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Abstract.  This paper presents the results of an experimental investigation on a vibration-based damage 
identification framework for a steel girder type and a truss bridge based on acceleration responses to 
operational loading. The method relies on sensor clustering-based time-series analysis of the operational 
acceleration response of the bridge to the passage of a moving vehicle. The results are presented in terms of 
Damage Features from each sensor, which are obtained by comparing the actual acceleration response from 
the sensors to the predicted response from the time-series model. The damage in the bridge is detected by 
observing the change in damage features of the bridge as structural changes occur in the bridge. The relative 
severity of the damage can also be quantitatively assessed by observing the magnitude of the changes in the 
damage features. The experimental results show the potential usefulness of the proposed method for future 
applications on condition assessment of real-life bridge infrastructures. 
 

Keywords:  damage identification; experimental investigation; railway bridges; time-series analysis; 

operational acceleration response 

 
 
1. Introduction 
 

Bridges are a critical component of any railway transportation infrastructure network. In addition 

to approaching the design life span, these bridges are affected by degradation caused by natural 

disasters like earthquakes and other environmental effects like extreme temperature changes, 

corrosion, etc. Moreover, these bridges are continuously subjected to increasing operational demand 

in terms of axle loads and operational frequency. A combination of both natural and human-induced 

effects could result in degradation of the performance of bridges due to structural damage. If these 

damages are not detected at a reasonably early stage, it could culminate in the catastrophic failure 

of bridges. Therefore, it is of utmost importance that these bridge infrastructures are monitored for 
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signs of damage.  

Damage detection is a critical component of SHM. In the context of infrastructures, it refers to 

the identification of the structural changes that could adversely affect the structure. A detailed review 

of civil infrastructure SHM applications and associated damage detection methods can be found in 

Brownjohn et al. (2004). The condition of bridges is mostly assessed through visual inspections and 

non-destructive testing, which could be inconsistent in its findings depending on the level of 

expertise of the investigators. Also, these methods are usually not suitable for continuous monitoring 

without interrupting bridge operations. Therefore, there is a need for extensive research on 

developing SHM methods for railway bridges (Moreu et al. 2012, Kim et al. 2014). Researchers 

have been focussing on developing various damage detection methods based on vibration data 

analysis to assist the current on-site inspection strategies. Several researchers have reviewed and 

developed concepts of damage detections and condition assessment during the past decades for 

different bridge-type structures. As a result, various SHM concepts based on different parametric 

and non-parametric damage detection techniques were developed to enhance the existing 

capabilities for condition assessment of bridges (for example, Meherjo et al. 2008, Scianna and 

Christenson 2009, Lu and Liu 2011, Moaveni et al. 2012, Catbas et al. 2012, Scott et al. 2013, You 

et al. 2015, Sadhu et al. 2015, etc.).  

Most of the researchers working on the SHM of railway bridges have focused on the numerical 

and experimental simulation of girder and truss bridges. In 2012, a wavelet transformation-based 

damage detection method was proposed by Beskhyroun et al. (2010). They used the dynamic 

response of a steel railway bridge to actuator-applied excitation as the data for wavelet 

transformation. In their study, the damage is detected by comparing the damage indicator under 

baseline and damaged conditions. While the methodology is successful in detecting and locating 

damage, it is not suitable for continuous maintenance under operational conditions. A train induced 

bridge acceleration response-based damage detection method has been developed by (Zhan et al. 

2011). The researchers demonstrated damage identification in terms of response sensitivity matrices 

which are updated using an iterative procedure to locate and quantify the damage in railway bridges. 

The method compares the existing bridge response to the damaged response and can detect and 

locate damage to the bridge. It is only effective when the same train at the same speed is used for 

measuring the response at the undamaged and damaged state. Bowe et al. (2015) proposed a damage 

detection method using the analysis of vehicle accelerations resulting from the train-track-bridge 

interaction. The response was obtained from accelerometers mounted on the train itself. Using a 

wavelet transform-based technique, this method can detect and locate the damage in terms of the 

change in pseudo frequency. However, the method is not as efficient in the presence of noise. In 

another study, a damage detection strategy for railway bridges based on artificial neural networks 

