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Analytical solutions to piezoelectric bimorphs based
on improved FSDT beam model
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Abstract. This paper presents an efficient and accurate coupled beam model for piezoelectric bimorphs based
on improved first-order shear deformation theory (FSDT). The model combines the equivalent single layer
approach for the mechanical displacements and a layerwise modeling for the electric potential. General electric
field function is proposed to reasonably approximate the through-the-thickness distribution of the applied and
induced electric potentials. Layerwise defined shear correction factor (k) accounting for nonlinear shear strain
distribution is introduced into both the shear stress resultant and the electric displacement integration. Analytical
solutions for free vibrations and forced response under electromechanical loads are obtained for the simply
supported piezoelectric bimorphs with series or parallel arrangement, and the numerical results for various length-
to-thickness ratios are compared with the exact two-dimensional piezoelasticity solution. Excellent predictions
with low error estimates of local and global responses as well as the modal frequencies are observed.

Keywords: piezoelectric bimorph; beam model; first-order shear deformation theory; shear correction
factor; electric potential; analytical solution

1. Introduction

Piezoelectric bimorphs (or benders) are a special type of smart structures, and have been widely used

as sensors or actuators in many applications due to the characteristics of miniaturization, high

positioning accuracy, sensitive response, and large displacement (Ha and Kim 2002, Zhou, et al. 2005).

A bimorph consists of two identical piezoelectric elements stacked on top of each other (parallel or

series arrangement), and the application of an electric field across the two layers of the bimorph

produces one layer to expand while the other one contracts, which results in a bending deformation.

This is the working principle of bimorphs. More sophisticated multiplayer piezoelectric composites

were developed from bimorphs to improve the motion amplification and performance of the smart

structures (Steel, et al. 1978). Thus, for the design and application of such bimorphs, it is crucial to

accurately model their electromechanical behaviors.

The analysis of piezoelectric composite structures like bimorphs requires efficient and accurate

modeling of both the mechanical and electric responses, and in the past decades the study in this field
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has experienced tremendous growth (Rao and Sunar 1994, Chee, et al. 1998, Saravanos and Heyliger

1999). Although some three-dimensional (3D) analytical solutions have been presented with exact

satisfactions for the piezoelectric structures (Tzou and Tiersten 1994, Lee and Jiang 1996, He, et al.

2000, Lim, et al. 2001), they are available only for some regular shapes with specified simple boundary

conditions. And the corresponding finite element implementation typically requires high computational

effort and becomes intractable especially for dynamics and control problems (Hwang and Park 1993,

Wang 2004). Thus the introduction of simpler and more practical 2D (1D for beams) analytical models

is desirable for the possible solution to more general piezoelectric composite structures (Smits, et al.

1991, Kapuria 2001). 

The present work attempts to develop consistent, yet comprehensive FSDT beam model

(Gopinathan, et al. 2000) for piezoelectric bimorphs. This model combines an equivalent single layer

(ESL) approach for the mechanical displacements with a layerwise approximation for the electric

potential so as to achieve the accuracy of layerwise method while preserving the computational

advantage of ESL theory for the mechanical field variables. For the electric potential in piezoelectric

layers, besides the linear distribution assumptions along the thickness direction for the surface-

applied electric potential, quadratic functions are adopted to approximate the strain-induced electric

potential. The differential equations of motion are solved analytically for series and parallel

arrangements, with particular attention devoted to the boundary conditions on the outer faces and the

interface continuity conditions. Numerical results for the simply supported bimorphs under flexural

deformation conditions are presented for various length-to-thickness ratios, and the results are

verified by those obtained from the exact 2D model via state space approach (Ding, et al. 2000, Tarn

2002).

