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Abstract.  At present, many machine leaning and data mining methods are used for analyzing and predicting 
structural response characteristics. However, the platform that combines big data analysis methods with online 
and offline analysis modules has not been used in actual projects. This work is dedicated to developing a 
multifunctional Hadoop-Spark big data platform for bridges to monitor and evaluate the serviceability based 
on structural health monitoring system. It realizes rapid processing, analysis and storage of collected health 
monitoring data. The platform contains offline computing and online analysis modules, using Hadoop-Spark 
environment. Hadoop provides the overall framework and storage subsystem for big data platform, while 
Spark is used for online computing. Finally, the big data Hadoop-Spark platform computational performance 
is verified through several actual analysis tasks. Experiments show the Hadoop-Spark big data platform has 
good fault tolerance, scalability and online analysis performance. It can meet the daily analysis requirements 
of 5s/time for one bridge and 40s/time for 100 bridges. 
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1. Introduction 
 

According to the 7th Digital Universe report released by EMC in 2014, it is estimated the total 

amount of data in the world will reach 44ZB by 2020, and it will exceed to 8.5 billion TB in China. 

How to use big data methods to fully exploit the value of various data has become a hot topic in 

current research (García-Valls et al. 2018). 

Big data management systems are used in many areas (Jagadish et al. 2014, García-Valls et al. 

2018). Mass data were collected to predict the probability of extreme value generation in structural 

health monitoring (SHM) system (Okasha and Frangopol 2012). Mayo Clinic Healthcare uses a near 

real-time big data platform to simplify the management work, providing great convenience for daily 

operation and maintenance (Chen et al. 2017). Combined with mobile devices, the operation safety 

evaluation system for Chinese subway construction personnel was established (Guo et al. 2015). 
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Since the 1960s, the application of health monitoring systems has received extensive attention 

and implementation. SHM systems have been installed on many infrastructure buildings and bridges. 

The evaluation of bridge service state is mainly based on the structural dynamic response such as 

natural frequency, vibration mode, stiffness and damping. However it is not suitable for local damage 

identification and service performance degradation assessment. The data collected by SHM can 

accurately reflect the structural service status (Memmolo et al. 2018). The evaluation framework of 

serving state for bridge structure can be presented based on the RAMS theory (Zhao et al. 2018). 

How to use machine algorithm combined with SHM data to analyze structural characteristics 

becomes a hot issue (Nick et al. 2015). A variety of machine learning algorithms are used in 

identification of structural damage and component response prediction (Guo et al. 2014, Beltempo 

et al. 2015, Nguyen et al. 2018). Structural damage can be identified using bridge health monitoring 

data combined with machine learning methods (Nick et al. 2015, Cao et al. 2016 and Sayed et al. 

2017). There are some researches evaluate structural dynamic responses based on the reliability and 

life cycle theory (Han 2017) and the correlation between structural vehicle induced vibration and 

vehicle speed (Zhao et al. 2016, Ding et al. 2016, Ding et al. 2017). The genetic algorithm and 

neural network (Zhao et al. 2019) are combined to develop an expert system for bridge damage 

fuzzy evaluation (Furuta et al. 1996). An in-service concrete bridge condition assessment system 

based on expert system was also studied (Kawamura et al. 2003). 

Since the vast data collected by SHM system is increasing day by day, while there are various 

data abnormalities, some machine learning methods have also been introduced into data processing 

(Ding et al. 2018), such as signal denoising filtering (Zhao et al. 2015) and clustering method (Ren 

et al. 2004). For the abnormal processing of structural health monitoring data, deep learning LSTM 

neural network (Liu et al. 2020), compressed sensing (Bao et al. 2012) and combined Bayesian 

compressed sensing (Huang et al. 2016) are used to recover data in wireless sensor networks. The 

structural vibration response data for random deletions is compensated by sparse matrix distribution 

(Yang et al. 2016). Neural networks and support vector machines (Huang et al. 2010) are very 

suitable for nonlinear mapping relationships, so they are more dominant in data complements.  

SHM system has evolved toward intelligent and digital, while the storage of high-speed railway 

bridge health monitoring data remains in an original way. The amount of data daily collected by 

bridge health monitoring sensor can be several GB, while the processing and analysis cannot be 

completed in time. Because of the disconnection between data storage and analysis, most data 

analysis works are still limited in traditional way. Most health monitoring systems can only analyze 

historical data, cannot deal with the real-time monitoring data processing. Although there are some 

work that builds simple cluster based on Hadoop, and analyzes structural response using big data 

methods, few of them can be used in operational bridge monitoring systems. This paper proposes a 

multifunctional Hadoop-Spark big data platform for health monitoring system of Nanjing 

Dashengguan Bridge.    

There are still some main problems in SHM big data analysis: 

(1) The amount of data daily collected by SHM system of one high-speed bridge can be several 

GB, while the data processing and analysis are usually processed once a month. This leads to a delay 

to obtain effective information which reflects the structural service status. 

(2) The sensing system collects multiple monitoring data. There is high-degree of correlation 

among these data, which can be effectively disclosed by data mining over big-data platform. 

(3) Nowadays the storage of high-speed railway bridge health monitoring system data remains 

in a simple compressed form. This is not conducive to rapid data mining and analysis. 

(4) Since most SHM can only analyze historical data, the management and maintenance of 
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infrastructure are still mainly based on operational inspection, which means the real-time bridge 

security warnings cannot be performed. 

(5) There is no integrated safety performance evaluation system based on bridge health 

monitoring data, as the data collection, storage, analysis and application modules are separated from 

each other. The Hadoop-Spark big data platform can bring together all the modules building a 

systematic and structured bridge safety performance evaluation system. 

 

 

2. Key points in big data platform for SHM system 
 

  In order to solve the problem of analysis delay and data storage in SHM system, big data 

platform needs several modules which take charge of massive data storage, fast computing, deep 

computing and online analysis. Currently most big data platforms are built on Hadoop clusters. 