(ANN) was developed by Gonzalez and Karoumi (2015). The study used bridge acceleration data 

as the primary input and proposed a damage indicator based on the prediction error of the ANN 

system. However, one limitation of their study is that a simply supported beam is represented as a 

railway bridge while a real-life railway bridge is a complex structure. The method is also limited in 

the sense that, to ensure accuracy, the train load’s position and speed need to be known by the bridge 

weigh-in-motion system. Moreu et al. (2015) conducted extensive tests on real-life timber railway 

bridges and collected vertical and transverse displacements. The study suggested that transverse 

displacement could assist in the condition assessment of railway bridges. However, displacement 

values are affected by train speed, direction, and train-track-bridge interaction in addition to 

structural changes. Therefore, the presence of damage and its location, may not be discernible using 

the analysis of operational displacement data. Farahani and Penumado (2016) proposed a damage 
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feature based on the ratio of the standard deviation of the prediction error of the damaged bridge to 

the healthy bridge. This method used velocity response to impact loading on a steel girder bridge. 

While the methodology is encouraging, damage localization is still an issue, especially when data is 

contaminated by noise. George et al. (2017) discussed an energy-based method to detect damage in 

train under train traffic load by comparing the normalized signal energies of the vertical acceleration 

response of the healthy and damaged bridge. At present, the method is only able to detect the 

presence of damage. Various other damage detection methods for girder and truss bridges have been 

presented in the literature (examples include research conducted by Kopsaftopoulos and Fassois, 

2010, Wang et al .2012, Kim et al. 2014, Siriwardena 2015, Azim and Gül 2020a, b, etc.). 

It is acknowledged that major improvements have indeed occurred towards developing useful 

vibration-based health monitoring strategies for railway bridges in recent years. However, most of 

these methods are successful in identifying the existence of damage which is level 1 damage 

detection according to Rytter (1993). These do not completely address the issues such as detecting 

and locating local damage (Level 2 damage detection), countering the effects of noisy data exhibiting 

false positive or negative damage, and accounting for operational variability. This is not adequate 

for bridge monitoring considering that bridges (especially truss bridges) usually have too many 

elements and information on the location of the damage is important. The authors in their previous 

studies have utilized times series analysis and proposed acceleration-based methods which are 

shown to be effective in identifying and locating damage in various types of structures (Mei and Gul 

2014, Celik et al. 2018, Do et al. 2019). For girder and truss railway bridges, the authors have 

proposed a damage detection method using sensor clustering-based time series analysis where 

ARMAX models were used to fit acceleration response from multiple sensor clusters for localizing 

and relatively assessing the severity of damage due to stiffness loss with numerical applications only 

(Azim and Gül 2019, Azim and Gül 2020). The major advantage of the proposed method is the 

ability to detect and locate damage in girder and truss elements using operational acceleration data.  

This paper could be considered as a subsequent study of the previous works of the authors (Azim 

and Gül 2019, Azim and Gül 2020c). In this paper, the results of experimental studies conducted on 

two bridge prototypes under the laboratory environment are presented. The goal of this study is to 

demonstrate the performance of the above-proposed method on experimental bridge prototypes. Two 

experimental bridges are fabricated. The first bridge is a simple steel deck bridge and the next one 

is a timber truss bridge with a steel deck. Through the experimental results, it is shown that the 

proposed method can be effective in assessing damage under a laboratory environment.  

 

 

2. Theoretical background 

 

The dynamic responses (accelerations, velocities, and displacements) of a structure are governed 

by the equation of motion (EOM). This equation, with which the linear dynamic response of a 

structure with N Degrees of Freedoms (DOFs) complies with can be written in simple form as Eq. 

(1).  Here, M, C, K represent mass, damping, and stiffness matrices of the system, respectively. The 

vectors, 𝑢, 𝑢 ̇ , �̈�    are displacements, velocities, and accelerations, respectively. The external 

forcing function is denoted by P.  If the free response is considered, Eq. (1) can be simplified to 

obtain a response for the 1st DOF of an N DOF system, �̈�1 as in Eq. (3). 