Fig. 1 Typical piezoelectric bimorph settings
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2. Beam model and field approximations

Fig. 1 shows the geometry and typical settings of bimorphs. For either type of arrangement, the

bimorph of unit width comprises two identical piezoelectric layers with a length of  l, and the thickness

of the each piezoelectric layer is h. Two layers are considered perfectly bonded. Hence, the mechanical

displacements and transverse stresses, and electric potential have to be continuous through the bimorph

interfaces. In view of the fact that generally the width is relatively short than the length, piezoelectric

bimorphs can be treated as a symmetric plane stress beam. The bimorph may undergoing the external

mechanical and electric loads (e.g. a distributed surface load, p(x, t), and an applied electric voltage,

V(x, t)) under isothermal conditions, and is assumed to deflect in the x-z plane only.

2.1. Basic equations of piezoelasticity and beam equations

The linear field equations of motion for two-dimensional orthotropic piezoelasticity are given by

(Sosa and Castro 1993, Ding, et al. 1997)

(1)

where ρ is the mass density of piezoelectric material; ux and u
z
 are the displacement components of the

bimorph in the longitudinal and transverse directions respectively; f
x
 and f

z
 are the body forces; σ

x
, σ

z
,

τ
xz

, D
x
 and D

z
 represent the stress components, electric displacement components, and they satisfy the

linear constitutive equations of piezoelectricity under 2D plane assumptions as following:

(2a)

(2b)

where i is an integer and i = 2 if the layer poling direction coincides with the coordinate axes and

otherwise i = 1; ε
x
, ε

z
, γ

xz
, E

x
 and E

z
 are strain and electric field intensity components, which relate to the

displacement components and electric potential φ by

(3)

It should be noted that , , , ,  and  in Eq. (2) are the reduced material constants of

the piezoelectric medium under plane stress assumption from 3D constitutive relationship:

(4)

For a beam with small width, introduce the zero normal stress assumption, namely, σ
z
 is negligible

compared with other stress components. Substituting σ
z
=0 into Eq. (1) yields

(5)

∂σx

∂x
--------

∂τxz

∂z
--------- fx+ +  ρ

∂
 2

ux

∂t
2

-----------    
∂τxz

∂x
---------

∂σz

∂z
-------- fz+ + ρ

∂
 2

uz

∂t
2

----------    
∂Dx

∂x
---------

∂Dz

∂z
---------+ 0=,=,=

σx c11εx c13εz 1–( )ie31Ez–+    σz c13εx c33εz 1–( )ie33Ez–+=,=

τxz c55γxz 1–( )ie15Ex–    Dz 1–( )i e31εx e33εz+( ) ε33Ez    Dx 1–( )ie15γxz ε11Ex+=,+=,=

εx

∂ux

∂x
--------=   εz

∂uz

∂z
-------=   γxz

∂ux

∂z
--------

∂uz

∂x
-------+=   Ex

∂φ

∂x
------–=   Ez

∂φ

∂z
------–=, , , ,

c11 c13 c33 e31 e33 ε33

c11 c11

c12

2

c22

------–=    c13 c13

c12c23

c22

-------------–=    c33 c33

c23

2

c22

------–=, ,

e31 e31

c12c32

c22

-------------–=    e33 e33

c23e32

c22

-------------–=    ε33 ε33

e32

2

c22

------+=, ,

∂σx

∂x
--------

∂τxz

∂z
--------- fx+ + ρ

∂ 
2
ux

∂t
2

-----------    
∂τxz

∂x
--------- fz+ ρ

∂
2
uz

∂t
2

---------    
∂Dx

∂x
---------

∂Dz

∂z
---------+ 0=,=,=



312 Yan-guo Zhou, Yun-min Chen and Hao-jiang Ding

And solving σz=0 in Eq. (2a) for εz gives

(6)

On use of Eq. (6), the 2D constitutive relations in Eqs. (2) reduce to

(7a)

(7b)

And the needed general strain-displacement relations in Eq. (3) reduce to

(8)

2.2. Mechanical displacement and electric potential approximations

According to first-order shear deformation theory, when thick beams are considered, the effect of

shear deformation (and rotary inertia in dynamic analysis) cannot be omitted. It is assumed that (See

Fig. 2): 1) Straight material lines that are perpendicular to the neutral axis in the undeformed state

remain straight in the deformed state even though they may not remain perpendicular to the neutral

axis; 2) The compression in a direction normal to the neutral axis of the beam is negligible (i.e. no

‘‘thickness stretch’’) and the transverse displacement, w, keeps constant through the cross section.

