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Abstract.   This paper intended to investigate the feasibility of bridge health monitoring using a linear system 
parameter of a time series model identified from traffic-induced vibrations of bridges through a laboratory 
moving vehicle experiment on scaled model bridges. This study considered the system parameter of the 
bridge-vehicle interactive system rather than modal ones because signals obtained under a moving vehicle 
are not the responses of the bridge itself but those of the interactive system. To overcome the shortcomings 
of modal parameter-based bridge diagnosis using a time series model, this study considered coefficients of 
Autoregressive model (AR coefficients) as an early indicator of anomaly of bridges. This study also 
investigated sensitivity of AR coefficients in detecting anomaly of bridges. Observations demonstrated 
effectiveness of using AR coefficients as an early indicator for anomaly of bridges. 
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1. Introduction 
 

Maintaining and improving civil infrastructure including bridge structures are important 
technical issues especially for industrialized nations. Moreover effective maintenance strategy 
strongly depends on timely decision on the health condition of the structure. Structure health 
monitoring using vibration data is one of promising technologies for a decision making on the 
maintenance. Most precedent studies on structural health monitoring specifically examine the 
change of modal properties and quantities of structures (e.g., Doebling et al. 1996). The 
fundamental concept of this technology is that modal parameters are functions of a structure’s 
physical properties. Therefore, a change in physical properties, such as reduced stiffness resulting 
from damage, will detectably change these modal properties (Friswell and Mottershead 1994, 
Peeters et al. 2001, Deraemaeker et al. 2007, Zhang 2007, Dilena et al. 2011). 

An important problem that must be solved in bridge health monitoring (BHM) using vibration 
measurements is how excite the bridge economically, reliably and rapidly. Ambient vibrations 
induced by traffic and wind are adopted as dynamic data for BHM. Especially for small and 
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medium span bridges which are majority portions of the bridge infrastructure, however, the wind 
is usually too weak to actuate the bridges. On the other hand, the traffic-induced vibration becomes 
very dominant for those small and medium span bridges. However when we consider the traffic-
induced vibration of bridges in BHM, we should keep in mind that the traffic-induced vibration of 
bridges is a kind of non-stationary vibration (Kim et al. 2005, Kim and Kawatani 2008). 

Many studies focus on changes of system frequencies and structural damping constants for 
bridge diagnosis, which are estimated utilizing a linear time-series model (e.g., Kim et al. 2010). 
Since 1970s, the use of state-space models for modal parameter identification in time-domain has 
been increasing and also has yielded new approaches. Gersch et al. (1973), for example, used the 
time series of an autoregressive moving average (ARMA) process to describe the random response 
of a vibrating structure to a white noise excitation. Shinozuka et al. (1982) obtain a second-order 
ARMA model to represent a vibrating structure in order to identify the structural parameters 
directly. Hoshiya and Saito (1984) include the parameters to be identified as additional state 
variables in the state vector using extended Kalman filter. These approaches regard the ambient 
vibration responses as random process of ARMA. Estimating the coefficients of ARMA model is a 
kind of nonlinear approach because both of the coefficients relating to AR and MA processes are 
unknown variables. Fortunately, the AR model with an infinite order is equivalent to the ARMA 
model, which means that one can express the responses of a linear system subjected to white-noise 
input using the AR model with sufficient large order (Wang and Fang 1986, He and De Roeck 
1997). 

Drawbacks of modal parameter-based bridge diagnosis using time series model is the driving 
force for this study: the optimal time series model for vibration responses of bridge structures 
usually comprises a higher order term, and as a result the optimal model detects even numerical 
parameters which cause false system frequencies and damping constants. Actually these false 
system parameters make it difficult to choose the modal parameter affected by structural damage. 

Therefore an alternative parameter from AR coefficients was considered for the vibration-based 
BHM in this study, since both system frequency and damping constant depend on AR coefficients 
(Nair et al. 2006, Kim et al. 2010). Both singlevariate autoregressive (SAR) and multivariate 
autoregressive (MAR) models were considered. 
 
 
2. SAR model and modal identification 
 

If yc(t) denotes output of a bridge structure taken from an observation point, then the 
corresponding state equation of a continuous-time system is described as 
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 01cC                                                                       (5) 

Therein, mb, kb, cb, respectively indicate the mass, damping, and stiffness of a bridge. z(t) 
denotes the displacement response, and f(t) represents an external force vector. If the observability 
matrix is defined as LT=[C; CAc; …; CAc

n-1], then the discrete state equation for the system from 
the equation of motion for a bridge through an observability transformation can be described 
(Ljung 1999) as 

)()()1( kkk BfAxx                                                              (6) 

)()( kk Cxy                                                                        (7) 

where x(k) = Lxd(k), and the subscript d indicates discretized one from the continuous system. The 
state transition matrix A, input influence matrix B and output influence matrix C through an 
observability transformation are described as 
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where  ced
AA ;and Δ  represents the sampling period. 

