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Abstract. This paper summarizes the application of a rational methodology for the structural assessment of
older reinforced concrete Tunisian bridges. This methodology is based on ambient vibration measurement of the
bridge, identification of the structure’s modal signature and finite element model updating. The selected case study
is the Boujnah bridge of the Tunis-Msaken Highway. This bridge is made of a continuous four-span simply
supported reinforced concrete slab without girders resting on elastomeric bearings at each support. Ambient
vibration tests were conducted on the bridge using a data acquisition system with nine force-balance
accelerometers placed at selected locations of the bridge. The Enhanced Frequency Domain Decomposition
technique was applied to extract the dynamic characteristics of the bridge. The finite element model was updated
in order to obtain a reasonable correlation between experimental and numerical modal properties. For the model
updating part of the study, the parameters selected for the updating process include the concrete modulus of
elasticity, the elastic bearing stiffness and the foundation spring stiffnesses. The primary objective of the paper is to
demonstrate the use of the Enhanced Frequency Domain Decomposition technique combined with model
updating to provide data that could be used to assess the structural condition of the selected bridge. The application
of the proposed methodology led to a relatively faithful linear elastic model of the bridge in its present condition.

Keywords: ambient vibration testing; output-only modal identification; enhanced frequency domain iden-
tification technique; finite element model updating.

1. Introduction

Tunisia has more than 3000 bridges with a minimum span length of 3 meters. Several of these bridges

are old and were designed based on what today are considered outdated code regulations. A certain
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number of these bridges have suffered load capacity degradation and damage due to traffic and

environment. Current bridge inspection techniques are based on visual inspection techniques conducted

by experienced engineers. A recent study conducted by the Federal Highways Administration Officials

(Phares 2001) reported that at least 56% of visually based inspections of bridges in the United States

were incorrect due to factors such as inspector’s experience, bridge type and condition. Therefore, there

is a need to develop rational and scientific methodologies for bridge inspection and evaluation (Catbas,

et al. 2001).

This paper summarizes part of the ongoing work conducted in Tunisia within the framework of a

research project funded by the Center for Testing and Construction Techniques which is affiliated with

the Ministry of Infrastructure, Housing and Urban Planning. The project deals with the development of

a rational methodology for the assessment of older reinforced concrete bridges. This methodology is

based on the following steps: (a) response-only ambient vibration measurement of the bridge; (b)

output-only modal signature identification of the bridge using the Enhanced Frequency Domain

Decomposition technique; (c) finite element model updating which yields a linear elastic finite element

model that reproduces as much as possible the real experimental behavior of the bridge; and (d)

estimation of maximum bridge capacity and prediction of its failure modes based on detailed nonlinear

finite element analyses. The focus of this paper is on the application of the first three steps of this

methodology on the Boujnah bridge. The main objective of this study is to demonstrate the use of the

Enhanced Frequency Domain Decomposition technique along with model updating to provide data that

could be used to evaluate the structural condition of the Boujnah bridge.

Fig. 1 General view of the Boujnah bridge
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2. Description of the case study

The tested bridge is located on the Tunis-Msaken highway, at about 18 km south of  Tunis, the

Capital of Tunisia with traffic going underneath. This bridge, shown in Fig. 1, was constructed in

1978 and consists of (i) a continuous four-span reinforced concrete slab resting on elastomeric

bearings at each support; (ii) three intermediate piers each with a strip footing; and (iii) two

abutments. The bridge was designed based on the allowable stress design method according to the

French code CCBA68 (1968).

A longitudinal cross-section and plan view of the bridge are shown, respectively, in Figs. 2 and 3. The

outside spans have a length of 8.75 meters and the inside spans have a length 16.75 meters. A typical cross-

section of the continuous reinforced concrete slab is shown in Fig. 4. Two types of elastomeric bearings were

used in the bridge, namely, type A for the pile supports and type B for the abutment supports. The dimensions

of the elastomeric bearings are depicted in Fig. 5. A visual inspection of the bridge reveals no clear damage,

mainly since it has been subjected over the years to minor traffic loading.