The FSDT approximation is thus assumed for the mechanical displacements as follows:

(9)

where w is the displacement of the neutral axis of the bimorph; and ψ is the bending rotations of vertical

lines perpendicular to the neutral axis.

 Using Eqs. (8) and (9), we get the strain of the piezoelectric layer given by
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Fig. 2 Piezoelectric bimorph: coordinates and geometry
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The electric potential can be generally associated with the applied electric potential on the bimorph

faces or at the layer interface, and with the induced electric potential by elastic deformation in the

piezoelectric layer. Consequently, we propose the following functions

(11)

where V(x, t) is the amplitude at surfaces of the applied electric potential, and g(z) is the through-the-

thickness distribution function of this applied electric potential, which is well acknowledged as a linear

distribution (Smits, et al. 1991); Φ(x, t) is the amplitude of induced electric potential on the midline of

each piezoelectric layer, and f (z) is the through-the-thickness distribution function, which can be

approximated in various models in the literature (Wang and Quek 2000).

Therefore, the electric potential distribution functions in Eq. (11) can be approximated as

(12)

Substituting the above assumed φ(x, z, t) into Eq. (8), one may obtain the electric field intensity

components, then substituting this results and Eq. (10) into Eq. (7) yields the coupled electromechanical
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(13d)

Eq. (13) indicates that there is no fundamental difference between the parallel and series bimorphs

under FSDT assumptions since the electromechanical variables are almost the same except for the

electric components symmetry.

3. Governing equations of motion for the bimorphs

Based on Timoshenko’s beam theory and the charge conservation law, the motion equations and the

Maxwell’s equations of piezoelectric bimorph in Eq. (5) can be satisfied approximately by applying

integration over the cross section, namely as

(14)

(15)

 (16)

where m and p are the corresponding external couple and force, and M and Q are the bending moment

and shear force, which can be expressed as:
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Eqs. (14), (15) and (16) give the governing equations of piezoelectric bimorphs. For the static case,
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where

  (19)

Substituting the stress components in Eq. (13) into Eq. (17), in view of shear k, one obtains the

expressions for the shear force and moment as

(20a)

(20b)

Substituting the electric displacement components in Eq. (13) into Eq. (16) yields

(21a)
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Substituting Eqs. (9) and (20) into Eqs. (14) and (15), and substituting Eq. (21) into Eq. (16), the

governing equations can be rewritten as
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Thus the governing Eqs. (14), (15) and (16) are transformed into (22), (23) and (24) for three

independent variables, w, ψ and Φ in FSDT beam model. And the shear correction factor, k, can be

calculated numerically according to Eq. (18) from exact 2D solutions under certain loading

conditions.
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4. Solutions for simply supported bimorph in bending

We consider a piezoelectric bimorph undergoing a surface density of normal force or electric potential

applied to the top and bottom faces. Assuming that the shear traction is zero and there is no surface density

of moment (m = 0). The simple support conditions for a beam of length l are simulated by

(26)

The electromechanical load functions are written as Fourier series as follows:
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relative electromechanical variables are readily obtained.

5. Numerical results and analysis

The geometry of the bimorph is l = 1 m with different length-to-thickness ratios l/(2h) considered. The

piezoelectric layer material used for the numerical investigation is PZT-5A, and the material properties are

listed in Table 1. Two kinds of electromechanical loads are considered corresponding to (1) sensor function

with a force density per unit area applied to the upper face of the bimorph in closed circuit and (2) actuator

function with an electric potential applied to the top and bottom faces of the bimorph. The numerical results

for state variables are given in dimensionless units as follows (Fernandes and Pouget 2003).

(1) For surface force density P0 ≠ 0 (P0 =
 1000 N/m2 and V0

 = 0), we define

(32)

(2) For electric potential V0 ≠ 0 (V0 =
 1000 V and P0 =

 0), we define

(33)

For numerical convenience we take E0 =
 1010

 V/m. The series terms number of Eqs. (27) and (29) are

adjusted in order to satisfy the convergence. The 2D benchmark computations for comparison are

performed via state space approach.