Hadoop is an Apache open-source software framework written in Java language for distributed 

storage and distributed processing. It provides solutions for big data processing and analysis (White 

2012). The basic computing framework of Hadoop is MapReduce, while it is not suitable for big 

data platform for SHM system. Therefore, selecting applicable components for computing 

framework, data storage module, and real-time processing module is very necessary.  
 

2.1 Computing framework selection 
 
Building a big data platform requires suitable framework environment (Zhang et al. 2019). 

MapReduce and Spark are commonly used parallel computing frameworks. Apache Hadoop and 

Spark platform are used in the advanced traffic management system (Praveen et al. 2020). The 

MapReduce framework can realize many functions including distributed storage, job scheduling, 

load balancing, fault-tolerant balancing, and processing in parallel programming, helping to achieve 

batch processing of massive amounts of data. The MapReduce task contains five steps: input, split, 

map, shuffle, and reduce (Fig. 1). However, it can only supports Map and Reduce operations. The 

operation principle of distributed system is shown in Fig. 2. After the client submits task job, it is 

divided into multiple tasks running on several data nodes. Job tacker runs on NameNode and is 

responsible for coordinating tasks running on different DataNodes based on the feedback 

information from Task Tracker. After each processing, data sequence must be written into the 

distributed file system. The exchange of data through HDFS will lead to a lot of IO operations, which 

may cause the inability of making full use of computer memory. At the same time, MapReduce does 

not apply to iterative calculations, interactive and streaming processing. 

Spark is an open source universal distributed memory computing framework on UC Berkeley 

AMP Lab. The analysis speed is 10-100 times faster than MapReduce. Spark Core is the core of 

computing framework, and it has four main modules (Fig. 3): Spark-SQL, Spark-Streaming, MLlib, 

and GraphX. SparkSQL is a module for processing structured data; Spark-Streaming is used for 

streaming data analysis; MLlib is a Spark machine learning library, providing machine learning 

algorithms for models; GraphX is a module for graph calculation and mining. Spark provides Cache 

mechanism to support multiple iterations of calculation and data sharing. It can reduce the IO 

overhead of data reading, and store intermediate results in memory as much as possible, which 

greatly improving computational efficiency. 
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Fig. 1 Flow chart of MapReduce 

 

 

 

Fig. 2 Distributed system processing flow 

 

 

 

Fig. 3 Main components in Spark 

 

 

To figure out the calculation difference between Hadoop MapReduce and Spark computing 

frameworks, we did the Word Count Program test. The task aim is to count the word frequency in 

1GB English text file using different computing clusters. We deploy the Hadoop cluster and the 

Spark cluster separated under the same hardware conditions. The test was conducted for ten rounds, 

and the time consumption is shown in Fig. 4.  

We can conclude that:  

1) The average time spent on Hadoop computing framework is seven times than that on Spark 

platform. Although they both have distributed computing frameworks, Spark has a far better 

performance in computing than MapReduce in Hadoop environment.  

2) Because data is distributed, the location of the data has an impact on task execution time, and 

the impact on Hadoop framework is more obvious. Therefore Spark is more controllable in 

computing time than Hadoop when performing large-scale tasks. 

3) Unlike the data processing in Hadoop framework, the Spark framework only reads data once. 

This makes it more suitable for machine learning tasks with multiple iterations. 
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The computing performance comparison between MapReduce and Spark is listed in Table 1. 
MapReduce can support high-fault big data batch processing, but due to the framework limitations, 

intermediate operations require disk IO processing. It is not suitable for iterative computing tasks 

like machine learning. Spark's memory-based computing makes it more efficient, and it has a large 

library of machine learning algorithms which is useful for further analytical modeling. The offline 

data analysis module. In order to achieve a fast analysis of the SHM system, we choose Spark for 

calculation framework, combined with Hadoop environment. 

 

 

 

Fig. 4 Word Count task time consuming for 1GB file 

 

 

 

Table 1 Computing performance comparison of MapReduce and Spark  

 MapReduce Spark 

Advantages 

a) Good scalability: The computational 

performance keeps increasing linearly 

with the number of compute nodes. 

 

b) High fault tolerance: When the calculation 

node is faulty, the task can be 

automatically transferred without manual 

operation. 

a) Good calculation performance: 

Suitable for iterative calculations. 

b) Provide a large number of APIs, 

support Java, Scala, Python, R four 

languages. 

c) It can be used in HADOOP 

environment, read and write HDFS/ 

HBase, and integrate with YARN to 

realize resource scheduling 

Disadvantages 

a) Only MAP and REDUCE operations are 

supported 

b) Low computational efficiency: 

Calculation requires a lot of IO operations 

c) It is not suitable for iterative calculations, 

interactive processing and streaming  

a) High memory consumption: If the 

amount of processed data is too large, 

abnormal conditions such as 

overflow. 
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Fig. 5 Schematic diagram of HDFS 

 

2.2 Distributed data storage 
 

In order to store massive data, a big data management platform for SHM systems needs a 

distributed database and file system.  

 
2.2.1 Distributed file system 
GFS (Google File System), HDFS (Hadoop Distributed File System), Ceph and FastDFS are 

commonly used distributed file systems. HDFS is an open source implementation of GFS and is a 

core subproject of the Hadoop ecosystem. HDFS uses master/slave architecture for data storage, 

which composed of four main parts: Client, NameNode, DataNode and Secondary NameNode. Fig. 

5 shows the system architecture diagram of HDFS.  
Client is a user-oriented terminal, which mainly accomplishes four tasks: 1) file segmentation; 2) 

interaction with NameNode to get file location information; 3) interaction with DataNode to read or 

pass in data; 4) Provide commands for HDFS management and access. NameNode is a cluster 

management, and DataNode executes the commands. The Secondary NameNode is used to assist 

NameNode to share the workload. If an emergency occurs, it can assist to reply to the NameNode. 