𝐌�̈�(𝐭) + 𝐂�̇�(𝐭) + 𝐊𝐮(𝐭) = 𝐏(𝐭)                        (1) 
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1 1 1 1 1 1( ) ... ( ) ( ) ... ( ) ( ) ... ( ) 0  i iN N i iN N i iN Nm u t m u t c u t c u t k u t k u t               (2) 

Eq. (2) contains velocity and displacement terms. The time-series model used in the study only 

incorporates acceleration response since in real-life bridges, obtaining velocity and displacement 

responses under a moving train can be very difficult. Therefore, the central difference technique is 

implemented in the 2nd derivative of Eq. (2) to replace the velocity and displacement terms leaving 

Eq. (2) with acceleration response only. Then finally rearranging, Eq. (3) is obtained. The detailed 

derivation of the method is presented in the authors’ previous work (Azim and Gül 2019). 
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Rewriting Eq. (3) for ( )iu t  by subtracting t  from acceleration components on both sides of 

the Eq. (3), finally Eq. (4) is obtained. It can be seen that, for the ith DOF, the sum of jth DOFs is the 

contribution from adjacent DOFs which includes the ith DOF itself for the ( )t t  and the 

( 2 )t t  time-steps. 
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Therefore, a model could be generated to predict the output of the ith DOF by using the DOFs 

adjacent to it. Similar equations can be written for each row and different models can be created for 

each DOF of the structure. Each row of Eq. (4) can be considered as a sensor cluster with a reference 

DOF and its adjacent DOFs. Therefore, different linear time series models can be created to establish 

different models for each sensor cluster and changes in these models can indicate the presence of 

damage along with its location and severity. In this study, time series models are used to fit the above 

dynamic response of a structure. The Auto-Regressive Moving Average with eXogenous (ARMAX) 

input time series model to represent the relationship between input, output, and error terms of a 

system can be written as Eq. (5) 
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where y(t), x(t), and e(t) are output, input, and error terms of the model, respectively. The unknown 

parameters of the model are shown with ai, bi, and di. The model orders are na, nb, and nd. By changing 
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the model orders, different time-series models can be defined.  

In this study, time series model parameters are obtained by the least square error method. Model 

orders are obtained by observing the delay in input and output terms in Eq. (4) and are set as 0 for 

na and 2 for nb. Based on these, the final form of ARMAX mode for the proposed methodology can 

be obtained as shown in Eq. (6). 
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Eq. (6) is used to create different sensor clusters. These models can then be used to extract 

damage related features to identify, locate, and estimate the relative severity of the damage. After 

creating the ARMAX models for both healthy and damaged condition utilizing the sensor clustering 

framework, Damage Features (DFs) are extracted from the ARMAX models. For this study, DF is 

defined as the difference between Fit Ratios (FR). FR is expressed as a normalized root mean 

squared error as shown in Eq. (7) where ym, yp, and ym are measured output, predicted output, and 

mean of measured output data, respectively.  

1
m p

m m

y y
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y y


 



 
 
 
 

                          (7) 

The DF is calculated using Eq. (8). Here, FR1 is the fit ratio of the actual response to the predicted 

response from the ARMAX model for the damaged bridge. FR2 is the fit ratio obtained by fitting the 

damaged actual response to the predicted baseline response from the ARMAX model. When the 

structure is damaged, the ARMAX model based on baseline data cannot fit the damaged data 

adequately enough compared to the ARMAX models based on damaged data due to the changes in 

the structural properties. Therefore, by comparing the differences in values of DFs between different 

DOFs, the presence of damage, its location, and relative severity can be assessed.  

1 2
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100
FR FR
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3. Experimental validation on a simple deck bridge 
 
As part of our experimental investigation plan to validate the proposed method, a simply 

supported slab bridge is considered as shown in Figure 1. The bridge deck is made of hot rolled steel 

W44, which has a yield strength of 250 MPa and ultimate strength of 310 MPa. The modulus of 

elasticity of the steel is 200 GPa. The dimensions of the bridge are as follows: length of 2000mm, 

width of 330 mm, and thickness of 6.35 mm. The bridge is instrumented with three tri-axial wireless 

accelerometers (Brand: Lord Microstrain Sensing (2019), Model: G-Link-200) denoted as N1, N2, 
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and N3 in Fig. 1. These are placed at 1/4th, mid-span, and 3/4th span along the direction of travel. 