If coefficients from a1 to an of the system matrix A is known, then eigenvalues of the matrix A 
provide the modal information of the system. Therefore, the next step is to derive linear equations 
for the coefficient using the measurements (or observation) y(k). The state equation in Eq.(6) is 
rewritable as 

         

(11)

Using the observability equation of Eq. (7), Eq. (11) can be rearranged as 

2)                           
21










nkfbkfbkx

nkfbkfbkxnkxnky

kfbkxkxky
kxky

nn

nn

11

121

121

1

)(
1)1()1()1(

)()1()1(
)()(






　　　　　

                (12) 

x(t) of Eq.(12) is rewritable as 

                                                                (13) 
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The last relation in Eq.(11) gives 

                                                        (18) 

where  naa 1a . 
Moreover the following relation is obtainable from Eq. (12) 

                                       (19) 

Substituting Eqs. (19) and (13) into Eq. (18), and assuming f(k) as a white noise input e(k) 
gives the following ARMA model. 
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The AR model with infinite order is equivalent to the ARMA model, which means that one can 
express the responses of a linear system subjected to white-noise input using the AR model with 
sufficient large order. 
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To estimate the AR parameter, the autocorrelation function of y(k) is used, which is obtainable 
by multiplying each term of Eq. (22) with y(k-s) and taking mathematical expectation. This 
process yields the following Yule-Walker equation 

rRa                                                                         (23) 

where R is a Toeplitz matrix about R(p, s) = E[y(k-p)y(k-s)] which is the autocorrelation function of 
the signal, and rT= [R1; …; Rn]. The Levinson-Durbin algorithm is adopted to solve Eq. (23). It is 
noteworthy that the coefficient ap is a pole of the system because the z-transformation of Eq. (22) is 
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where H(z) is the transfer function of the system in the discrete-time complex domain, and z-i den-
otes a forward shift operator. 
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Fig. 1 Experimental girder and observation points 
 

 
Fig. 2 Roadway profile 

 
 
The denominator of the transfer function is the characteristic equation of the dynamic system 

shown in Eq. (25). 
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The frequency and damping constant of each mode can be estimated from the complex 
conjugate poles as (e.g., Inman (2008)) 

 kkkkk hjhz  1 exp                                                        (26) 

Therein, hk indicates the damping constant; ωk is circular frequency of k-th mode of the system; 
and j represents the imaginary unit. 
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(a) Damage section I (b) Damage section II 

Fig. 3 Photo of damage sections 

 
 
 
 

 
Fig. 4 Accelerations and Fourier spectra observed at point I: (a) Intact, (b) D1 and (c) D2 

 
 
3. Laboratory experiment for traffic-induced vibration 

 
A moving vehicle laboratory experiment was performed to investigate the validity of the 

proposed approach. The experimental setup is shown in Fig. 1. Roadway profiles shown in Fig. 2 
were paved on the experiment girder. This study considers two different damages: one, called as 
damage section I, is that three saw cuts were applied both left and right sides of the flange between 
L/4 and L/2 of the model bridge; and the other, called as damage section II, is that a slanted cut-out 
up to 20.0 mm was applied both left and right sides of the flange between 3L/4 and L of the 
experimental girder. Photos of damage sections are shown in Fig. 3. The bending rigidity of the 

 

(a) 

(b) 

(c) 
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member decreased to around 89% comparing to the intact state due to damage scenario I. For the 
damage scenario II the bending rigidity decreased to 77% of the intact state. Regarding damage 
scenarios, the damage scenario of the bridge having damage section I was called as D1, and the 
damage scenario of bridge with both damage section I and damage section II was called as D2. 
Natural frequency estimated from free vibration of the intact state was 2.69 Hz; for damage 
scenario D1, 2.59 Hz; and for damage scenario D2, 2.54 Hz. 

