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Abstract.  Based on differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), 
forced vibrations of a porous functionally graded (FG) scale-dependent beam in thermal environments have 
been investigated in this study. The nanobeam is assumed to be in contact with a moving point load. NSGT 
contains nonlocal stress field impacts together with the microstructure-dependent strains gradient impacts. The 
nano-size beam is constructed by functionally graded materials (FGMs) containing even and un-even pore 
dispersions within the material texture. The gradual material characteristics based upon pore effects have been 
characterized using refined power-law functions. Dynamical deflections of the nano-size beam have been 
calculated using DQM and Laplace transform technique. The prominence of temperature rise, nonlocal factor, 
strain gradient factor, travelling load speed, pore factor/distribution and elastic substrate on forced vibrational 
behaviors of nano-size beams have been explored. 
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1. Introduction 

 
In recent years, diverse kinds of materials have found their applications in nano-scale structures. 

Vibration behavior of a nano-scale plate is not the same as a macro-scale plate. This is because 

small-size effects are not present at macro scale. So, mathematical modeling of a nanoplate can be 

done with the use of nonlocal elasticity (Eringen 1983) incorporating only one scale parameter 

(Zeighampour and Beni 2014, Akgöz and Civalek 2015). Due to the ignorance of strain gradient 

effect in nonlocal elasticity theory, a more general theory will be required. Strain gradients at nano-

scale are observed by many researchers (Lam et al. 2003, Martı́nez-Criado 2016, Ebrahimi et al. 

2016, Al-Maliki et al. 2019, Nami and Janghorban 2014). Thus, nonlocal-strain gradient theory was 

introduced as a general theory which contains an additional strain gradient parameter together with 

nonlocal parameter (Aerfi and Zenkour 2016, Ansari et al. 2015, Li et al. 2015, Zhang et al. 2015, 

Lou et al. 2016, Zeighampour and Shojaeian 2017, Aissani et al. 2015, Bouderba et al. 2016, Chikh 

et al. 2016, Yahiaoui et al. 2018, Achouri et al. 2019, Berrabah et al. 2013, Barati 2018, She et al. 
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2018). The scale parameters used in nonlocal strain gradient theory can be obtained by fitting 

obtained theoretical results with available experimental data and even molecular dynamic 

simulations. 

For functionally graded materials, all material properties may change from one side to another 

side by means of a prescribed distribution. These two sides may be ceramic or metal. Mechanical 

characteristics of a FG material can be described based on the percentages of ceramic and metal 

phases. The material distribution in FG materials may be characterized via a power-law function. 

FG materials are not always perfect because of porosity production in them (She et al. 2018, Ahmed 

et al. 2019, El-Hassar et al. 2016). Existence of porosities in the FG materials may significantly 

change their mechanical characteristics (Atmane et al. 2015). For example, the elastic moduli of 

porous FG material is smaller than that of perfect FG material. Up to now, many authors focused on 

wave propagation, vibration and buckling analyzes of FG structures having porosities (Mirjavadi et 

al. 2017). Also, there are several investigations concerning with the analysis of FG structures in 

thermal environments.  

With the employment of differential quadrature method (DQM) and nonlocal strain gradient 

theory (NSGT), forced vibrations of a porous functionally graded (FG) scale-dependent beam in 

thermal environments have been investigated in this study. The nanobeam is assumed to be in contact 

with a moving point load. NSGT contains nonlocal stress field impacts together with the 

microstructure-dependent strains gradient impacts. The nano-size beam is constructed by 

functionally graded materials (FGMs) containing even and un-even pore dispersions within the 

material texture. The gradual material characteristics based upon pore effects have been 

characterized using refined power-law functions. Dynamical deflections of the nano-size beam have 

been calculated using DQM and Laplace transform technique. The prominence of temperature rise, 

nonlocal factor, strain gradient factor, travelling load speed, pore factor/distribution and elastic 

substrate on forced vibrational behaviors of nano-size beams have been examined. 