Fig. 2 Longitudinal cross-section of the bridge (dimensions in meters)

Fig. 3 Plan view of the bridge and distribution of the elastomeric bearings; Type A and type B supports are
shown, respectively, in black and red (dimensions in meters)
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3. Finite element modeling

A three dimensional detailed finite element model of the bridge was created using the commercially

available SAP2000 computer program (Computers and Structures 2000). Four-noded shell elements

were used to model the concrete slab and the piles, while the elastomeric bearings were modelled by

linear elastic spring elements. The model, shown in Fig. 6, uses a total of 712 elements and 825 nodes.

The x, y and z-coordinates represent, respectively, the longitudinal axis along the bridge, the horizontal

transversal axis and the vertical axis (Fig. 6). The material behavior is assumed to be linear elastic,

isotropic and homogeneous. The concrete modulus of elasticity was estimated at 32000 MPa based on

concrete sample compression tests. The mass density of concrete was assumed to be 2500 kg/m3. The

stiffnesses of the elastomeric bearings, indicated in Table 1, were estimated based on an instantaneous

modulus of elasticity of 4.8 MPa and an instantaneous shear modulus of 1.6 MPa.

The boundary conditions between the piers and the foundation were modelled by three uniaxial

springs oriented, respectively, in the x, y and z-directions and attached to the bottom end of each pier

along each node. The stiffness of these foundation springs was assumed to be equal to 1030 N/m

representing the stiff soil conditions of the bridge site. The boundary conditions between the abutment

and the bearing supports at both ends of the bridge were modelled as pinned supports along each node.

The parameters selected for the finite element updating include the concrete modulus of elasticity, the

elastomeric bearing stiffnesses and the foundation spring stiffnesses.

Fig. 5 Dimensions of the elastomeric bearings (dimensions in meters)

Fig. 4 Typical cross-section of the reinforced concrete continuous slab (dimensions in meters)
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4. Ambient vibration testing and modal identification

For large structures, ambient vibration tests with output-only measurements are preferred over forced

vibration tests where both the excitation and the response are measured. In ambient vibration testing,

the measured response is representative of the actual operating conditions of the structure which

vibrates due to natural excitation loads such as wind, microtremors, traffic and human activity. The

fundamental assumption of the analysis of these ambient vibrations is that the inputs causing motion

have white noise characteristics in the frequency range of interest. This assumption implies that the

input loads are not driving the system at any particular frequency and therefore any identified frequency

associated with significant strong response reflects structural modal response. However, in reality, some

of the ambient disturbances, such as, for instance, an adjacent machine operating at a particular

frequency may drive the structure at that frequency. In this case, the deformed shapes of the structure at

such driving frequencies are called Operational Modes. This means that a crucial requirement of

methods to analyze ambient vibration data is the ability to distinguish the natural structural modes from

any imposed operational modes.

4.1. Description of the vibration equipment

Ambient vibration tests were conducted on the bridge using a sixteen-channel data acquisition system

(Vibration Survey System Model VSS-3000, Kinemetrics, 1997) with nine force-balance uniaxial

accelerometers (model FBA-ES-U, Kinemetrics, 2000). Photographs of the data acquisition and

measurement equipment are shown in Fig. 7.

The sensors, which are capable of measuring accelerations of up to ±0.25 g with a resolution of

Table 1 Stiffnesses of the elastomeric bearings

Elastomeric bearing stiffness

Kx Ky Kz

Bearing Type A 4.8×106 N/m 4.8×106 N/m 14.4×106 N/m

Bearing Type B 1.54×106 N/m 1.54×106 N/m 4.62×106 N/m

Fig. 6 Isometric view of the finite element model of the bridge
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0.1 µg, converted the physical excitation into electrical signals. Each accelerometer was connected to

the data acquisition system using a 100 m long cable. Cables were used to transmit the electronic

signals from sensors to the signal conditioner. The signal conditioner unit was used to improve the

quality of the signals by removing undesired frequency contents (filtering) and amplifying the signals.

The amplified and filtered analog signals were converted to digital data using an 16-bit resolution

analog to digital converter (DaqBook/216 by Iotech Inc.) at a speed of 1000 kHz prior to storing on the

data acquisition computer. The analog to digital converter was controlled by a data acquisition

computer using a custom program called DasyLab version 5.6 by National Instruments (FEMTools

Program Overview 2004). The analog to digital converter is capable of sampling up to sixteen channels

at sampling frequencies between 0.2 Hz and 2000 Hz. Vibration experiments were conducted at a

sampling frequency of 100 Hz with all channels set for a low-pass filter of 40 Hz. Signals converted to

digital form were stored on the hard disk of the data acquisition computer in ASCII form.