Three different vehicle models of which the natural frequency for the bounce motion is 
changeable using a different set of mass and spring were considered in the experiment. Three 
vehicles named as V1, V2 and V3 were used in the experiment. Natural frequencies for the bounce 
motion of the vehicle models were 2.93 Hz for V1 vehicle, 3.76 Hz for V2 vehicle and 3.03 Hz for 
V3 vehicle. Two different speeds of 0.93 m/s (hereafter, S1) and 1.63 m/s (hereafter, S2) were 
adopted to investigate the effect of the vehicle speed on damage identification results. Six traffic 
scenarios were considered: SCN1 of V1 vehicle traveling with speed of 0.93 m/s; SCN2 of V1 
vehicle traveling with speed of 1.63 m/s; SCN3 of V2 vehicle traveling with speed of 0.93 m/s; 
SCN4 of V2 vehicle traveling with speed of 1.63 m/s; SCN5 of V3 vehicle traveling with speed of 
0.93 m/s; and SCN6 of V3 vehicle traveling with speed of 1.63 m/s. 

Three points at 1/4, 1/2 and 3/4 of the span length were observation points for acceleration 
responses as shown in Fig. 1. The sampling rate was 100 Hz. Examples of acceleration time 
histories of the experiment girder before and after applying damage are shown in Fig. 4 with the 
Fourier amplitude spectrum and each acceleration. The appearance of additional dominant 
 
 

         (a) OF-1          (b) OF-3 

Fig. 5 System frequencies according to different damage patterns identified by SAR model 

 

         (a) OD-1          (b) OD-3 

Fig. 6 System damping constants according to different damage patterns identified by SAR model 
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Table 1 Statistical feature of system frequencies identified by SAR model 

  SI   S2   

  Intact DI D2 Intact DI D2 

OF-1 
Mean 2.63 2.62 2.53 3.34 2.67 2.46 
SD 0.041 0.369 0.123 0.290 0.444 0.207 
CV 0.015 0.141 0.049 0.087 0.166 0.084 

OF-3 
Mean 23.39 23.24 22.55 23.63 23.12 22.73 
SD 0.021 0.161 0.161 0.042 0.251 0.213 
CV 0.001 0.007 0.007 0.002 0.011 0.009 

*OF-1: Observed Frequency for 1st mode, OF-3: Observed Frequency for 3rd mode  
SD: Standard Deviation, CV: Coefficient of Variation 

 

Table 2 Statistical feature of system damping constants identified by SAR model 

   S1   S2  

  Intact DI D2 Intact DI D2 

OD-1 
Mean 0.0463 0.2371 0.2738 0.0944 0.2523 0.1863 
SD 0.0133 0.0662 0.0602 0.0331 0.0553 0.0571 
CV 0.288 0.279 0.220 0.351 0.219 0.306 

OD-3 
Mean 0.0054 0.0254 0.0214 0.0944 0.2523 0.1863 
SD 0.0006 0.0080 0.0058 0.0021 0.0097 0.0081 
CV 0.115 0.313 0.271 0.022 0.039 0.044 

*OD-1: Observed Damping for 1st mode, OD-3: Observed Damping for 3rd mode 
 
 
frequencies due to the damage in comparison with those of the intact girder was also observed. 
Dominant frequencies near 2.5 Hz and 23.4 Hz appearing in the intact bridge were weakened by 
damages. 
 
 
4. System frequency and damping constant estimated by SAR model 
 

System frequencies and damping constants estimated from the data of the six traffic scenarios 
were investigated. Fig. 5 shows summarized system frequencies; and Fig. 6 for system damping 
constants. AR order was p=35, which was not an optimal order but an empirical one. Statistical 
features of the identified system frequency are summarized in Table 1, and those for damping 
constant are summarized in Table 2. In Fig. 5, the first 27 plots indicate identified dominant 
frequencies estimated from the data of the intact girder, and those in Fig. 6 are estimated damping 
constants. On the contrary, the second 27 plots are those taken from the data of the damage 
scenario D1 and the third 27 plots are from damage scenario D2. I, II and III on the figures denote 
observation points. V1, V2 and V3 on the figures show vehicle type. Figs. 5(a) and (b) 
respectively show the first and third dominant frequencies, and those for damping constants are 
also shown in Figs. 6(a) and (b). Those second dominant frequencies and damping constants gave 
less clear pattern change between intact and damage girders than those for the first and third ones, 
and were omitted in this paper. Fig. 5 shows clear pattern change of identified dominant 
frequencies despite of their variations. An interesting point was the third dominant frequencies 
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revealed more apparent pattern changes according to the damage. 
Usually the damping constants derived from eigenvalues of a system matrix are subject to 

appreciable error (Pappa and Ibrahim 1981).This study also observed greater variance of damping 
constants than that of the identified frequencies as shown in Fig. 6. However, despite of their 
appreciable error the pattern change of identified damping constants due to the damage was very 
apparent comparing to that of the dominant frequency shown in Fig. 5. 
 