 

 
2. Theories and formulations 
 

2.1 Nonlocal strain gradient nano-size beam  
 

In the well-known nonlocal strain gradient elasticity (Lam et al. 2003), strain gradient impacts 

are taken into accounting together with nonlocal stress influences defined in below relation 

(0) (1)
ij ij ij                                (1) 

in such a way that stress 
(0)
ij is corresponding to strain components kl and a higher order stress 

is related to strain gradient components kl  which are 

(0)
0 0( , , ) ( )ijkl klij

V
x x e a x dxC                          (2a) 

(1) 2
1 1( , , ) ( )ijkl klij

V
l x x e a x dxC                        (2b) 
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in which ijklC  express the elastic properties; Also, e0a and e1a are corresponding to nonlocality 

impacts and l is related to strains gradients. Whenever two nonlocality functions 0 0( , , )x x e a  and 

1 1( , , )x x e a  verify Eringen’s announced conditions, NSGT constitutive relation may be written as 

follows 

2 2 2 2 2 2 2 2 2 2

1 0 1 0[1 ( ) ][1 ( ) ] [1 ( ) ] [1 ( ) ]ijkl kl ijkl klije a e a e a l e aC C              (3a) 

so that 2  defines the operator for Laplacian; by selecting 1 0e e e   , above relationship 

decreases to 

2 2 2 2[1 ( ) ] [1 ]ijkl klijea lC                          (3b) 

 

2.2 Porous FGMs 
 

A porous material, for instance a ceramic-metal composite, might be placed in the category of 

lightweight materials and can be applied in several structures such as sandwich beams/panels. Often, 

pore variation along the thickness of beams results in a notable alteration in every kind of material 

property. When the ceramic-metal distribution inside the material is selected to be non-uniform, the 

composite might be defined as a functionally graded material since its properties obey some 

specified functions. Herein, the following definition for elastic modulus based on pore dispersion 

will be employed (Mirjavadi et al. 2017) 

   
1

( )
2 2

p

c m m c mE E E
z

h
EE Ez


    

 
 





    for even porosities      (4a) 

   
1

( )
2

2
(1 )

2

p

c m m c m

z

h
E E E EE E

h

z
z


    

 
   
 

   for uneven porosities    (4b) 

where p   defines the ceramic-metal gradation exponent; m and c are related with the material 

coefficients at the top and bottom sides;   is the pore factor. Moreover, the material coefficients 

have been listed in Table 1. Eq. (4) can also be used for definition of mass density.  

 

2.3 Beam modeling via refined theory 

 

So far, a variety of beam theories are introduced for description and analyzes of beam structures 

(Hussain et al. 2019, Karami et al. 2019, Balubaid et al. 2019, Boutaleb et al. 2019, Berghouti et al.  

2019, Adda Bedia et al. 2019, Tlidji et al. 2019, Semmah et al. 2019, Alimirzaei et al. 2019, Addou 

et al. 2019, Medani et al. 2019, Batou et al. 2019, Abualnour et al. 2019, Draiche et al. 2019, 

Belbachir et al. 2019, Sahla et al. 2019, Chaabane et al. 2019, Meksi et al. 2019, Khiloun et al. 2019, 

Zarga et al. 2019, Zaoui et al. 2019, Mahmoudi et al. 2019, Draoui et al. 2019, Issad et al. 2018, 

Boukhlif et al. 2019). The displacement field containing axial displacement (u1) and transverse 

displacement (u3) with respect to the refined beam assumption calculating the precise location of the 

neutral axis might be defined as 
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Table 1 Material properties of FGM constituents 

Properties Steel Alumina ( 2 3Al O ) 

E 210 (GPa) 390 (GPa) 

ρ 7800 (
3/kg m ) 3960 (

3/kg m ) 

ν 0.3 0.24 

 

 

    ** *) [ ( ) ], ( s
x

bu
x

zx z u x
w

x
z

w
zz

 
    

 
                  (5a) 

( , ) ( ) ( )z b su x z w x w x                          (5b) 

in which neutral axis location can be described as 

/2

* /2

/2

/2

( )

( )

h

h

h

h

E z zdz
z

E z dz









, 

/2

** /2

/2

/2

( ) ( )

( )

h

h

h

h

E z z dz
z

E z dz










                  (6) 

The shear function may take the below form 

( ) sin( ) /

, /

z

h

z z 








                              (7) 

Above displacement field is calculated form the axial displacement (u), together with bw and sw

as bending and shear displacements. Accordingly, one may calculate the strains of as 

2 2
* **

2 2xx ( ) [ ( ) ]b sw wu
z z z z

x x x


 
  


 





                    (8a) 

( ) s
xz

w
g z

x






                            (8b) 

where ( ) 1 ( ) /g z d z dz   . Based on proposed beam model and using Hamilton’s rule, one can 

express the governing equations of the porous beam as follows 

3 32

0 1 12 2 2

b sw wN u
I I J

x t x t x t

  
  