In HDFS system, monitoring data is stored in blocks, and in case of malfunction it has a multi-copy 

mechanism. In addition to these basic storage needs, HDFS can also be used for streaming data 

processing. It can unify online data storage and offline data reading paths on the platform, facilitating 

the conversion between real-time online processing and offline analysis modules. 

In conclusion, HDFS has the following two notable features, which makes it suitable for big data 

platform: 

a) High fault tolerance: As a distributed file system, files on HDFS are shared and stored on 

several DataNode servers, while each slice of each file in HDFS clusters can be saved in multiple 

backups (default 3 copies). This specific mechanism guarantees the data storage security. 

b) Convenient file access: HDFS provides a unified directory tree to locate files. Client only 

needs to specify the directory tree path when accessing the file, without getting the specific file 

physical location. 
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Fig. 6 Information release subscription mode 

 
 
2.2.2 Distributed database 
Distributed database is built on distributed files system providing storage function for massive 

data sources. Relational databases such as Oracle, MySQL, and Microsoft SQL Server are widely 

used in various industries. For big data-based SHM system, distributed relational database clustering 

can be realized through open source middleware. The current widely used database form is NoSQL. 
Its flexible data model can effectively support Web 2.0 applications with powerful horizontal 

scalability (O'Connor et al. 2016). A typical NoSQL database contains four types: key-value 

database, column family database, document database, and graphical database. Among them, the 

column family database HBase is more suitable for SHM massive data storage. 

HBase has these characteristics: 

1) Large capacity: A table can have hundreds of millions of rows, millions of columns. 

2) Column-oriented: It has list-oriented (cluster) storage and access control and column (cluster) 

independent retrieval. 

3) Sparse list: Because empty columns do not take up storage space, tables can be very sparse. 

4) No specific mode: Each row has a primary key and any number of columns. Columns can be 

dynamically added as needed. Different rows in the same table can have distinct columns. 

5) Single data type: The data in HBase is a string, there is no specific type. 

To sum up, different distributed databases or files can be selected according to different platform 

storage requirements. Since the data collected by SHM system is structured with a clear naming and 

storage format, HDFS with high reliability, scalability and fault-tolerance system can meet all the 

needs. HDFS uses a master/slave architecture for data storage.  

 

2.3 Real-time processing implementation 
 

In order to solve the problem of traditional monitoring data processing lag, it is necessary to 

implement online analysis on big data platform. The real-time processing module can realize the fast 

reading and analysis of data. It contains data caching and streaming calculations. 

 

2.3.1 Real-time data caching 
The data cache is implemented by publishing the message queue of the subscription mode. The 

publishing subscription mode is shown in Fig.6. This mode provides flexible control of data. The 

producer inputs instant data into the queue, then the consumer can flexibly acquire data for 

reprocessing. 
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Table 2 Cache performance comparison among Kafka, RabbitMQ and Redis 

 Kafka RabbitMQ Redis 

Characteristics 

a) High throughput, low 

latency: It can process 

massive messages per 

second with a latency of at 

milliseconds; 

b) Scalability: Kafka clusters 

support hot expansion; 

c) Persistence reliability: 

Messages are persisted to 

local disk and data backup 

can prevent data loss; 

d) Fault tolerance: It allows 

nodes in clusters to fail; 

e) High concurrency: It 

supports thousands of clients 

to read and write 

simultaneously. 

a) Reliability: It uses 

transmission confirmation 

and release confirmation 

to ensure reliability; 

b) Flexible routing: 

Messages rout through 

Exchange before message 

enters the queue; 

c) High availability: queues 

can be mirrored on 

machines in the cluster; 

d) Multiple protocols: It 

supports multiple message 

queue protocols, such as 

STOMP, MQTT. 

a) Provide several 

data types such as 

list, set, zset, 

hash; 

b) Support Master-

Slave data 

backup mode; 

c) Support data 

persistence: Cash 

data can be 

loaded again 

when restarting. 

 
Table 3 Real-time processing performance comparison 

 Spark-Streaming Storm 

Real-time 

Small batch processing: Generate batches according 

to interval duration. The general processing time is 

between 0.5s and 2s. 

Fully real-time processing, 

triggering a calculation by 

entering one data. Its minimum 

delay is 100ms. 

Throughput 

capacity 

Comparatively large: the batch throughput is higher 

than the calculation of real-time triggering. It uses 

mobile computing module, not mobile data. 

It is slightly worse than Spark-

Streaming. It uses mobile data 

instead of mobile computing 

module. 

Fault 

tolerance 

mechanism 

Transform logic by storing RDD mode: If the data is 

calculated incorrectly from the A data set to the B 

data set, since there is a calculation logic of A to B, 

it can be recalculated directly from A to generate B. 

Acker (ack/fail message 

confirmation mechanism) 

confirmation mechanism ensures 

that a tuple is fully processed 

 

 

Kafka, RabbitMQ, and Redis components can both cache real-time data, the cache performance 

differences between them is shown in Table 2. Compared to other components, Kafka is lightweight, 

high-throughput, low-latency, high-scalability, and long-lasting. At the same time, it can also match 

Spark-Streaming and Storm, which makes it very suitable for SHM big data platform. 
 

2.3.2 Real-time processing 
At present, the main real-time processing modules are Spark-Streaming and Storm. Their real-

time processing performance characteristics are shown in Table 3. Storm clusters can only be used 

for real-time calculations, mainly for pure real-time processing scenarios. Spark-Streaming is a main 

part of Spark. Spark provides a unified solution for real-time computing on clusters, such as 

streaming computing, graph computing and machine learning. 
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Fig. 7 Framework of big data platform 

 

 

3. Development of Hadoop-Spark based big data platform 

 
3.1 System design 

   
In order to meet actual application requirements of big data platform, it is necessary to select 

appropriate functional modules to implement data storage and analysis functions in Hadoop cluster 

(Landset et al. 2015). Multifunctional Hadoop-Spark big data platform for high-speed railway 

bridges proposed in this paper contains the following components: 

(1) Distributed file storage system: HDFS; 

(2) Resource scheduling and management system: YARN; 

(3) Distributed computing framework: Spark; 

(4) Real-time stream computing framework: Spark Streaming; 

(5) Distributed coordination service: Zookeeper; 

(6) Relational Database: MySQL. 

