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Abstract.  Scheduled inspections of common crossings are one of the main cost drivers of railway 
maintenance. Prognostics and health management (PHM) approach and modern monitoring means offer 
many possibilities in the optimization of inspections and maintenance. The present paper deals with data 
driven prognosis of the common crossing remaining useful life (RUL) that is based on an inertial monitoring 
system. The problem of scheduled inspections system for common crossings is outlined and analysed. The 
proposed analysis of inertial signals with the maximal overlap discrete wavelet packet transform 
(MODWPT) and Shannon entropy (SE) estimates enable to extract the spectral features. The relevant 
features for the acceleration components are selected with application of Lasso (Least absolute shrinkage 
and selection operator) regularization. The features are fused with time domain information about the 
longitudinal position of wheels impact and train velocities by multivariate regression. The fused structural 
health (SH) indicator has a significant correlation to the lifetime of crossing. The RUL prognosis is 
performed on the linear degradation stochastic model with recursive Bayesian update. Prognosis testing 
metrics show the promising results for common crossing inspection scheduling improvement. 
 

Keywords:  railway common crossing; track-side monitoring; structural health indicator; MODWPT; 

Lasso regularization; RUL 

 
 
1. Introduction 
 

Reliability and availability of railway infrastructure depends on these of its main parts: 

signaling, catenary systems and engineering structures, as well as track infrastructure. The track 

infrastructure takes the most influencing part due to relatively short lifecycle of track 

superstructure elements. The lifecycle varies from about 20 years for rails and sleepers to 1 year 

for switch and crossing (S&C) elements (Lichtberger 2005). Therefore, track superstructure shares 

up to half of the overall maintenance costs of railway infrastructure (Lay and Rensing 2013). S&C 

is a critical element of railway infrastructure, not only because of its short lifecycle, but also due to 

the cost and time expensive maintenance. According to (Letot et al. 2013), almost 33% of the total 
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maintenance costs of railway track are expended for maintenance of switches and crossings. 

A common crossing with stiff frog is the most loaded part of switch due to a disruption of 

rolling contact surface. The most of common crossings on German railways (Zoll 2016) are 

assembled from rail steel R350 that is subjected to rail contact fatigue (RCF) damages, which 

usually limit the lifecycle of common crossing (EU Project INNOTRACK 2008). RCF failures of 

common crossing are developing not uniformly over the lifecycle, unlike the other crossing 

failures like rail wear, ballast settlements etc. The progress of RCF in common crossing rails 

accelerates during the lifetime and can be visually observed only after about three-quarters of the 

lifecycle. For that reason, the RCF failures are difficult to detect and predict with regular 

scheduled inspections. The explanation of influence of inspection intervals on time detection of 

RCF on common crossings is shown in Fig. 1. 

The conventional scheduled inspections in railway infrastructure are usually planned based on 

the deterministic approach, where the inspection intervals should avoid the appearance of 

unexpected fault of track element with the mean lifecycle 𝐵𝑚𝑒𝑎𝑛. 

 

 

 
(a) RCF probability distribution 

 
(b) Classical vs probabilistic approaches  

 
(c) Scheduled inspections and unexpected RCF faults 

Fig. 1 Deterministic and probabilistic approach in the scheduled inspections planning (PDF - Probability 

density function; MP - Magnet particle) 
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However, the lifecycle of common crossing is characterized with a wide range between 27 Mt 

(Megatons) up to 100 Mt despite of the same type and materials for the similar operational loading 

(Gerber et al. 2015). The distribution of RCF fault probability is close to the normal one (Figs. 1(a) 

and 1(b)). The progress of RCF development for the short-, mean and long-living individuals of 

the distribution are shown in Fig. 1(c). It is usually considered as the exponential or the power law 

(Lichtberger 2005). The RCF can be positive true detected by visual inspections of by technical 

means, like magnet particle (MP) etc., with some error at the last RCF progress stage. If the RUL 

after detection ∆𝐵𝑓𝑎𝑖𝑙  is less than the inspection interval ∆𝐵𝐼𝑛𝑠𝑝 , then the undetected RCF 

failures could appear. The unexpected RCF failures on common crossing rails can cause the 

unplanned maintenance works with long-term operational hindrance. The approximate estimation 

for the inspection cycle 6 months corresponds to ∆𝐵𝐼𝑛𝑠𝑝 =13.5 Mt tonnage with the annual 

accumulated traffic mass 𝐵𝐽 = 27 Mt/year. The inspection cycle guarantees the reliable fault 

detection for the middle and long-living individuals (Fig. 1(c)). On the other side, for the 

long-living crossings, the short inspection cycles are redundant. Therefore the present scheduled 

inspections system is low appropriate for the common crossings. 

