 —> sloperatio(i) = {slope ratio(i) + sloperatio(i+1)}/2

where m; is the slope of the i discrete segment of the smoothed interpolated mode shape.

By defining the slope ratio in this way, the sign problem can be avoided, and the resultant slope
ratio will only reflect how big the slope change at a given point. However, at the peak point of the
mode shape where the slope sign changes, the 3™ criterion can be applied by taking an average of
the adjacent slope ratios. Finally, to avoid the disproportionate increment in slope ratio comparing
to the others, when slope in the divisor is near zero, a base 10 logarithm can be applied to the slope
ratio. For the implementation, the computed mode shapes can be smoothed by curve fitting and
interpolated with a spline function, and then sampled at 52 points to obtain 50 slope ratios along
the bridge.

Based on the identified mode shapes (smoothed) from online identification, Figs. 5(a) and (b)
show the mode shape slope change of the 1*' and 2™ modes. The y-axis of Fig. 5 indicates the
spatial distance along the bridge deck, and the x-axis is the time.

From this figure it is observed that the zone with higher slope ratio become wider after 1000
seconds, indicating that the system begins to be changed. Initially the peak is located at the center
of the bridge which is expected for a 1* mode shape; while the scouring depth become deeper and
deeper, the peak moves from the location at 300 cm to 250 cm, specially between 5000 and 5500
seconds as that shown in Fig.5(a). The moment which corresponds to the imminent pier settlemen,
precisely the pier 3 is located at 325 cm.

The 2™ mode shape slope ratio is shown in Fig. 5(b). Two peaks exist in the 2" mode shape as
expected. Although the 2™ peak is located at 325 cm (pier 3 location), but it does not change at all
along the time history, otherwise, the second peak located at 200 cm which is almost disappeared
100 cm at about 5500 seconds. Therefore, the 2™ mode shape is not appropriate to identify the
damage location in the bridge, but the drastic change of the 2* peak position is also an indicator of
imminent pier settlement. Same situation was also observed for 3™ mode, as shown in Fig. 5(c).

8. Conclusions

The on-line system parameter estimation technique from output-only measurements is
developed through using Covariance Driven Recursive Stochastic Subspace identification
(RSSI-COV). To update the SVD through recursive analysis, Extended Instrumental Variable
version of Projection Approximation Subspace Tracking algorithm (EIV-PAST) was adapted for
this purpose. In order to have a stable result on identification, the recursive Singular Spectrum



Application of recursive SSA as data pre-processing filter for stochastic subspace identification 33

Analysis (rSSA) algorithm which used the PAST concept is proposed as a data pre-processing filter
before conducting the RSSI-COV for identification. To verify the effectiveness on using the rSSA
as a data pre-processing tool, both RSSI-COV and rSSA-SSI-COV are applied to the experimental
study of a bridge during scouring monitoring. Several conclusions were obtained from this study:

(1) In applying the RSSI-COV for online system identification, the tracking stability increases
with the longer window length. But this does not affect the computation time, however, the
longer the window length is used the more delay time will be encountered to detect system
change is observed.

(2) The pre-subspace filtering using recursive SSA can enhance the tracking stability and allows
tracking the time-varying modal information with less system order. From the experimental
study on bridge scouring test, to observe the change of system natural frequencies, the
rSSA-SSI-COV algorithm proves to be a very effective way on monitoring the structural
system with time-varying modal characteristics.

(3) The proposed mode shapes slope change which was extracted recursively can be used not only
identify the occurrence time of damage but also can identify the damage location.
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