The overall framework of big data platform is shown in Fig.7. It consists of two parts, model 

generation (offline data analysis) and model uses (online data analysis). The model generation 

module mainly analyzes the historical data. Spark reads data into memory for analysis and modeling, 

then generates early warning model, while data are stored in the HDFS distributed file system. The 

model usage module mainly processes real-time bridge monitoring data and performs early-warning 

analysis. Real-time data first enters into Kafka cache, and then Spark-Streaming reads data and 

processes them. At the same time, Spark-Streaming can read the model generated by Spark for 

bridge warning decision. This framework makes full use of historical data analysis results and 

combines online and offline modules well. 

The overall architecture of big data platform machine is shown in Fig. 8. The machine is divided 

into three parts: 1) data storage and analysis cluster, 2) Kafka cache cluster and 3) data display cluster. 

The data storage and analysis cluster mainly installs Hadoop and Spark components. It can realize 

data storage and analysis functions (Spark-streaming component can realize real-time data stream 

processing); Kafka cluster implements data caching function; the data display cluster is a WEB 

daemon for data display.  

In terms of data storage module, data collected by health monitoring system of high-speed 

railway bridge is structured with a clear naming and storage format. Hadoop distributed file system  
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Fig. 8 Schematic diagram of machine architecture 

 

 

(HDFS) with high reliability, scalability and fault-tolerance system can meet all the storage needs. 

In HDFS system, monitoring data is stored in blocks, and the multi-copy mechanism is used in case 

of malfunction. In addition to these basic storage needs, HDFS can also be used for streaming data 

processing. It can unify the online data storage and offline data reading path on the platform, 

facilitating the conversion between real-time online processing and offline analysis modules. 

 

3.2 Early warning module design 
 

To handle the big data collected by high-speed railway bridge health monitoring system, a real-

time intelligent early warning method based on steaming data is proposed. The Hadoop-Spark big 

data platform mainly relies on Spark for real-time data analysis, and a circular parallelized Spark 

task chain is formed (Fig. 9). It consists of four steps: (1) data cache in Kafka; (2) data preprocessing 

in Spark-Streaming; (3) safety warning: Calculate the predictive model of real-time data and 

compare it with the stored warning thresholds in Spark-Streaming; (4) Data storage. Store all the 

efficient cleaned data and calculation results in HDFS. The whole process is continuously cycled in 

the platform according to set processing interval. It breaks the original sequential analysis and 

realizes the parallelization of Spark task chain and significantly reduce calculation analysis time. 

 

 

4. Experimental verification 

 
The big data platform for health monitoring systems has high requirements in terms of safety, 

stability, scalability, and timeliness of response: 

(1) Good scalability to store and analyze massive data collected every day; 

(2) Durable stability to provide sufficient storage space to support multi-class data analysis 

requirements in big data platform; 

(3) The simple query response time of big data platform should be in the order of seconds, and  
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Fig. 9 Real-time data parallel processing pipeline diagram 

 

 

the average response time of complex data analysis task should be in the order of minutes. 

Based on the previous design, while using the monitoring data of Nanjing Dashengguan Bridge, 

a big data platform is arranged for actual operation management. And the big data platform 

performance was tested through the processing of actual data. 

 

4.1 Overview of the Dashengguan Bridge 

 
Nanjing Dashengguan Bridge is a six-lane high-speed railway bridge across the Yangtze River. 

The Shanghai-Chengdu and the Beijing-Shanghai Line are respectively on upstream and 

downstream sides, while the subway is divided into both sides. The design speed of main line on the 

bridge is 300km/h, which makes it the highest-speed railway bridge in the world. The main bridge 

is 1272 m long and adopts (108+ 192+336+336+192+108) m six-span continuous steel truss arch 

structure. The steel truss arch of the main span is 336 m long and 84 m high, with a ratio of 1/4. The 

whole bridge has installed 116 sensors on 21 sections, monitoring important structural response 

indicators including temperature, wind speed and direction, humidity, strain, deformation and train 

speed. For example, deflection monitoring points are set at 8 sections over the bridge, located in 

each span and at the 1/4 and 3/4 spans of the main span (Fig. 10).  

 

 

 

Fig. 10 Dashengguan Bridge elevation and deflection monitoring distribution 
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Table 4 List of sensors 

Monitoring data category Sensor type Data to be collected 

Environmental load 
Temperature and humidity sensor Temperature and humidity 

Wind speed and direction sensor Wind speed and direction 

Train load 

Speedometer Train speed 

Total station Deflection 

Strain gage Strain of the structure 

Structural response 

Accelerometer Proper acceleration 

Vibroscope Vibration amplitude 

Displacement meter Displacement 

 

 

  
(a) Bridge deflection (b) Ambient temperature 

Fig. 11 Deflection and ambient temperature diurnal curve 

 

 

Table 4 shows the contents of high-speed rail bridge health monitoring sensor system. In addition 

to the basic monitoring projects listed in the table, vehicle and ship collisions, fires, explosions, and 

earthquakes are also needed to be monitored dealing with extreme conditions.  

 

4.2 Experiment environment 

 
The big data platform for health monitoring systems of multiple bridges is deployed in the lab 

LAN environment to ensure the quality of network communication. Hadoop shares a device cluster 

with Spark. The Hadoop cluster is a master node with five storage nodes, while the Spark cluster is 

a master node with five working nodes.  