Prognostics and health management (PHM) could be a promising concept for the optimization 

of common crossing inspections and maintenance. The increase of the interest to PHM application 

in railway transportation by railway companies and by researchers worldwide, can be observed 

with many recent international projects. The project FASTRACK (Cañete et al. 2019) presents 

sensor platform Sensor4PRI for monitoring of slab track that is developed and tested on Spanish 

Railways. Multiple acceleration, inclination and distance sensors are integrated to wireless sensor 

networks, which sends the measurement data to the receiver in the rolling stock. An automatic 

vision based condition monitoring approach for S&C is presented in (Tastimur et al. 2016). A 

wireless system for the monitoring of sleeper vibrations is introduced in the study (Brajovic et al. 

2014). The system is used for the evaluation of sleeper deflections and the vertical track stiffness 

of railway track. An autonomous system that is based on the sleeper acceleration monitoring for 

S&C, is tested on German (DB) and Swiss Railways (SBB) (Böhm and Weiss 2017). A monitoring 

of railway track ballast on the lines of French railway company (SNCF) is performed with test 

sections that includes anchored displacement sensors, accelerometers and extensometers, 

temperature and humidity sensors (Khairallah et al. 2019). An autonomous stress and temperature 

control system that is tested on Russian Railways (RZhD) is used to detect the danger of track 

buckling or rail breakage in the continuous welded track (Akkerman and Skutina 2017). An 

identification of a crossing nose 3D cracks with X-ray tomography is proposed in the project 

INTELLISWITCH (Dhar et al. 2017). A real-time optical fiber monitoring and positioning, is 

tested on heavy-haul railways of China Railways (He et al. 2019). The similar technique is 

presented in (Minardo et al. 2014) for integrated monitoring of railway infrastructures. There are 

many other monitoring systems, but their wide application by railway companies depends on the 

reliability and economic efficiency of the monitoring method. In this respect, the most simple, 

reliable and cost effective solution offer the inertial measurements.  

The current study deals with the inertial monitoring of common crossings on DB with the 

system ESAH-M (German: Elektronische System-Analyse im Herzstückbereich – Mobile, English: 

Electronic Analysis System of Crossing – Portable) (Zoll et al. 2016). Fig. 2(a) demonstrates the 

measurements with the system ESAH-M on a common crossing and the measurement device. The 

device consists of 2 proximity sensors for wheel detection and 3D accelerometer that is installed 

on the web of frog rail. The proximity sensors are installed on the wing rail and are used for wheel 

velocity measurement and impact position determination. 
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(b) RCF initiation of the frog nose 

 
(a) ESAH-M system and measurement device (c) frog nose RCF damage 

Fig. 2 A common crossing monitoring with track side measurements 

 

 

The principal advantage of the ESAH-M system against the conventional visual and MP 

inspections is that the system estimates the reason of RCF damages – the dynamic loading of 

common crossing. Therefore, the measurements allow early detection of RCF deterioration, long 

before the first visual damages appear. For that matter, the application of the inertial measurements 

would be promising technique for the optimization of common crossing inspections. Figs. 2(b) and 

2(c) show the initiation of RCF cracks on the frog nose and the following spalling damage. 

However, the application of inertial measurements for PHM of common crossings is faced with 

problems of measurements interpretation. The track-side inertial measurements are relatively 

difficult to interpret, contrary to the engineering problems where the inertial monitoring is 

successfully used, like gear-box or rolling bearing PHM (Qin et al. 2017). The systematic changes 

in measurement parameters during the lifecycle of bearings (Yin et al. 2016) amount to about two 

orders of magnitude. Whereas the track-side measured accelerations in common crossings have a 

high random variation that is as high as the systematic changes during the crossing lifecycle 

(Gerber and Fengler 2007). The performance study (Sysyn et al. 2019a) has outlined the reasons 

of the low signal to noise relation for common crossing monitoring. On the one side, the variation 

is caused with a lot of unknown factors influencing the measurement results: different train types 

and their velocities, wheel profile wear, wheel trajectory variation owing to the lateral wheel 

position, etc. On the other side, the mean accelerations measured at the lifecycle beginning are 

already high due to initial structural irregularity.  