4.2. Optimum sensor location

The developed finite element model was transferred to the commercial program FEMTools (2004)

which was then used to simulate the experiments based on pre-defined locations and directions of the

accelerometers. FEMTools, essentially, reduces the finite element model, shown in Fig. 6, into a pre-test

model based on a small number of simulated sensor locations. The program then computes the

frequencies and mode shapes based on this simplified model. The resulting mode shapes are called

Simulated Experimental Mode Shapes (SEMS). In addition, FEMTools computes the frequencies and

mode shapes of the complete finite element model shown in Fig. 6. The resulting mode shapes, called

Finite Element Mode Shapes (FEMS), are then compared with the Simulated Experimental Mode Shapes

in order to determine the effectiveness of the proposed sensor locations to capture the important dynamic

properties of the structure. The correlation between the FEMS and SEMS modes can be quantified using

the Modal Assurance Criterion (MAC) (Allemang and Brown 1982). A MAC value of 100% means

perfect correlation between two vectors, while a 0% value means that the two vectors are completely

uncorrelated.

FEMTools allows the user to create “maps” of zones of the structure sensitive to vibrations, as shown

in Fig. 8. The red and blue colors in the scale shown in this figure indicate, respectively, the zones of

maximum and minimum (or no) vibration in the structure. This information can be used to select the

Fig. 7 Data acquisition system and an example of accelerometer attached to the bridge
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optimal locations where the measuring instruments can be installed. Based on the vibration-sensitive

zones shown in Fig. 8, it was decided to have 40 measurement points on the slab and 9 measurements

points at each of the east and west piers. The center pier was not instrumented because its access was

quite dangerous (see Fig. 1) and the traffic along the highway could not be stopped to access this

location. Based on this sensor configuration, shown in Fig. 9, the MAC values between the finite

element mode shapes (FEMS) and the simulated experimental mode shapes (SEMS) are reported in

Table 2. As depicted in this table, the diagonal terms are 100% and the off-diagonal terms are almost

zero indicating perfect correlation.

Fig. 8 Vibration-sensitive zones in the bridge
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4.3. Planning of the test setups

Fig. 8 shows that the vibrations were more dominant in the vertical (z) direction, followed by the

transverse ( y) direction for the case of the slab, while the vibrations in the piers were mostly in the x-

Fig. 8 Continued

Fig. 9 Sensor locations and directions across the bridge (shown in dark circles)
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direction, although small. As a result, the y and the z-components of the acceleration were measured at

each point on the slab, while the x, y and z-components of the acceleration were measured at each point

on the east and west piers.

Because the number of accelerometers and the number of channels was less than the number of

measurements, the vibration measurement campaign was divided into 25 test setups, each lasting 10

minutes with a sampling frequency of 100 Hz. Each setup consisted of reference accelerometers which

remained in their position throughout the campaign and the remaining sensors were moved to cover all

Table 2 MAC values between the finite element mode shapes and the simulated experimental mode shapes (in
percentage)

Finite element mode shapes(FEMS)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90

2 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 2.60 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40

8 0.00 0.00 0.00 0.00 0.00 0.20 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.40 0.60 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 100.00 0.00 0.70 0.00 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.00 100.00 0.50 0.00 0.00 0.00

12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.50 100.00 0.10 0.00 0.00

13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 100.00 0.10 0.00

14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.10 100.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Fig. 10 Sample of acceleration measurement in the z-direction
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the measurement points. As shown in Fig. 9, three reference sensors were placed at measurement point

No. 8 on the slab, selected in the zone of maximum vibration (Fig. 8c) to measure the acceleration in

the x, y and z directions. The remaining measurement points, where the roving sensors were placed, as

shown in Fig. 9. A sample of acceleration measurement in the z-direction is shown in Fig. 10.