     
                       (9) 
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2 2 2 4 43

0 1 2 22 2 2 2 2 2 2 2

2

2

( ) ( )

( )
( )

b b s b s
dynamic w b s

T b s
p

M w w w wu
q I I I J k w w

x t t x t x t x t

w w
k N

x

    
        
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 
 



    (10) 

2 2 2 4 43

0 1 2 22 2 2 2 2 2 2 2

2

2

( )

( )
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T b s
w b s p

M w w w wQ u
q I J J K

x x t t x t x t x t

w w
k w w k N

x

     
       
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 
   



   (11) 

So that forces and moments might be calculated as 

 

 
/2

* **

/2

/2

/2

( , , ) (1, , ) ,

( )

h
b s

x x x x
h

h

xz xz
h

N M M z z z dz

Q g z dz








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




             (12) 

wk  and pk  define Winkler and Pasternak factors of substrate, respectively. 
0.5

0.5

h
T

h
N E Tdz


   

is thermal loading and 

(13) 

The stress field in the context of NSGT takes the below form 

2 2
2 2

2 2
( ) (1 ) ( )xx

xx xxea l E z
x x


 

 
  

 
                 (14) 

2 2
2 2

2 2
( ) (1 ) ( )xz

xz xzea l G z
x x


 

 
  

 
               (15) 

Taking into account nonlocal strain gradient effect and with aid of Eq. (12), the relations for 

force-strain and the moment-strain might be derived 

2 22 2
2 2

2 2 2 2
( ) (1 )[ ]b s

s

w wN u
N ea l A B B

x x x x x

   
    

    
            (16) 

2 2 22
2 2

2 2 2 2
( ) (1 )[ ]b b s

b s

M w wu
M ea l B D D

x x x x x

   
    

    
         (17) 

2 2 22
2 2

2 2 2 2
( ) (1 )[ ]s b s

s s s s

M w wu
M ea l B D H

x x x x x

   
    
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         (18) 

2 2
2 2

2 2
( ) (1 )[ ]s

s

wQ
Q ea l A

x x x

 
  

  
                     (19) 

/2
* * 2 ** * ** ** 2

0 1 1 2 2 2
/2

( , , , , , ) (1, ,( ) , ,( )( ),( ) ) ( )
h

h
I I J I J K z z z z z z z z z z dz
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in which 

/2
* ** * 2 * ** ** 2

/2

( , , , , , )

( ) (1, ( ), ( ), ( ) , ( )( ), ( ) )

s s s

h

h

A B B D D H

E z z z z z z z z z z dz


         
      (20) 

/2
2

/2
( )

h

s
h

A g G z dz


                            (21) 

There are three nonlinear governing equations for proposed refined beam model which can be 

written with respect to displacements from inserting Eqs. (16)-(19), into Eqs. (9)-(11) as 

3 32 2 2 2
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  (24) 

The most important issue is that inclusion of neutral axis locations deletes the effect of coupling 

between bending and axial motions.  

 

 
3. Solution by differential quadrature method (DQM) 

 

In the present chapter, differential quadrature method (DQM) has been utilized for solving the 

governing equations for NSGT porous FG nanobeam. According to DQM, at an assumed grid point 

(𝑥𝑖 , 𝑦𝑗)  the derivatives for function F are supposed as weighted linear summation of all functional 

values within the computation domains as 
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𝑑𝑛𝐹

𝑑𝑥𝑛
| 𝑥=𝑥𝑖

= ∑ 𝑐𝑖𝑗
(𝑛)

𝐹(𝑥𝑗)𝑁
𝑗=1                         (25) 

where 

𝐶𝑖𝑗
(1)

=
𝜋(𝑥𝑖)

(𝑥𝑖−𝑥𝑗) 𝜋(𝑥𝑗)
        𝑖, 𝑗 = 1,2, … , 𝑁,        𝑖 ≠ 𝑗           (26) 

in which 𝜋(𝑥𝑖) is defined by 

𝜋(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑗)𝑁
𝑗=1 ,      𝑖 ≠ 𝑗                    (27) 

And when 𝑖 = 𝑗 

𝐶𝑖𝑗
(1)

= 𝑐𝑖𝑖
(1)

= − ∑ 𝐶𝑖𝑘
(1)𝑁

𝑘=1 ,     𝑖 = 1,2, … , 𝑁,      𝑖 ≠ 𝑘, 𝑖 = 𝑗        (28) 