To test the performance of Hadoop-Spark big data platform, 2.5 million pieces of Dashengguan 

Bridge monitoring data in 2015 were selected to perform temperature effect analysis and prediction  
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Table 5 Machine configuration of Hadoop-Spark clusters and Kafka clusters 

 Hadoop-Spark clusters Kafka clusters 

Software version Hadoop 2.6.0-CDH5.7.0, Spark 2.3 Kafka 0.9 

Computer 

Master 

node 

CPU: Quad-core processor 

with 2.1GHZ 

Memory size：16GB 

Hard disk：500GB 

Quantity：1 

Operating system：Ubuntu 

14.04 

CPU：Quad-core processor with 

2.1GHZ 

Memory size：2GB 

Hard disk：500GB 

Network card：Marvell Yukon 

88E8057 PCI-E Gigabit Ethernet 

Controller 

Quantity：3  

Operating system：Ubuntu 14.04 

Slave 

node 

CPU：Quad-core processor 

with 2.1GHZ 

Memory size：8GB 

Hard disk：500GB 

Quantity：5  

Operating system：Ubuntu 

14.04 

Switch 

Model：Cisco SF90D-16 

Configuration Information：16-Port 

10/100 Mbps Ethernet Switch 

Quantity：1  

None 

 

 

over the whole bridge. Experiments examine the fault tolerance, scalability, online analytical 

performance, and the differences between big data platforms and stand-alone computing. 

Structural temperature effect analysis is an important part of the study of bridge structure 

response characteristics. The diurnal curve of the mid-span section vertical deflection exhibits 

distinct sinusoidal characteristic, which is consistent with the trend of environmental temperature. 

This indicates a strong correlation between environmental temperature and main span vertical 

deflection (Zhao et al. 2019). In addition, the daily variation curve of vertical deflection has intensive 

fluctuations caused by traffic from 7 to 22 o'clock during high-speed train operation. Regression 

analysis and early warning analysis can be performed while analyzing the structural temperature 

effects. Therefore the temperature effect analysis of deflection field of Nanjing Dashengguan Bridge 

was selected to test the performance of the Hadoop Spark big data platform. 
 

4.3 Offline computing performance comparison: Hadoop-Spark vs. stand-alone Python 
 

The experiment implements the machine learning algorithms on Hadoop-Spark and Python 

respectively. In order to ensure uniform device configuration in this experiment, Spark adopts the 

independent cluster mode, while the Python program is executed on master node of Spark cluster. 

Since the scikit-learn based Python program is not a distributed computing framework, it needs 

longer computation time. In the decision tree regression test, Spark framework takes about half the  
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Fig. 12 Average time-consuming comparison of 2.5 million dataset regression tasks 

 

 

time of Python calculations. While in more complex tasks, random forest and Gradient Boost Tree 

(GBT) regression, Spark is respectively 10 times and 6 times faster than Python. It can be seen that 

big data platform has the advantage of fast and stable parallel processing compared with ordinary 

stand-alone computing. The big data platform gets rid of the stand-alone computing method, and 

greatly shorten computing time and improved computing efficiency by establishing device clusters. 

In this way, short-period data processing can be realized and the problem of data delay analysis in 

health monitoring system can also be solved. 
 

4.4 Fault tolerance experiment 
 

The big data platform of health monitoring systems of multiple bridges requires unified 

centralized collection, management, analysis and early warning for a number of high-speed railway 

bridges across the country. The monitoring data collected every day by multiple bridges can be 

several TB. It means the platform needs to be very stable. Therefore, the fault tolerance performance 

should be tested. The platform nodes downtime experiment uses temperature response linear 

regression of measuring points all over the bridge. Fault-tolerant experiments are divided into two 

types: fault tolerance of computing nodes and management nodes. Then compare two experiences 

results. If the results are the same whether the platform computing nodes is down or not, it indicates 

the big data platform is fault-tolerant and can meet daily operation requirements. 

During the node fault tolerance experiment sequentially add one computing node into down state 

in the second, fourth, and seventh rounds. The results show:  

(1) Hadoop-Spark big data platform can get the same results during downtime. 

(2) The first round of training is time consuming due to computing environment initialization and 

data preprocessing. 

(3) In the second, fourth and seventh rounds, one computing node is sequentially added into down 

state. Due to the need for data recovery through the replica mechanism and fault-tolerant recovery 

of Spark computing tasks, the time spent on the same task after downtime is significantly increased. 
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Fig. 13 Fault tolerance experiment 

 

 

 

Fig. 14 Average time-consuming of random forest regression tasks for different data sets 

 

 

(4) As the number of compute nodes decreases, the calculation time increases. It proved that the 

speed of distributed parallel processing is much faster than single machine processing under the 

same hardware configuration conditions. In distributed environment, the execution speed of large-

scale tasks can be improved by expanding clusters sizes. 
 

4.5 Scalability experiment 

 

The experiment builds a simulated real-time input environment and creates data sets of different 

sizes based on 6.99 million pieces of health monitoring data from June to October 2015. According 

to statistics, the annual monitoring data of Dashengguan Bridge does not exceed 40 million, so the 

experimental data scale is larger than the annual data volume of one single high-speed railway bridge.  
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Table 6 Correspondence between data volume and storage space 

Data Size / Million 2.5 5 10 20 40 

Storage Space / GB 0.81 1.62 3.25 6.5 13 

 

 

In this experiment, data were used to perform random forest regression task on temperature effect 

analysis of bridge deflection field. There are 9 measuring points in the whole bridge, which means 

one specification of data in the experiment needs to be calculated 9 times. The average time 

consumption of different data amounts is shown in Fig. 14. 

The result shows that there is a significant positive correlation linear relationship between data 

size and regression task time. When data size is 40 million, the model training takes about 17 minutes 

and the deflection prediction task of whole bridge takes 154 minutes, which is acceptable for large-

scale offline data analysis of high-speed railway bridges. The relationship between data size x and 

average time consumption y under current equipment cluster conditions is defined as: 

y = 0.2519x + 20.375                          (1) 

Its coefficient of determination R2 is 0.9988. With the goal of predicting the whole bridge 

deflection field within 24 hours, the average consuming time of one-predictive model task is limited 

to 9600 seconds according to this linear model, while the platform can complete an analysis task for 

a 3.8 billion data set. The calculation time can shorten by adjusting the startup parameters in Spark, 

improving or extending hardware configuration of cluster. It shows the Hadoop-Spark big data 

analysis system has good scalability performance. 