4.4. Modal signature identification

The complex non-stationary nature of the unmeasured excitation requires the use of robust output-

only modal identification techniques such as the Enhanced Frequency Domain Decomposition method

(Brincker and Andersen 2000, Van Overschee and Moor 1996) and the Stochastic Subspace

Identification methods (Brincker, et al. 2000). These methods were recently applied successfully to

buildings and bridges (Brinker and Andersen 2000, Brincker, et al. 2000). These techniques are

available in the program ARTeMIS (2004). In the present study, the Enhanced Frequency Domain

Decomposition (EFDD) technique, which is a refinement of the Frequency Domain Decomposition

(FDD) technique, was applied to extract the modal signature of the bridge.

4.4.1. Description of the FDD and EFDD techniques

The essence of the FDD technique is to perform an approximate decomposition of the measured

system response into a set of responses of independent single degree of freedom (SDOF) systems, one

for each mode. The decomposition is performed by a Singular Value Decomposition (SVD) of each of

the spectral density matrices obtained from the measurements. The results of the decomposition are a

set of singular values and associated singular vectors. The singular values are estimates of the auto

spectral density of the component SDOF systems, and the singular vectors are estimates of the mode

shapes.

The FDD technique involves the following main steps: (a) estimate spectral density matrices from the

measured time series data; (b) perform a singular value decomposition of the spectral density matrices;

(c) if multiple data sets are available, average the singular values from all data sets and display the

results in graphical form; (d) scan the curves of singular values to “peak pick” the frequencies of

interest and estimate the corresponding mode shapes at each frequency of interest using the information

contained in the singular vectors of the SVD.

A further refinement of the FDD, the Enhanced Frequency Domain Decomposition (EFDD) method in

ARTeMIS, uses the modal estimates from the FDD technique to identify the bell-shaped spectral functions of

the SDOFs. From these functions, it estimates additional modal parameters such as modal damping.

4.4.2. Theory of the FDD and EFDD techniques

In the following paragraphs, both the FDD and the EFDD techniques are briefly summarized. The

relationship between the unknown input x(t) and the measured response y(t) can be expressed as

(1)

where Gxx( jω) is the r×r Power Spectral Density (PSD) matrix of the input, r is the number of

inputs, Gyy( jω) is the m×m PSD matrix of the responses, m is the number of responses, H( jω) is

m×r Frequency Response Function (FRF) matrix, and “−” and the superscript T denote the complex

Gyy jω( ) H jω( )Gxx jω( )H jω( )T=
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conjugate and matrix transpose, respectively. The FRF can be written in partial fraction; i.e., the

pole/residue form:

(2)

where n is the number of modes, λk is the pole and Rk is the residue:

(3)

in which Φk and γk
T are the mode shape vector and the modal participation vector, respectively.

Suppose the input is white noise; i.e., its PSD is a constant matrix.

Thus, Gxx( jω) = C and Eq. (1) becomes:

(4)

where superscript H denotes simultaneous complex conjugate and matrix transpose.

Multiplying the two partial fraction and making use of the Heaviside partial fraction theorem, after

some mathematical manipulations, the output PSD can be reduced to a pole/residue form as follows:

(5)

where Ak is the kth residue matrix of the PSD. As the output PSD itself the residue matrix is an

m×m hermitian matrix and is given:

(6)

The contribution to the residue from kth mode is given by:

(7)

where αk is minus the real part of the pole λk=−αk+jωk. As it appears, this term becomes dominating in

case of light damping. It follows that the residue becomes proportional to the mode shape vector:

(8)

where dk is a constant scalar. At a certain frequency ω only a limited number of modes (typically

one or two) will contribute significantly. Let Sub (ω) denote the number of these modes.

Therefore, in the case of a lightly damped structure, the response spectral density can always be

written as:

(9)
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The EFDD technique uses the same technique as the FDD, but also computes the damping ratio. The

response of the system can be expressed with the modal coordinates as follows (Brincker, et al. 2000):

(t) (10)

The correlation function is written as

(11)

From Eq. (10), we can then write

= q(τ)
T (12)

The spectral response which depends on the frequency is written as follows:

( f ) T (13)

The damping ratio ξ is defined as:

(14)

where fc is the frequency at the peaks of power spectral density and f1 and f2 are the frequencies

corresponding to -3dB relative to the peak fc.

4.4.3. EFDD Identification results

Fig. 11 shows the average of normalized singular values of spectral density matrices of all data sets

using the EFDD technique. The singular values in this plot correspond to the detected frequencies.