Then, weighting coefficients for high orders derivatives may be expressed by 
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According to presented approach, the dispersions of grid points based upon Gauss-Chebyshev-

Lobatto assumption are expressed as 

𝑥𝑖 =
𝑎

2
[1 − cos (

𝑖−1

𝑁−1
𝜋)]       𝑖 = 1, 2, … , 𝑁,                  (30) 

Next, the displacement components may be determined by 

( , ) ( ) i t

b bw x t W x e                            (31) 

( , ) ( ) i t

s sw x t W x e                            (32) 
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where Wb and Wn denote vibration amplitudes and 𝜔 defines the vibrational frequency. Then, it is 

possible to express obtained boundary conditions as 

2 2 4 4

2 2 4 4

0,

0 , 0 

b s

b s b s

w w

w w w w

x x x x

 

   
   

   

                    (33) 

Now, one can express the modified weighting coefficients for all edges simply-supported as 

𝐶̅
1,𝑗
(2)
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𝑖,1
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= 𝐶1̅,𝑀
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= 0,       𝑖 = 1, 2, … , 𝑁.                    (34) 

and 
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Inserting Eqs. (31) and (32) into Eqs. (22)-(24) respectively, leads to 
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                 (36) 

in such a way that [K] and [M] define the stiffness and mass matrices of the structure, respectively. 

Moreover, the non-dimension foundation factors have been defined by 
4 2

, ,w w p p

m m

L L
K k K k

E I E I
                          (37) 

It is assumed that the dynamical load is travelling along a straight line causing forced vibrations 

and is defined in the below form 
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where Qn defines the Fourier coefficients and ( ) ( )pq x P x x    so that P defines the force 

measure, xp symbolizes the force position. Moreover, Vp symbolizes the force speed. 

Next, based upon zero initial conditions and Laplace transform method, Eq. (36) gives 
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Table 2 Comparison of the non-dimension frequency for nonlocal FG nanobeams (L/h=20) 

µ p=0.1  p=0.5  p=1  

 CBT (Eltaher et al. 

2012) 

Present 

HOBT 

CBT (Eltaher 

et al. 2012 

Present 

HOBT 

CBT (Eltaher et al. 

2012) 

Present 

HOBT 

0 9.2129 9.1614 7.8061 7.7151 7.0904 6.9677 

1 8.7879 8.7402 7.4458 7.3604 6.7631 6.6473 

2 8.4166 8.3722 7.1312 7.0505 6.4774 6.3675 

3 8.0887 8.0472 6.8533 6.7768 6.2251 6.1202 

 

 

Solving Eq. (40) based upon inverse Laplace transform approach leads to the bending (Wbn) and 

shear (Wsn) coefficients. The dynamical deflections of higher order refined nanobeams may be 

calculated as W= Wbn+ Wsn. The non-dimension factors are introduced by 
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4. Discussions with results 
 

According to the section, new findings have been presented for dynamical investigation of porous 

NSGT and FG beams modeled as a refined thick structure incorporating material imperfectness.  

Before all, the natural frequencies of FG beams have been verified by using the data of Euler beams 

reported by Eltaher et al. (2012), as presented in Table 2. To do this, a S-S beam having graded 

distribution of ceramic-metal is selected. With respect to different values of nonlocal factor (µ), an 

excellent agreement is achieved among obtained natural frequencies with those provided by Eltaher 

et al. (2012). 

In Fig. 2, the variations of normalized deflections of a FG nano-dimension beam versus non-

dimension time (t*) of mechanical loading are represented for several elasticity theories (CET, NET 

and NSGT) when L/h=10. Non-dimension speed of the travelling load is selected as V*=0.15 and 

0.2. By selecting CET or µ=λ=0, the deflections and vibrational frequencies based upon classic beam 

assumption will be derived. Actually, selecting µ=0 gives the deflections in the context of classic 

elasticity theory and discarding nonlocal impacts. Considering NET leads to larger deflections of 

the beam than NSGT. So, forced vibration behavior of the nanobeam system is dependent on scale 

effects. 

In Fig. 3, the variations of normalized deflections of a FG nano-dimension beam versus non-

dimension time (t*) of mechanical loading are represented for several temperature changes (ΔT). 

Non-dimension speed of the travelling load is selected as V*=0.15. It can be understand from Fig. 