 
5. Structural diagnosis using parameter from AR coefficients 
 

5.1 Indicator using autoregressive coefficients 
 

This section focuses on diagnosis of bridges using a parameter taken from AR coefficients 
since a linear dynamic system can be idealized using the AR model as shown in Eq. (22) 
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where, y(k) denotes output of a system, ai is the i-th order AR coefficient and e(k) indicates the 
noise term. 

The parameter from AR coefficients was adopted as a diagnosis indicator (DI), which is 
defined as 
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 where, ia denotes the  i-th AR coefficient. 

The AR process with the model order p in Eq. (22) can be expressed in the z-transform domain 
as shown in Eq. (24). The H(z) in Eq. (24) is defined as AR polynomial of the model transfer 
function relating the input to output. The poles zk in Eq. (26) are obtained by finding the roots of 
the AR coefficient polynomial in the denominator of H(z). Since the coefficient of H(z) are real, 
the roots must be real or complex conjugate pairs. The number of poles in z plane equals to 
the AR model order. Therefore zk shown in Eq. (26) and AR coefficients have following 
relationships. 
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Eqs. (26) and (28) show AR coefficients directly link to system frequencies and damping 
constant. Therefore, AR coefficient changes due to damage, and DI also changes due to damage. 
This is the theoretical background of AR coefficient for structural diagnosis. Another way to 

(j>1) 

(j=1) 
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Fig. 7 AIC with respect to model order of SAR model (p=optimal AR order) 

 

(a) p=35 (b) p=optimal AR order 

Fig. 8 Estimated Frequencies by SAR mode 
 
 
explain the relationship between AR coefficient and circular frequency and damping constant is 
shown in Appendix A. 

In this study, the optimal order of the AR model was selected by means of AIC (Akaike 
Information Criterion) shown in Eq. (29). 

NMN M  )1(2)ˆ2log(AIC 2
                                           

(29) 

where N indicates the number of data; M, AR order; and 2ˆM , mean square of M th prediction error. 
The AIC consists of two terms, the first term is a log-likelihood function and the second term is a 
penalty function for the number of the AR order. Fig. 7 shows behavior of order selection criteria 
by AIC. Fig. 8 show estimated result of system frequency: (a) p=35, (b) p=optimal AR order. 
Comparing Figs. 8(a) and (b) using optimal AR order for frequency identification gave both 
system and numerical frequencies. These numerical frequencies usually interfere to select system 

 

Intact D1 D2 108 54 162 
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Intact D1 D2 108 54 162 

Estimate times 
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frequencies. That was one reason of focusing on AR coefficient for structural diagnosis. Another 
interesting observation was that, as shown in Fig. 7, the AIC value at the optimal AR order was 
changed apparently due to damage. In other words AIC at the optimal AR order can be utilized as 
a damage-sensitive feature. 
 

5.2. Sensitivity analysis 
 
This study performed a sensitivity analysis to decide the most sensitive DIj due to damage. The 

DIj which is obtained by changing the order j from 1 to 6 is summarized in Fig. 9. The difference 
of DIj between intact and damage bridges with respect to j were estimated as shown in Fig. 10: Fig. 
10(a) for Intact vs. D1; and Fig. 10(b) for Intact vs. D2. Fig. 10 clearly indicates that difference of 
DI between intact and damage bridges is the most apparent when j takes 3. Therefore this study 
adopted DI3 as a damage sensitive feature. 
 

5.3. Singlevariate AR model 
 
A preliminary study by authors shows that the DI is affected by observation points and vehicle 

speeds (Kim et al. 2011). So this study examined change of the DI according to damage, 
observation points and vehicle speeds as shown in Fig. 11. 

For DI observed at point I and point III under vehicle speed of S1, it is hard to read a clear 
change of the DI due to damage. On the other hand, the DI observed at point II clearly shows 
change due to damage. For the vehicle speed of S2 which was faster than S1, pattern change of the 
DI due to damage was observed at all observation points due to damage. 
 