The calculated and adopted shear correction factor (k) for different length-to-thickness ratios are

given in Table 2. For the condition of static force density uniformly applied on the top face of the

bimorph, the calculated k is found to be very close to the Timoshenko (1922) recommended value 8/9

for plane stress problem; while for the condition of electric potential applied to surface electrodes, k is

slightly higher and found to change somewhat irregularly for different aspect ratios but is within the

range of 0.9-1.0. Thus, for the explicitness and ease of use, we propose k = 8/9 for bimorphs under plane

stress assumption despite the different load conditions.

5.1. Applied surface density of normal force (sensor function)

For this case the applied electrical potential is set to zero and a uniform surface density of normal

U W Φ, ,( )
c11

hP0

-------- u w φ, , E0⁄( )=    Tij Dk,( ) 1

P0

----- σij E0Dk,( )=,

U W Φ, ,( )
E0

V0

----- u w φ, , E0⁄( )=    Tij Dk,( )
hE0

c11V0

------------ σij E0Dk,( )=,

Table 1 Independent constants of piezoelectric material (PZT-5A)

ρ c11 c12 c33 c13 c55 e31 e33 e15 ε11 ε33

7800 105 54.6 86.8 52.7 22.2 -9.78 13.8 12.2 16.4 15.1

Unit: ρ-kg/m3, c-109
× N/m2, e-C/m2, ε-10−9

× C/Vm

Table 2 Calculated and adopted k values for different length-to-thickness ratios

Load type l/2h 100 50 20 10 5

Force density
Calculated 0.8887 0.8887 0.8886 0.8886 0.8887

Adopted 8/9 8/9 8/9 8/9 8/9

Electric potential
Calculated 0.9449 0.9368 0.9209 0.9588 0.9725

Adopted 8/9 8/9 8/9 8/9 8/9
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Fig. 3 Local responses under applied force density, l/(2h) = 10
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force (P0 = 1000 N/m2) is applied to the top face of the bimorphs. Then in present approach, the V
n
 in

the right-hand side and the frequency related terms in the coefficients matrix of Eq. (30) should be

omitted. The numerical results of static responses at the position x
 
= 0.25l for typical length-to-thickness

ratio l/(2h) = 10 are illustrated in Fig. 3(a)-(f), and the estimating errors between the present model and

2D solution for l/(2h) = 50, 10, and 5 are selected and given in Table 3. 

As shown in Fig. 3, the elongation displacement u, normal stress σx
, induced electric potential φ and

electric displacement Dz in present model agree well with those of 2D solutions. In Fig. 3(c) the

induced electric potential is antisymmetric about the neutral axis of the bimorph for series arrangement,

and the continuity condition for Dz is then satisfied as shown in Fig. 3(e). In Fig. 3(d) we have the

induced electric potential showing a symmetric profile for parallel arrangement, and this explains the

jump in the electric induction as shown in Fig. 3(f). As shown in Table 3, even for thick bimorph l/(2h)

= 5, the discrepancy of the deflection w dose not exceed 1%. The most interesting result in Table 3 is

that the errors of the static local responses predicted by present model with either k = 8/9 or k = 5/6

(Cowper 1966) are almost the same, except for the transverse displacement w.

5.2. Applied electric potential (actuator function)

In this situation, the piezoelectric bimorph suffers an electric potential (V0 = 1000 V) applied to the top

and bottom faces (+V0 at z
 
= -h and -V0 at z

 
= h for series case, and +V0 at both surfaces for parallel case,

with P0 = 0). Then P
n
 in the right-hand side of Eq. (30) should be set to zero and the frequency related

terms in the coefficients matrix are omitted. The numerical results are plotted in Fig. 4(a)-(f) and the

estimating errors are given in Table 4.