Two artificial damage cases are considered. A moving vehicle is used to generate vertical 

accelerations data from the sensors. The vertical acceleration response is collected at a frequency of 

512 Hz. The vehicle is shown in Figure 2. The vehicle is controlled by a motor. By adjusting the 

power transmitted to the motor, the speed of the vehicle can be changed. The sensor cluster system 

is presented in Table 1. Each sensor cluster consists of a reference channel (whose output is predicted) 

and its adjacent channels (which are used as inputs to predict the output of the reference channel). 

As discussed in the theoretical derivation section, the adjacent channels to each reference channel, 

include the reference channel itself. For example, the output of N2 is predicted from inputs from 

adjacent channels N1, and N3 as well as the N2 channel itself (based on the Eq. (4)) which together 

forms one cluster. For this bridge, there are 3 cluster systems.   

 

 

 

Fig. 1 Experimental Setup for the simple bridge under baseline condition 

 

 

 

Fig. 2 Vehicle to induce vibration in the bridge 

 

 
Table 1 Sensor clusters for the simple deck bridge 

Output of the ARMAX model  

(Reference channel) 

Inputs to the ARMAX model  

(Adjacent channels+ Reference channel) 

N1 N1, N2 

N2 N1, N2, N3 

N3 N2, N3 
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(a) 

 
(b) 

Fig. 3 Acceleration response of the bridge from the instrumented nodes (a) total response (b) free response 

after the vehicle passage 

 

 

3.1 Threshold estimation 
 
Initially, the two different configurations of the vehicle are passed over the baseline bridge several 

times. The 1st configuration (Vehicle-1) weighs around 2.5 kg and passed over the bridge at an 

average speed of 0.25 m/s. The 2nd configuration (Vehicle-2) weighs around 3.0 kg and passed over 

the bridge at an average speed of 0.35 m/s. After obtaining the total response, the initial free vibration 

portion of the data when the vehicle is off the bridge are extracted from each experiment. Some 

sample data for the baseline bridge due to the passage of Vehicle-1 is shown in Fig. 3.  

To estimate the threshold DF, considering the operational variation, one set of baseline data from 

Vehicle-1 is compared with 5 sets of baseline data from Vehicle-2. These data sets are then analyzed 

by the proposed sensor clustering-based method. Then fit ratios are obtained by comparing the 

measured data to the predicted data from the method. This results in five different FRs and therefore, 

five different DFs from each of three accelerometers for the baseline bridge. Finally, the maximum 

DF among these 15 DFs is considered as the threshold damage feature which in this experimental 

investigation is found to be 5.40. So, any DF value above 5.40 is expected to imply structural change. 
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(a) 

 
(b) 

Fig. 4 (a) Damage case DC-1 and (b) Damage Features for DC-1 

 
 
3.2 Damage investigation 
 

Two damage cases are considered for experimental validation of the proposed method for the 

simple deck bridge. These are, DC-1: 15% reduction in the cross-sectional area centered at the mid-

span, and DC-2: 30% reduction in the cross-sectional area centered at the 1/4th span along the 

direction of travel. The results for these two damage cases are discussed in sections 3.2.1 and 3.2.2, 

respectively. 

 

3.2.1 Damage features for DC-1: 15% reduction in the cross-sectional area centered at   
the mid-span  

In this damage case, the bridge has a 24.8 mm by 250 mm cut centered at the mid-span at each 

side as shown in Fig. 4(a) so that there is a 15% loss in the cross-sectional area. Vehicle-2 is passed 

over this damaged bridge six times and free acceleration responses are extracted. The analysis results 

for this damage case are shown in Figure 4(b) in which the damaged bridge responses from Vehicle-

2 are compared with the Vehicle-1 data used during threshold estimation. As seen in Fig. 4(b), 

maximum DFs are obtained for N2 (located at the mid-span) with average values of 6.70. The other  
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(a) 

 
(b) 

Fig. 5 (a) Damage case DC-2 and (b) Damage features for DC-2 

 

 

nodes N1 and N3 show average DFs of 2.5 and 3.5, respectively which are below the threshold value 

of 5.4. Based on the values of DFs, it is indicative that damage is present with a likely location 

around the mid-span.  