Table 3 shows the measurement-based estimates of the natural frequencies of the three detected

vibration modes using the EFDD method. This table also shows the natural frequencies computed by
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Fig. 11 Average of normalized singular values of spectral density matrices of all data sets using the EFDD
technique
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the program SAP2000 before updating and the relative error between these frequencies and the

identified test frequencies. The error varies between 3% and 24%, indicating the need to update or

correct the finite element model. This error could have been larger if the finite element model was less

detailed, or the structure had not been adequately modelled. The measurement-based estimates of the

damping ratios identified by the EFDD technique, shown in Table 2, range between 2.08% and 3.69%

which are reasonable values for concrete structures. Figs. 12a, 12c and 12e show the measurement-

based mode shapes identified using the EFDD algorithm for the three detected vibration modes. The

first two modes are flexural modes while the third one is a torsional mode.

5. Finite element and model updating

5.1. Objective of finite element updating

The objective of finite element model updating is to obtain a reasonable correlation between

experimental and numerical modal properties. The parameters selected for the updating were the

concrete modulus of elasticity, the elastomeric bearing stiffnesses and the foundation spring stiffnesses.

The updating consisted of performing a sensitivity analysis of the model stiffness matrix with respect to

changes in these parameters. This translates to taking the derivative of the stiffness matrix with respect

to these parameters.

The updating was performed based on two indicators that were applied simultaneously using the vertical

displacement (z-direction): (a) comparison between computed and measured frequencies; and (b)

comparison between computed and measured mode shapes. The comparison between the frequencies was

estimated using the relative error between the computed and measured frequencies, while the comparison

between the computed and measured mode shapes was evaluated using the MAC criterion (Allemang

and Brown 2004). What follows is a review of the theory related to finite element updating.

5.2. Formulation of finite element updating

Finite element model updating is an iterative procedure performed using the program FEMTools

(2004). The resulting matrix equation is of the form:

(15)

where {∆P}={P}−{P0} in which

∆R{ } S[ ] ∆P{ }=

Table 3 Measurement-based estimates of the natural frequencies and damping ratios using the EFDD technique
and computed frequencies before updating

Mode

Estimated from measurements using 
EFDD Technique Computed frequency

before updating (Hz)
Relative error between measured 

and computed frequency (%)
Frequency (Hz) Damping ratio (%)

1 5.47  2.94 5.70 4.2

2 7.62 3.69 7.85 3.0

3 12.89 2.08 16.04 24.4
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• {P} is a vector containing parameters from the numerical model. For the current case, these

parameters are the Young’s modulus of each element, the stiffness of the elastomeric bearings and

the stiffness of the foundation springs.

Fig. 12 Measurement-based mode shapes identified using the EFDD technique and computed mode shapes
after updating
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• {P0} are the starting values of the parameters.

and {∆R}={Re}−{R} in which

• {R} is a vector containing responses from the model. For the current case, they correspond to the

numerical modes (frequencies) that are paired with the corresponding experimental ones and the

numerical mode shapes.

Fig. 12 Continued
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• {Re} is the vector associated with the reference response test data.

The sensitivity matrix [S] contains the gradients of the responses R with respect to parameters P.

(16)

The updated values of parameters P are obtained from Eqs. (15) and (16):

(17)

where [G] is the gain matrix computed following Bayesian estimation theory as:

(18)

in which [CP] are weighting matrices that express the analyst's confidence in {P0} and the reference

responses test data {Re}.

Iterations are continued until error functions satisfy a convergence criterion.

5.3. Model updating results

Fig. 13 shows the normalized sensitivity for the 796 parameters which are: (a) 712 concrete elasticity

moduli corresponding each to a shell element; (b) 13 elastomeric bearing stiffnesses and 15 foundation

spring stiffnesses in the x-direction; (c) 13 elastomeric bearing stiffnesses and 15 foundation spring

stiffnesses in the y-direction; (d) 13 elastomeric bearing stiffnesses and 15 foundation spring stiffnesses

in the z-direction. It is clear from this figure that the dynamic response of the bridge is more sensitive to

S[ ] Sij
∂Ri
∂Pj
--------= =

P{ } P
0{ }= G[ ] R

e{ } R{ }–( )+

G[ ] CP[ ] S[ ]T CR[ ] S[ ] CP[ ] S[ ]T+( )
1–

=

Fig. 13 Normalized sensitivity of selected parameters
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changes in the concrete modulus of elasticity.