As shown in Fig. 4, although the local responses of the electromechanical variables are basically

different from those in the case of applied force density (especially for φ), the accuracy predicted by the

present model is warranted again. The linear variation through the thickness with u in Fig. 4(a)

indicates that the bimorph also undergoes a bending motion. However, compared with the performance

of sensor function listed in Table 3, the discrepancy of predictions in Table 4 is slightly larger, which

indicates that the present model will perform differently from the sensor to actuator functions. 

It can be readily concluded from Table 3 and Table 4 that, in static response analyses, the shear

correction factor influences the behaviors of FSDT solution little except for the transverse displacement

w. The interesting finding echoes what Timoshenko stated about the shear deformation effect on the

Table 3 Typical static responses, applied uniform force density

l/(2h) Methods
W

(l/4, 0)
Error
(%)

T11

(l/4, 0)
Error
(%)

Φ

(l/4, h/2)
Error
(%)

50

2D solution 786895 1444 1.145

Present (k=8/9) 786915 0 1444 -0.01 1.145 0.06

Present (k=5/6) 786974 0.01 1444 -0.01 1.145 0.06

10

2D solution 1292 57.98 0.2306

Present (k=8/9) 1292 0.06 57.78 -0.34 0.2342 1.57

Present (k=5/6) 1295 0.25 57.78 -0.34 0.2342 1.57

5

2D solution 87.02 14.67 0.1179

Present (k=8/9) 87.26 0.28 14.47 -1.38 0.1251 6.15

Present (k=5/6) 87.85 0.95 14.47 -1.38 0.1251 6.15
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Fig. 4 Local responses under applied electric potential, l/(2h) = 10
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static deflection problems (Gere and Timoshenko 1984). 

5.3. Free vibration analysis of piezoelectric bimorphs

In this section, we propose the prediction of modal frequencies of the bimorphs for both closed circuit

(φ = 0 at outer surfaces) and open circuit (Dz =
 0 at outer surfaces) conditions on surfaces of the

bimorph, for different length-to-thickness ratios l/(2h)=100, 50, 20, 10 and 5. For closed circuit

condition, the right-hand side of Eq. (30) is directly set to zero, and nontrivial solutions for W
n
, Ψ

n
 and

Φ
n
 implies that the determinant of the coefficients matrix of Eq. (30) vanishes. Then solving Eq. (30)

gives the frequencies of flexural vibrations for a given n. For open circuit condition, there is non-zero

but uniform distribution of electric potential in the outer electrodes, thus the Vn in the right-hand side of

Eq. (30) become an unknown variable. Eq. (30) should be readily reconstructed in view of the boundary

condition (Dz =
 0 at outer surfaces) and the consequent coefficient matrix is 4 × 4 now. Then the modal

frequencies are obtained similarly. The dimensionless modal frequency is .Ω 2h( )ω ρ c11⁄=

Table 4 Typical static responses, applied electric potential

l/(2h) Methods
W

(l/4, 0)
Error
(%)

T11

(l/4, 0)
Error
(%)

Φ

(l/4, h/2)
Error
(%)

50

2D solution 2602 3.535 0.5200

Present (k=8/9) 2607 0.22 3.315 -6.22 0.5253 1.02

Present (k=5/6) 2608 0.25 3.315 -6.22 0.5253 1.02

10

2D solution 103.4 3.538 0.5200

Present (k=8/9) 106.3 2.75 3.298 -6.78 0.5255 1.06

Present (k=5/6) 109.8 6.18 3.298 -6.78 0.5255 1.06

5

2D solution 25.31 3.538 0.5200

Present (k=8/9) 27.50 8.64 3.285 -7.14 0.5260 1.22

Present (k=5/6) 30.73 21.38 3.285 -7.14 0.5260 1.22

Fig. 5 Modal frequency accuracy (k = 8/9, closed circuit)



322 Yan-guo Zhou, Yun-min Chen and Hao-jiang Ding

For closed circuit case, the accuracy performance of the modal frequencies predicted by the present

model with k = 8/9 are shown in Fig. 5, and the detailed results of l/(2h) =10 is presented in Table 5, with

k = 8/9, k = 5/6 and k = π 2/12 (Mindlin 1951). It is clear that rather good agreement is observed for the

present model. For open circuit case as shown in Fig. 6 and Table 6, although the frequency values are

slightly higher than those in closed circuit case for a given n, the prediction performance is similarly

fine. Nevertheless, the difference among the results using different k values implies that the dynamic

prediction based on FSDT is sensitive to the exactness of shear k. 