It is noted that there are some variations in DFs between experiments. For example, for N2, the 

maximum DF is 9.1 for experiment 2 and the minimum is 5.3 for experiment 4. The speed of the 

vehicle varied while passing over the bridge due to the curvature of the deck. Besides, the travel 

paths of the vehicle between experiments were not the same. These two issues could have affected 

the free response of the bridge apart from the actual presence of damage.  

 

3.2.2 Damage features for DC-2: 30% reduction in the cross-sectional area centered at 
the 1/4th span along the direction of travel 

In this damage case, the bridge has a 49.5 mm by 250 mm cut near the 1/4th span as shown in 

Fig. 5(a) so that there is a 30% loss in the cross-sectional area centered at the 1/4th span. Similar to 

the previous damage case, Vehicle-2 is passed over this damaged bridge six times and the 

acceleration response is obtained. The results analyzing this damage case are shown in Fig. 5(b). As 

seen in Fig. 5(b), maximum DFs are obtained for N1 (located near approach span) with average 

values of 18.1. The other nodes N1 and N3 show average DFs of 11.6 and 10.6, respectively. Based 
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on the values of DFs, it is indicative that damage is present with a likely location near the sensor 

installed closer to the approach span, which is consistent with the applied damage. Also, by 

comparing the DFs of this damage case with the previous one, it is seen that the DFs are more than 

two times higher in this case. The average DFs of all the nodes are above the threshold. This is likely 

because this severe damage caused some load re-distribution over the entire bridge. The variations 

between DFs could be attributed to the same reasons discussed in the previous damage case. 

 

 

4. Experimental validation on a truss bridge prototype 
 
The second experimental setup includes a simply supported truss bridge prototype as shown in 

Fig. 6. The total span of the truss is 2 m. The truss elements are cut into rectangular cross-sections 

from SPF (Spruce, pine, and fir) dimension lumber pieces. These are timber pieces made up of 

Spruce, Pine, and Fir woods. The pieces used in this research are graded as “No.2” which are suitable 

for engineering applications such as trusses according to the Canadian Wood Council (CWC 2020). 

The material has a modulus of elasticity of around 8.5 GPa. The dimensions and cross-sectional 

properties are presented in Table 2. The truss elements are bolted to the gusset plates made of same 

dimension lumber pieces using 6.35 mm diameter steel bolts. The bridge deck is made of hot rolled 

steel W44, which has the modulus of elasticity of is 200 GPa. The dimensions of the bridge are as 

follows: 2 m length, 330 mm width, and 6.35 mm thickness.  

 

 

 

Fig. 6 Experimental Setup for the truss bridge under baseline condition 

 

 
Table 2 Truss element section properties 

Truss element Length (mm) Width (mm) Thickness (mm) 

Top and Bottom Chord 500 25 12 

Verticals 300 25 12 

Diagonals 580 25 12 

Cross bracings 350 25 25 
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(a) 

 
(b) 

Fig. 7 (a) Schematic diagram showing the instrumentation of the truss bridge and (b) Enlarged view of the 

sensors V2-L2 on the actual bridge 

 

 

To validate the proposed method, one side of the truss bridge is instrumented with uniaxial 

accelerometers. At each connection, two accelerometers are placed to collect acceleration response 

in both vertical and longitudinal directions as shown in Figs. 7(a) and 7(b). Therefore, in total 12 

uniaxial accelerometers (Brand: PCB Piezotronics (2019), Model: 393A03) are placed on one side 

of the truss bridge. Instrumenting with 12 accelerometers on one side of the truss does add some 

mass to the bridge on that side. However, it does not cause any stability issues for the truss bridge.  

Since the same instrumentation setup is used for both baseline and damaged bridge, there is no 

change in mass due to instrumentation between experiments. The change in mass between 

experiments is only due to the replacement of original truss elements with damaged elements.  