Today, the big data frameworks pose new challenges in terms of real-time data storage and 

processing. Creating a robust platform to serve such infrastructures with minimum hardware or 

software failures is a key challenge (Chouliaras et al. 2019). The scalability of the big data platform 

is the guarantee for massive data storage in SHM system. It changes the traditional single mode of 

relying on compressed data and hard disk storage. At the same time, the storage capacity and stability 

of the big data platform are enhanced by allocating storage tasks through hardware clusters. 

 

4.6 Online performance test 
 

The Hadoop-Spark big data platform real-time analysis tasks include: 1) data source read-in, 2) 

data pre-processing, 3) reading prediction models, 4) real-time safety warning, 5) warning results 

and data storage. According to previous big data platform structure design, the pre-processed data is 

stored into HDFS, and the results of online safety warning are saved to the MySQL database. 

(1) Kafka's cache performance 

The Kafka cache system is the guarantee of the collected data successfully be read into real-time 

analysis system. Assuming there are 100 bridges health monitoring systems simultaneously 

collecting data and transmitting to the Hadoop-Spark platform, every bridge creates one piece of 

information, than collect the consuming time for Kafka to read in 100 pieces information. The 

average time of 10 rounds of testing is 0.038 seconds, which is much less than the data acquisition 

time of 1s. This means the platform can meet the data reading requirement of 100 bridges 

simultaneously at 1 Hz. 
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(a) (b) 

Fig. 15 Spark-Streaming computing performance: (a) One bridge at 5s intervals, (b) 100 bidges at 40s 

intervals 

 

 

(2) Real-time analysis performance of Spark-Streaming 

In order to test the analysis performance of Spark-Streaming, the simultaneous analysis test of 

one bridge and 100 bridges was carried out based on the temperature effect analysis of the deflection 

field. When analyzing one single bridge, the data set containing all monitoring data is generated 

every second, and the current experimental conditions support microbatch analysis at 5-second 

intervals. When the analysis target is expanded to 100 bridges, the platform needs to accept 

information from 100 different data sources simultaneously, it can perform small batch analysis at 

40 second intervals. Based on the above two cases, the platform is tested in 10 rounds of real-time 

analysis. The results is shown in Fig. 15. The average time for real-time analysis of 10 rounds for 

one bridge is 4.15 seconds, while the average time for 100 bridge is 38.68 seconds. In both 

experiments, the processing time of real-time data is smaller than the interval of small batch 

processing. It shows the configuration of Hadoop-Spark big data platform can meet the real-time 

analysis requirements. Meanwhile some methods can be adopted to shorten the interval time of small 

batch processing, such as expanding the scale of distributed system and improving the hardware 

configuration of cluster. 

In summary, the performance of the Hadoop-Spark big data platform has been tested and 

confirmed that it can meet operational conditions. In terms of distributed computing, the 

computational speeds of two distributed frameworks, Spark and Hadoop MapReduce, are compared. 

The result shows Spark has obvious advantages compared with Hadoop MapReduce. Then we 

compare the modeling speed of Spark and Python by using machine learning multiple iteration 

analysis. Compared to the current popular Python language programs, Spark still has a great 

advantage in the computing speed. Two levels of experiments have been conducted on the online 

analysis performance, indicating that Spark Streaming has good micro-batch processing capabilities 

to meet all the real-time data processing needs based on machine learning methods. Considering all 

the computing needs, the Spark distributed computing framework is chosen as computing engine. 

Combined with Spark Streaming for streaming data, the Hadoop-Spark big data platform can meet 

current offline analysis and real-time analysis requirements. 
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5 Conclusions 

 

This paper proposes a Hadoop-Spark platform based on Dashengguan Bridge health monitoring 

system. By combining Hadoop and Spark computing frameworks, it can avoid the problem of low 

efficiency and inflexible analysis algorithm design when only using Hadoop computing framework. 

The platform realizes near real-time analysis and off-line analysis of high-speed railway bridge 

health monitoring system. After comparing advantages and disadvantages of various big-data 

technologies and methods, HDFS (Hadoop Distributed File System) is selected for data storage and 

Spark is selected for data modeling when processing off-line data. What’s more, Kafka is chosen for 

data cache and Spark-streaming is chosen for data reading and data processing when dealing with 

real-time data. Finally, through the analysis of data experiment, the established big-data platform is 

superior in the off-line computation performance, real-time online performance, expansibility and 

fault-tolerance ability. It means the big data platform can meet the actual operational needs. 

The big data platform solves the main problems in SHM big data analysis. The hardware cluster 

device architecture meets the data storage requirements and provides a more stable, extensible and 

convenient data storage structure. And it has more convenient and fast computing power than stand-

alone mode, it can realize data analysis in a shorter period and solve the problem of delay analysis 

caused by massive data accumulation. In the traditional SHM system, the data analysis relies on 

manual work. It cannot carry on real-time data analysis, and realize timely safety warning work. To 

solve this problem, the Hadoop-Spark big data platform adopts the online real-time data processing 

module, which can not only complete the real-time data preprocessing but also carry out the 

structural security early-warning analysis. 

Although the Hadoop-Spark big data platform satisfies the basic computational analysis 

functions at this stage, it still needs further structural optimization. The existence and efficiency of 

such a platform is dependent upon the underlying storage and processing engine (Satti, et al. 2020). 

The current preprocessing of bridge health monitoring data still requires manual intervention. More 

algorithms based on big data can be developed in the future to realize fully automatic identification 

and cleaning of abnormal data. In addition, the current safety warning function mainly uses the 

health monitoring sensor system deployed on structure for service performance evaluation and early 

warning work. As our future work, the unstructured regular inspection transcripts and monitoring 

information will be added into the Hadoop-Spark big data platform to assist in structure status 

assessment and build a complete automatic management platform. Furthermore the current safety 

early warning system of high-speed railway bridge mainly focuses on the structural responses. It 

doesn’t include the bridge usability security alert function. So information such as weather and 

hydrological forecast will also be added into Hadoop-Spark big data platform, driving safety 

warnings will be implemented based on these data. 