6. Summary and conclusions

In the present study, the piezoelectric bimorph structure has been investigated in detail statically and

Fig. 6 Modal frequency accuracy (k = 8/9, open circuit)

Table 5 Modal frequency performance in closed circuit (l/2h =10)

Vibration

modes

2D

solution

Present 

(k=8/9)

Error

(%)

Present

(k=5/6)

Error

(%)

Present

(k=π2/12)

Error

(%)

n
 

= 1 0.2634 0.2635 0.02 0.2633 -0.07 0.2632 -0.09

n
 

= 2 1.005 1.005 0.06 1.002 -0.25 1.002 -0.32

n
 

= 3 2.113 2.115 0.11 2.103 -0.49 2.100 -0.62

n
 

= 4 3.474 3.478 0.14 3.448 -0.75 3.441 -0.93

n
 

= 5 5.000 5.008 0.15 4.951 -1.00 4.939 -1.24

n
 

= 6 6.635 6.646 0.16 6.554 -1.23 6.535 -1.52

n
 

= 7 8.341 8.354 0.15 8.221 -1.44 8.194 -1.76

n
 

= 8 10.10 10.11 0.15 9.932 -1.62 9.896 -1.98

n
 

= 9 11.88 11.90 0.14 11.67 -1.77 11.63 -2.17

n
 

= 10 13.70 13.72 0.14 13.44 -1.90 13.38 -2.32
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dynamically (free vibration) based on improved FSDT approach. From the analytical modelling and

numerical analysis, it was found that:

(1) Piezoelectric bimorphs will behave fundamentally the same for series and parallel arrangements

under the same loading conditions except for the symmetry of electric variables. While for a

certain arrangement, the detailed distributions of electromechanical variables for the case of being

applied force density differ from those of being applied electric potential, which reflects the

sensor and actuator behaviors of piezoelectric bimorphs.

(2) In both static and dynamic analysis, the present model obtains very accurate prediction with the

proposed shear correction factor, k = 8/9. The static response investigation indicates that the

present model performs slightly better for the sensor function than for the actuator function. High

accuracy of modal frequencies is acquired even for rather thick beam, whereas classical beam or

plate theory gives less accurate results.

(3) In FSDT model, shear correction factor plays a key role in assuring the prediction accuracy of

dynamic response while influence the static results little. Thus, it is very important to choose the

appropriate k value in dynamic problems when using FSDT approaches, especially for the

vibration control applications in smart structures and systems.
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Table 6 Modal frequency performance in open circuit (l/2h =10)

Vibration

modes

2D

solution

Present 

(k=8/9)

Error

(%)

Present

(k=5/6)

Error

(%)

Present

(k=π2/12)

Error

(%)

n
 

= 1 0.2730 0.2730 0.01 0.2727 -0.10 0.2726 -0.11

n
 

= 2 1.033 1.034 0.03 1.030 -0.35 1.029 -0.40

n
 

= 3 2.154 2.155 0.04 2.141 -0.66 2.138 -0.75

n
 

= 4 3.515 3.516 0.05 3.483 -0.95 3.476 -1.10

n
 

= 5 5.031 5.034 0.05 4.973 -1.21 4.960 -1.40

n
 

= 6 6.652 6.656 0.07 6.562 -1.42 6.542 -1.65

n
 

= 7 8.346 8.355 0.10 8.221 -1.60 8.193 -1.83

n
 

= 8 10.10 10.11 0.16 9.934 -1.76 9.897 -1.96

n
 

= 9 11.89 11.91 0.22 11.69 -1.88 11.64 -2.05

n
 

= 10 13.71 13.75 0.31 13.48 -1.99 13.42 -2.10
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