These accelerometers are designated according to the vertical and longitudinal direction (‘V’ and 

‘L’, respectively). The vertical and longitudinal cluster systems are formulated based on the 

assumption that the vertical cluster would identify damage in vertical truss elements while the 

longitudinal cluster would identify damage in the elements aligned in the longitudinal direction.   
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Table 3 Sensor clusters for the truss bridge 

Vertical Sensor Clusters Longitudinal Sensor Clusters 

Output of the 

ARMAX model  

(Reference channel) 

Inputs to the ARMAX 

 model (Adjacent channels+  

Reference channel) 

Output of the 

ARMAX model  

(Reference channel) 

Inputs to the ARMAX 

 model (Adjacent 

channels+  

Reference channel) 

V1 V1, V2, V4 L1 L1, L3, L4 

V2 V1, V2 L2 L2, L4 

V3 V3. V4 L3 L1, L3, L5 

V4 V1, V3, V4, V5 L4 L1, L2, L4, L5, L6 

V5 V4, V5, V6 L5 L3, L4, L5 

V6 V5, V6 L6 L4, L6 

 

 

The vertical and longitudinal sensor cluster systems are presented in Table 3. Similar to the example 

presented for the steel deck bridge, each sensor cluster consists of a reference channel (whose output 

is predicted) and its adjacent channels (which are used as inputs to predict the output of the reference 

channel). Since the output of the reference channels also depends on the input from the reference 

channel, the reference channel is included as part of the adjacent channels that form the sensor cluster 

system. In this truss bridge, for example, the output of vertical sensor V1 is predicted from the inputs 

of V1, V2, and V4. V1 is the output channel itself which is also included as input. V2 and V4 are 

adjacent channels to V1 which are vertically and diagonally connected to V1. Similarly, the output 

of longitudinal sensor L1 is predicted from the inputs of L1, L3, and L4. L1 is the output channel 

itself which is also included as input. L3 and L4 are adjacent channels to L1 which are longitudinally 

and diagonally connected to L1. 

 
4.1 Threshold estimation 

 

Initially, the vehicle is passed over the baseline truss bridge several times as shown in Fig. 8 to 

obtain a few sets of baseline data which include the vibration response during the passage of the 

vehicle and a few seconds of free vibration response. To incorporate variation in vehicle load and 

speed, two-vehicle weight and speed combinations are considered. The 1st configuration is Vehicle-

1 weighing 3.5 kg moving at an average speed of 0.35 m/s. The 2nd configuration is Vehicle-2 

weighing 5.0 kg moving at an average speed of 0.25 m/s.  

To estimate threshold DFs, one set of baseline data in response to Vehicle-1 is compared with 

five sets of baseline data in response to Vehicle-2. For both types of vehicle passage, data sets are 

collected at a frequency of 2048 Hz. These data sets are then analyzed by the sensor clustering-based 

proposed method. Then fit ratios are obtained by comparing the actual data to the predicted response 

from the method for both vertical and longitudinal cluster. Finally, the maximum difference of fit 

ratios among the five different experiments is calculated as the threshold damage feature which in 

this experimental investigation is found to be 5.89 and 2.07 for vertical cluster and longitudinal 

cluster, respectively. So, any DF values above these thresholds are expected to imply structural 

changes that affect the corresponding cluster. 
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Fig. 8 Vehicle passing over the truss bridge deck 

 
 
4.2 Damage investigation 
 

To validate the proposed damage detection method for the truss bridge, two damage cases are 

investigated. These are, DC-A: 33% thickness loss in vertical element between nodes 1 and 2, and 

DC-B: 33% thickness loss in longitudinal element between nodes 2 and 4. 

The results for these two damage cases are discussed in the subsequent paragraphs. The results 

for the damage cases are presented when baseline data in response to the passage of Vehicle-1 is 

compared with damaged bridge data in response to Vehicle-2. 

 
4.2.1 Damage features for DC-A: 33% thickness loss in vertical element between nodes 

1 and 2  
In this damage case, the vertical truss element between nodes 1 and 2 is damaged by reducing its 

thickness from 12 mm to 8 mm resulting in a 33% reduction in cross-sectional area and consequently 

axial stiffness. The Damage Feature (DFs) for the case are shown in Fig. 9 where (a) and (b) 

represent results from the vertical and longitudinal clusters, respectively. From vertical cluster 

analysis, the average DF for V1 is around 31.4 which is almost 3 times higher than the threshold. 