 

 

Acknowledgements 
 

The research described in this paper was financially supported by the Distinguished Young 

Scientists of Jiangsu Province (No. BK20190013) and the National Natural Science Foundation of 

China (Grants. 51978154 and 52008099). 
 

 

 

362



 

 

 

 

 

 

Big data platform for health monitoring systems of multiple bridges 

References 
 

Bao, Y.Q., Li, H., Sun, X.D., Yu, Y. and Ou, J.P. (2012), “Compressive sampling-based data loss recovery for 

wireless sensor networks used in civil structural health monitoring”, Struct. Health Monit., 12(1), 78-95. 

https://doi.org/10.1177/1475921712462936. 

Beltempo, A., Cappello, C., Zonta, D., Bonelli, A., Bursi, O.S., Costa, C. and Pardatscher, W. (2015), 

“Structural Health Monitoring of the Colle Isarco Viaduct”, Workshop on Environmental Engergy and 

Structural Monitoring Systems, 7-11. https://doi.org/10.1109/EESMS.2015.7175843. 

Cao, B.Y., Ding, Y.L., Zhao, H.W. and Song, Y.S. (2016), “Damage identification for high-speed railway truss 

arch bridge using fuzzy clustering analysis”. Struct. Monit. Maint., 3(4), 315-333. https://doi.org/ 

10.12989/smm.2016.3.4.315. 

Chen, D., et al. (2017), “Real-time or near real-time persisting daily healthcare data into HDFS and 

ElasticSearch index inside a big data platform”, IEEE T. Ind. Inform., 13(2), 595-606. 

https://doi.org/10.1109/TII.2016.2645606. 

Chouliaras, S. and Sotiriadis, S. (2019), “Real-Time Anomaly Detection of NoSQL Systems Based on 

Resource Usage Monitoring”, IEEE T. Ind. Inform., 16(9), 6042-6049, https://doi: 

10.1109/TII.2019.2958606. 

Ding, Y.L., Wang, C., Zhao, H.W., Yue, Q. and Wu, L.Y. (2016), “Vehicle-bridge resonance analysis of 

dashengguan bridge based on vibration acceleration monitoring”, J. Railway Eng. Soc., 33(9), 48-54. 

https://doi.org/10.1061/(ASCE)CF.1943-5509.0000932. 

Ding, Y.L., Zhao, H.W., Deng, L., Li, A.Q. and Wang, M.Y. (2017), “Early Warning of Abnormal Train-

Induced Vibrations for a Steel-Truss Arch Railway Bridge: Case Study”, J. Bridge Eng., 22(11), 

05017011.1-05017011.12. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001143. 

Ding, Z.Y., Mei, G., Cuomo, S., Li, Y.X. and Xu, N.X. (2018), “Comparison of estimating missing values in 

IOT time series data using different interpolation algorithms”, Int. J. Parallel Program., 48(3), 534-548. 

https://doi.org/10.1007/s10766-018-0595-5. 

Furuta, H., He, J.H. and Watanabe, E. (1996), “A Fuzzy Expert System for Damage Assessment Using Genetic 

Algorithms and Neural Networks”, Comput. - Aided Civil Infrastruct. Eng., 11(1), 37-45. 

https://doi.org/10.1111/j.1467-8667.1996.tb00307.x. 

García-Valls, M., Abhishek, D. and Vicent, B. (2018), “Introducing the new paradigm of social dispersed 

computing: applications, technologies and challenges”, Journal of Systems Architecture, 91, 83-102. 

https://doi.org/10.1016/j.sysarc.2018.05.007. 

García-Valls, M., Calva-Urrego, C. and García-Fornes, A. (2018), “Accelerating smart eHealth services 

execution at the fog computing infrastructure”, Future Generation Computer Systems, 

S0167739X17327425. https://doi.org/10.1016/j.future.2018.07.001. 

Guo, J.Q., Xie, X.B., Bie, R.F. and Sun, L.M. (2014), “Structural health monitoring by using a sparse coding-

based deep learning algorithm with wireless sensor networks”, Personal & Ubiquitous Comput., 18(8), 

1977-1987. https://doi.org/10.1007/s00779-014-0800-5. 

Guo, S., Luo, H. and Yong, L. (2015), “A big data-based workers behavior observation in china metro 

construction”, Procedia Eng., 123, 190-197. https://doi.org/10.1016/j.proeng.2015.10.077. 

Han, S.H. (2017), “Optimal safety valuation of high-speed railway bridges based on reliability assessment and 

life-cycle cost concept”, Int. J. Steel Struct., 17(1), 339-349. https://doi.org/10.1007/s13296-014-0165-7. 

Huang, Y., Beck, J.L., Wu, S. and Li, H. (2016), “Bayesian compressive sensing for approximately sparse 

signals and application to structural health monitoring signals for data loss recovery”, Probabilist. Eng.  

Mech., 46, 62-79. http://dx.doi.org/10.1016/j.probengmech.2016.08.001. 

Huang, Y.W. et al. (2010), “Lost strain data reconstruction based on least squares support vector 

machine”, Measurement Control Technol., 29, 8-12. http:// doi.org/10.2991/icacsei.2013.159. 

Jagadish, H.V., Gehrke, J., Labrinidis, A. and Papakonstantinou, Y. (2014), “Big data and its technical 

challenges”, Communications of the ACM, 57(7), 86-94. https://doi.org/10.1145/2611567. 

Jeong, S., Zhang, Y.L., O’Connor, S., Lynch, J.P., Sohn, H. and Law, K.H. (2016), “A NoSQL data 

363

https://doi.org/10.1111/j.1467-8667.1996.tb00307.x
http://dx.doi.org/10.1016/j.probengmech.2016.08.001


 

 

 

 

 

 

Manya Wang, Youliang Ding, Chunfeng Wan and Hanwei Zhao 

management infrastructure for bridge monitoring”, Smart Struct. Syst., 17(4), 669-690. http:// 

doi.org/10.12989/sss.2016.17.4.669. 