3 that normalized deflection of system will rise with temperature change. Such finding is owning to 

the lower structural stiffness of the nano-size beam with the rise of temperature variation across the 

thickness. 
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Fig. 1 A nano-size FG beam exposed to moving dynamic force 

 

 

  
(a) V*=0.15 (b) V*=0.2 

Fig. 2 Effects of different elasticity theories on time responses of the nanobeam (ΔT=0, L/h=10, p=1, Kw=0, 

Kp=0, ξ=0.1) 

 

 

Dynamical deflection variation of the nanobeam according to non-dimension speed based upon 

even and uneven porosity dispersions at slenderness ratio L/h=10, non-dimension time t*=0.3, 

nonlocal factor µ=0.2, strain gradient factor λ=0.1, Winkler factor Kw=25, Pasternak factor Kp=5 

and material exponent p=1 is shown is Fig. 4. This figure is provided at fixed porosity factor of 

ξ=0.1. The most important finding from the figure is that even porosity dispersion leads to larger 

dynamical deflections due to representing lower stiffness compared to un-even dispersion.  
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Fig. 3 Temperature effects on time responses of the nanobeam (L/h=10, p=1, Kw=0, Kp=0, ξ=0) 

 

 

 

Fig. 4 Dynamical deflection variation of nanobeam according to non-dimension speed based upon even and 

uneven porosity dispersions (t*=0.3, µ=0.2, L/h=10, λ=0.1, Kw=25, Kp=5, p=1, ξ=0.1) 
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(a) p=1 (b) p=2 

Fig. 5 Porosity factor effects on time responses of the nanobeam (µ=0.2, L/h=10, λ=0.1, Kw=0, Kp=0) 

 

 

  
(a) Kp=5 (b) Kp=10 

Fig. 6 Foundation factor effects on time responses of the nanobeam (µ=0.2, λ=0.1, L/h=10, p=1, ξ=0.1, 

V*=0.1) 

 

 

Impacts of material FG exponent (p=1 and 2) and porosity factor (ξ) on dynamical deflections of 

FGM nano-size beams exposed to moving dynamical force with respect to the non-dimension time 
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have been illustrated in Fig. 5 assuming L/h=10 and µ=2. One may see that the dynamical bending 

of FGM nano-size beam is remarkably influenced by FGM gradation. It is found that the magnitudes 

of dynamical deflections increase via increase of material exponent (p). This is owning to higher 

portions of metallic constituent via increase of material exponent. Moreover, increment of porosity 

factor results in higher dynamical deflections. Thus, choosing reliable values for material exponent 

and porosity is crucial for reasonable design of FG nano-size structures when they are exposed to 

dynamical excitation. 

Fig. 6 indicates the influences of Winkler and Pasternak factors on dynamical deflections of FGM 

nano-size beams versus non-dimension time (t*) assuming L/h=10 and p=1. Different magnitudes 

of Winkler factor (Kw=0, 25, 50, 75) and Pasternak factor (Kp=5, 10) have been selected. One can 

observe that a rise in the magnitude of Winkler and Pasternak factors leads to reduction in vibration 

amplitudes of FGM nano-size beams. Actually, the nano-size beams become more rigid via 

increasing in foundation factors. An important finding is that Pasternak factor indicates more 

significant impact on deferment of dynamical deflection. This is because Pasternak factor is 

corresponding to continuous interactions with the nano-size beam but Winkler factor leads to 

discontinuous interactions with the nano-size beam. Accordingly, the forced vibrations of FGM 

nano-size beams have been significantly influenced by elastic substrate. 

 

 

5. Conclusions 
 

The presented article employed a higher order shear deformation beam formulation having three 

variables without using of shear correction factor. Based upon differential quadrature (DQ) approach and 
nonlocal strain gradient elasticity formulation, forced vibrational analysis of shear deformable 

functionally graded (FG) nanobeam on elastic medium under moving dynamical load was performed. 

The presented formulation incorporated two scale factors for examining vibrational behaviors of 

nano-dimension beams. The material properties for FG beam were defined employing a power-law 

form. The governing equations achieved by Hamilton’s principle were solved implementing DQM. 

Presented results indicated the prominence of material gradient index, nonlocal coefficient, material 

gradient coefficient, porosity, load velocity and substrate factors on vibrational properties of FG 

nano-size beam. Especially, it was found that as the porosity factor increases, the dynamical 

deflections increase. Also, it was observed that nonlocal factor increment results in larger values for 

dynamical deflection of FGM nano-size beam. 
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