The average DF for V2 is around 12.2 which is also higher than the threshold. The longitudinal 

clusters show that all the DFs are very close to or below the threshold indicating that no damage 

likely in the longitudinal direction. Overall, by observing the DFs of both vertical and longitudinal 

clusters, it can be inferred that damage is present and its likely location is in the vertical members 

between nodes V1 and V2. The results also show that the method can detect and locate damage in 

the vertical element. 
 
4.2.2 Damage features for DC-B: 33% thickness loss in longitudinal element between 

nodes 2 and 4 
In this damage case, the longitudinal truss element between nodes 2 and 4 is damaged by reducing 

the cross-sectional thickness by 33%. The Damage Features (DFs) for this case are shown in Fig.10 
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where (a) and (b) represent results from the vertical and longitudinal clusters, respectively. It can be 

observed that the average DFs for vertical clusters are all very close to or below the threshold value 

indicating that no damage is likely in the vertical system. In the longitudinal system, the highest DFs 

are obtained for L2 and L4 with average values of 3.6 and 3.2, respectively. The average DFs for the 

rest of the nodes are below the threshold. This is indicative of the fact that damage is present, and 

its likely location is in the longitudinal truss element between nodes 2 and 4 with no damage occurred 

elsewhere. 
Fabrication error resulted in differences in elevations between nodes that otherwise are supposed 

to be aligned longitudinally.  Similar to the slab bridge, the speed of the vehicles varied while 

passing over the truss bridge and between experiments due to the curvature of the deck. Besides, the 

travel paths of the vehicle between experiments were not always similar. These issues might have 

influenced the free vibration response apart from the damage itself, which resulted in the variation 

of DFs between experiments. 
 
 

 
(a) 

 
(b) 

Fig. 9 Damage Features (DFs) for DC-A: (a) Vertical Cluster and (b) Longitudinal Cluster 
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(a) 

 
(b) 

Fig. 10 Damage Features (DFs) for DC-B: (a) Vertical Cluster and (b) Longitudinal Cluster 

 
 
5. Conclusions 
 

This paper presents the results of experimental investigations performed based on a novel damage 

identification method for railway girder and truss bridges utilizing bridge acceleration response to 

operational loading. For experimental validation on a girder bridge, a simple steel deck is used. For 

truss bridge, a timber truss has been built which also included a steel deck. A controllable 2 axle 

vehicle is used to simulate vehicle loading. Since the method relies on the comparison of free 

vibration response from the baseline and the damaged bridge due to the passage of a single vehicle, 

it is suited to railway bridges. Trains usually pass over railway bridges following a schedule and 

usually, there is a time gap between each passage of a train. This makes the process of acquisition 

of useful free vibration data for railway bridges convenient, unlike other types of bridges (such as 

highway bridges) where vehicle movements are random and often multiple vehicles pass over the 

bridge at the same time.    
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The results presented in this study show reasonable agreement between predicted and expected 

damage features and demonstrate the potential of the proposed method. It is shown that the time-

series analysis-based method under operational condition can detect and locate damage in the deck 

type bridge using only vertical acceleration response. For the truss bridge, a bi-axial sensor cluster 

system could provide information on damage on vertical and longitudinal elements using vertical 

and longitudinal acceleration responses, respectively. This method is presented for the 

instrumentation plan consisting of bi-axial accelerometers in each joint to facilitate element level 

damage localization. However, it is not practical to instrument all the joints especially if the bridge 

span is long. In such a situation, element level damage localization may not be possible.  

It is acknowledged that fabrication errors might have occurred while building the test setup, 

especially in the truss bridge, since each element is manually sized and bolted. Even though the 

method is presented for railway bridges, during experiments, the railway track has not been included.  

Finally, since the experimental tests are performed inside the laboratory, the effect of 

environmental condition changes on the measurement errors is also not considered in this study 

which could affect the performance of the method as it affects all damage detection methods in the 

literature. Currently, the author's research team is working on this topic extensively and developing 

methods using artificial neural networks to account for the environmental effects (Gu et al. 2011, 

Kostic and Gül 2017, Zhang et al. 2019).  

Despite such limitations, the experimental results demonstrate that the proposed method has great 

promise for practical implementation and further research to address these limitations would 

improve the efficiency and robustness of the method for real-life application.  
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