Kawamura, K., Miyamoto, A., Frangopol, D. M. and Kimura, R. (2003), “Performance Evaluation of Concrete 

Slab of Existing Bridges Using Neural Networks”, Eng. Struct., 25(12), 1455-1477. 

https://doi.org/10.1016/S0141-0296(03)00112-3. 

Landset, S., Khoshgoftaar, T.M., Richter, A.N. and Hasanin, T. (2015), “A survey of open source tools for 

machine learning with big data in the Hadoop ecosystem”, J. Big Data, 2(1), 1-36. 

http://doi.org/10.1186/s40537-015-0032-1. 

Liu, H., Ding, Y.L., Zhao, H.W, Wang, M.Y. and Geng, F.F. (2020), “Deep learning-based recovery method 

for missing structural temperature data using LSTM network”, Struct. Monit. Maint., 7(2), 109-124. 

https://doi.org/10.12989/smm.2020.7.2.109. 

Memmolo, V., Pasquino, N. and Ricci, F. (2018), “Experimental characterization of a damage detection and 

localization system for composite structures”, Measurement, 129, 381-388. 

https://doi.org/10.1016/j.measurement.2018.07.032. 

Nguyen, C.U., Huynh, T.C. and Kim, J.T. (2018), “Vibration- based damage detection in wind turbine towers 

using artificial neural networks”, Struct. Monit. Maint., 5(4), 507-519. 

https://doi.org/10.12989/smm.2018.5.4.507. 

Nick, W., Asamene, K., Bullock, G., Esterline, A. and Sundaresan, M. (2015), “A study of machine learning 

techniques for detecting and classifying structural damage”, Int. J. Machine Learning Comput., 5(4), 313-

318. https://doi.org/10.7763/IJMLC.2015.V5.526. 

Okasha, N.M. and Frangopol, D.M. (2012), “Integration of structural health monitoring in a system 

performance based life-cycle bridge management framework”, Struct. Infrastruct. Eng., 8(11), 999-1016. 

https://doi.org/10.1080/15732479.2010.485726. 

Praveen, D.S. and Raj, D.P. (2020), “Smart traffic management system in metropolitan cities”, J. Ambient 

Intelligence and Humanized Comput., 1-13. https://doi.org/10.1007/s12652-020-02453-6. 

Ren, D.M., Rahal, I. and Perrizo, W. (2004), “A vertical outlier detection algorithm with clusters as by-

product”, International Conference on Tools with Artificial Intelligence, (2004), 22-29. 

https://doi.org/10.1109/ICTAI.2004.22. 

Satti, Fahad Ahmed, et al. (2020), “Ubiquitous Health Profile (UHPr): a big data curation platform for 

supporting health data interoperability”, Computing, 1-36. https://doi.org/10.1007/s00607-020-00837-2 . 

Sayed, M.A., Kaloop, M.R., Kim, E. and Kim, D. (2017), “Assessment of acceleration responses of a railway 

bridge using wavelet analysis”, KSCE J. Civil Eng., 21(5), 1844-1853. https://doi.org/10.1007/s12205-016-

1762-0. 

White, T. (2012), “Hadoop: the definitive guide”, O'Reilly Media Inc. Gravenstein Highway North, 215(11), 

1-4. http://dx.doi.org/10.9774/GLEAF.978-1-909493-38-4_2. 

Yang, Y. and Nagarajaiah, S. (2016), “Harnessing data structure for recovery of randomly missing structural 

vibration responses time history: sparse representation versus low-rank structure”, Mech. Syst. Signal 

Pr., 74, 165-182. http://dx.doi.org/10.1016/j.ymssp.2015.11.009. 

Zhang, W.J. and Huang, Y.P. (2019), “Using big data computing framework and parallelized PSO algorithm 

to construct the reservoir dispatching rule optimization”, Soft Computing, 24(11), 8113-8124. 

http://doi.org/10.1007/s00500-019-04188-9. 

Zhao, H.W., Ding, Y.L., An, Y.H. and Li, A.Q. (2016), “Transverse dynamic mechanical behavior of hangers 

in the rigid tied-arch bridge under train loads”, J. Perform. Constr. Fac., 31(1), 04016072. 

https://doi.org/10.1061/(ASCE)CF.1943-5509.0000932. 

Zhao, H.W., Ding, Y.L., Geng, F.F. and Li, A.Q. (2018), “RAMS evaluation for a steel-truss arch high-

speed railway bridge based on SHM system”, Struct. Monit. Maint., 5(1), 79-92. https:// 

doi.org/10.12989/smm.2018.5.1.079. 

Zhao, H.W., Ding, Y.L., Li, A.Q., Ren, Z.Z. and Yang, K. (2019), “Live-load strain evaluation of the 

prestressed concrete box-girder bridge using deep learning and clustering”, Struct. Health Monit., 

147592171987563. https://doi.org/10.1177/1475921719875630. 

Zhao, H.W., Ding, Y.L., Nagarajaiah, S. and Li, A.Q. (2019), “Longitudinal displacement behavior and girder 

364

https://doi.org/10.1080/15732479.2010.485726
https://doi.org/10.1007/s00607-020-00837-2
https://doi.org/10.1007/s12205-016-1762-0
https://doi.org/10.1007/s12205-016-1762-0


 

 

 

 

 

 

Big data platform for health monitoring systems of multiple bridges 

end reliability of a jointless steel-truss arch railway bridge during operation”, Appl. Sci., 9(11), 2222. 

http://doi.org/10.3390/app9112222. 

Zhao, L. and Yin, A.J. (2015), “High-order partial differential equation de-noising method for vibration 

signal”, Math. Method. Appl. Sci., 38(5), 937-947. https://doi.org/10.1002/mma.3119. 

 

 

TY 

365