Table 4 shows the test and model frequencies after updating obtained using 40 iterations. The relative

error, which was before updating between 3% and 24% for the first three vibration modes (Table 3),

became less than 6.8% as shown in Table 4. The measurement based mode shapes and computed

updated mode shapes for the three detected modes are shown, respectively, in Figs. 12a, 12c, 12e and

Figs. 12b, 12d, 12f. Table 4 also gives the MAC value between the updated Finite Element Mode

Shapes and the Experimental Mode Shapes which is above 96% for the first two modes and 81% for the

third mode. After updating, the error in the first two frequencies slightly increased at the expense of a

relatively large reduction in the third frequency from about 24% to 4%. The small increase in the first

two frequencies can be explained by the fact that the updating process was performed based on two

indicators that were applied simultaneously, namely comparison of frequencies and comparison of

mode shapes using the MAC criterion.

Table 5 gives the percentage of elements in terms of changes in parameters selected for model

updating. This table indicates that 74.5% of the concrete elements remained intact while the rest of the

elements suffered various degrees of reduction in the modulus of elasticity. Fig. 14 shows a contour plot

of the concrete modulus of elasticity after updating. This figure indicates that most of the reduction in

the concrete elasticity modulus took place in the center pier which, as mentioned in Section 4.2, was not

Elastomeric Bearing Stiffness (Type A) Elastomeric Bearing Stiffness (Type B)

Parameter expressed 
in % of initial value

KxA KyA KzA Parameter 
expressed in % 
of initial value

KxB KyB KzB 

Ratio of number of elements to total 
number of elements (%)

Ratio of number of elements to 
total number of elements (%)

100% 0 100 25 100% 0 100 44.4

100%-150% 100 0 75 100%-150% 100  0 55.6

Table 5 Percentage of number of elements in terms of changes in parameters selected for model updating

Modulus of elasticity (E)

Parameter expressed 
in % of initial value

Ratio of number of elements to 
total number of elements (%)

100% 74.5

80% - 100% 3.4

60% - 80% 2.7

40% - 60% 2.8

20% - 40% 2.5

0% - 20% 14.00

Table 4 Measurement-based estimates of the natural frequencies using the EFDD technique and computed
frequencies after updating

Mode
Measured frequency 

(Hz)
Computed frequency 
after updating (Hz)

Relative error between 
measured and computed 

frequency (%)

MAC between measured 
and computed mode 

shapes (%)

1 5.47 5.10 -6.8 97.9

2 7.62 7.19 -5.6 96.3

3 12.89 12.37 -4.0 81.3
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instrumented because its access was dangerous and the traffic along the highway could not be stopped

to access this location. As a result, the value of 74.5% of the intact concrete elements may be

interpreted as a possible underestimation indicating that the bridge has suffered relatively minor

damage. Table 5 shows that 75% of the elastomeric bearing type A elements suffered an increase in

stiffness in the z-direction compared to 55% for the case of the bearing type B elements. The foundation

spring stiffnesses remained at the same order of magnitude of 1030 N/m indicating that the effect of the

foundation on the dynamic behavior of the bridge was rather insignificant.

6. Conclusions

A rational methodology for the assessment of older reinforced concrete Tunisian bridges was applied

on the Boujnah bridge as an alternative to a visual inspection methodology. This methodology is based

on ambient vibration measurement of the bridge, identification of the structure’s modal signature and

finite element model updating. The modal properties for the first three vibration modes were

successfully identified using the Enhanced Frequency Domain Decomposition technique.

The maximum error between the model and test frequencies before updating reached a value of 24%

which indicated the need to update the finite element model. These errors became less than 6.8% after

updating. Furthermore, a reasonable correlation between the experimental and finite element mode shapes

was obtained at least for the first three vibration modes. The parameters selected for updating were the

concrete modulus of elasticity, the elastomeric bearing stiffnesses and the foundation spring stiffnesses.

The dynamic response of the bridge was shown to be more sensitive to changes in the concrete modulus of

elasticity. Updating results revealed that the bridge has suffered relatively minor damage.
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