 

Fig. 9 DI with respect to the order of AR coefficient of SAR model considering in denominator of Eq. (27)
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(a) Intact vs D1 (b) Intact vs D2 
Fig. 10 Difference of DI with respect to the order of AR coefficient of SAR model considering in 

denominator of Eq. (27) 
 

Fig. 11 Variation of DI3 identified by SAR model according to different damage patterns, speeds and 
observation points 

 
 
5.4. Multivariate AR model 
 
A parameter from the MAR model shown in Eq. (30) is also used to derive a damage sensitive 

feature. 
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(a) Intact vs D1 (b) Intact vs D2 
Fig. 12 Difference of DI identified by MAR model with respect to the order of coefficient of Eq. (32(b))

 
 
where, y(k) denotes outputs of a system, Gi is AR coefficients matrices in the system matrix Â  
and e(k) is the noise term. The system matrix Â

 
is shown in Eq. (31). 
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Details of the process are obtainable from existing study by Kim et al. 2010. The characteristic 
equation of the system matrix Â is writable as Eq. (32). 
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where, λ indicates eigenvalues of the system matrix and I is the unit matrix. The relationship 
between the coefficient ci and eigenvalues of system matrix λ can be also written as 
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When the structure is damaged, the system matrix change due to damage and eigenvalue of the 
system matrix also change due to damage. So, Eq. (33) indicates that the coefficient ci changes due 
to damage. The coefficient ci of Eq. (32(b)) has same meaning with the AR coefficient of Eq. (25). 
As is the case with SAR model, this study performed a sensitive analysis according to Eq. (27). 
Fig. 12 shows the result of sensitive analysis. It is shown that when j takes 1, DIj is the most 
sensitive parameter due to damage. Therefore this study adopted DI1, which considers first order 
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(a) S1 = 0.93 m/s (b) S2 = 1.63 m/s 
Fig. 13 Variation of DI1 identified by MAR model according to different damage patterns and speeds 
 

(a) S1 = 0.93 m/s (b) S2 = 1.63 m/s 
Fig. 14 Variation of DI3 identified by MAR model according to different damage patterns and speeds 
 
 

coefficient of Eq. (32(b)), as a damage sensitive feature. 
Fig. 13 shows the plots of DI estimated using the MAR model according to bridge’s health 
conditions, which also demonstrates pattern change of DI due to damage. Change of DI also 
became clearer under the moving vehicle of higher speed (S2) than under the vehicle of lower 
speed (S1). 

For reference, when j takes 3 which is similar with the case of SAR model, plots of DI3 
according to bridge’s health conditions are shown in Fig. 14. Of course DI1 gives more clear 
changes due to damages than DI3. 
 
 
6. Conclusions 
 

This paper investigated the feasibility of BHM using traffic-induced vibration measurements of 
a model bridge through a laboratory experiment. This study considered AR coefficients as an early 
indicator of abnormalities of bridges.  The summarized results are as follows. 

The DI value taken from traffic-induced vibration data provided information to make a decision 
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on diagnosis of short span bridges. The pattern of DI estimated using the data in higher vehicle 
speed gave better chance to make a decision on bridge diagnosis. Another interesting result was 
that the parameter from the data measured at the span center was the most sensitive to damage for 
the SAR model. Both SAR and MAR models showed similar results. However the MAR model 
required longer computation time to find an optimal MAR model than the SAR model. An 
interesting observation was that the AIC at the optimal AR order showed apparent change due to 
damage. The feasibility of AIC as a damage indicator needs a comprehensive, which is the next 
step for this study. 
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Appendix A 
 

Dynamic equation of motion for a system is writable as Eqs. (A1) and (A2). 

0)()()(mc  tyktycty cc                                                 (A1) 

0)()(2)( 2
00  tytyhty                                                 (A2) 

where, h denotes damping constant of  the system, and ω0 is circular frequency. 
A general solution is 

)sin(G)(    tety t                                                   (A3) 

2
0 1 h                                                            (A4) 

h0                                                                 (A5) 

where, G is unknown constant and  indicates unknown phase angle. 
The time history of a dynamic system shows in Eq. (A2) can be modeled by the AR process as 

   mnnnnn yayayay 2211                                      (A6) 

Using Eq. (A3) the dynamic response yn is rewritable as 
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To simplify the problem, we consider the AR process with the 2nd order. 
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From Eq. (A7), we obtain the following 
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By substituting Eq. (A11) into Eq. (A9), we can obtain following equation. 
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Substituting Eq. (A11) into Eq. (A10) gives 
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Eq. (A14) is rewritable in general formation as 
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Comparing Eq. (A15) with Eq. (A6) of 2nd order 
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From Eqs. (A16) and (A17), we can obtain following relationship. 
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It also shows that AR coefficients directly link with dynamic characteristic of systems. 
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