A promising way to cope with the problem of data interpretation is the application of data 

processing and machine learning methods. A comprehensive overview of modern statistical 

learning approaches for railway track application is provided in (Attoh-Okine 2017). The study 

(Sysyn et al. 2019b) presents on-board inertial measurements on common crossings for the recent 

fault detection by means of spectral feature extraction, selection and classification. An application 

of the statistical and mechanical approaches for the ESAH-M measurements is shown in (Sysyn et 
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al. 2019c), where the reasons of RCF are studied and the crossing lifetime is predicted. A 

monitoring and prognosis of the track substructure quality development for transition areas from 

ballastless to ballasted track is presented in (Izvolt et al. 2016, Izvolt et al. 2017). A development 

of common crossing diagnosis system with the optimization of the crossing longitudinal profile is 

proposed in (Kovalchuk et al. 2018a, Kovalchuk et al. 2018b). 

A scale modelling of on-board inertial measurement system with subgrade failure modelling 

and measurement is shown in (Rapp et al. 2019). An application of empirical mode decomposition 

analysis with linear and non-linear machine learning methods is proposed in (Sysyn et al. 2019d) 

for prediction of common crossing deterioration. A development of track quality indicator that is 

based on a modified Karhunen–Loève transformation is considered in the study (Chudzikiewicz et 

al. 2018). The algorithm extracts the principal dynamics components from the inertial on-board 

measurement data. A numerical modelling of common crossing geometry deterioration in 

comparison with the results of on-board monitoring is presented in (Sysyn et al. 2019e). An 

improvement of the irregularity location estimation with the differential evolution technique and 

axle box measurements is presented in the paper (Chellaswamy et al. 2018). A development of 

condition indicator for track-side measurements that is based on extraction of time-domain and 

frequency-domain features, with application of partial least square regression, is shown in (Sysyn 

et al. 2019f). A method of prediction of rail contact fatigue on crossings is proposed in (Sysyn et 

al. 2019g). The method is based on image processing of MP images and machine learning 

methods. An application of supervised learning methods for rolling noise prediction during 

railway vehicle operation is presented in (Jeong et al. 2019). The prediction is based on survey of 

rail surface roughness data. A fusion of track settlement on-line data with a physics-based track 

degradation model is proposed for geometry deterioration prognostics in (Chiachío et al. 2019). 

The prognostics methodology provides accurate predictions of the remaining useful life and is 

grounded on a filtering-based prognostics algorithm. The paper (Mishra et al. 2017) proposes a 

particle filter-based prognostic approach for railway track switches geometry degradation. The 

advantage of the approach is better prediction than that of regression approach for longer 

prediction times as well as its ability to generate a probabilistic result based on input parameters 

with uncertainties. Point estimate method in comparison with common Monte Carlo simulations 

for track degradation and track condition modeling are demonstrated in (Neumann et al. 2019). 

The study presents the advantages of point estimate method for cases of complex models or 

large-scale applications and with only a few specific sample points.  

The goal of the present study is improving the scheduled inspections system for common 

crossings using the data driven RUL prognosis. Thereby, it is considered that the RUL limiting 

failure mode is RCF damage. The other failure modes, like rail wear, sleeper and fastening 

damages, ballast settlements etc. could play role for long-living crossings. 

 

 

2. Preliminary analysis and SE features extraction with MODWPT 
 

The goal of feature extraction is the transformation of the measurement signal into the 

numerical representation of the signal content that maximizes the recognition of the relevant 

features. Various techniques are traditionally used for the feature extraction from time series: short 

time Fourier transform, continuous and discrete wavelet transform (CWT, DWT), maximum 

overlap DWT (MODWT), wavelet packet transform (WPT), empirical mode decomposition 

(EMD), multifractal analysis (MFA) (Hoelzl 2019, Zhou and Liu 2019, Landgraf and Hansmann 
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2018). The DWT enables a time-frequency decomposition of the signal, however the frequency 

resolution in the DWT is usually considered too coarse for practical analysis in time-frequency 

domain. CWT is well-suited for the localizing with good resolution the time-frequency features in 

the signal. However, an aperiodic shift in the time series leads to a different wavelet spectrum that 

demands the location of transient features on the wavelet spectrogram. WPT is considered as a 

compromise between the CWT and the DWT that provide a computationally-efficient way with 

better frequency resolution. MODWT is the stationary version of DWT meaning that the signal 

compression only occurs in the frequency domain, while the time domain is not down sampled. 

The good feature of the MODWT for time series analysis is that it divides the data variance by 

scale. The MODWT, MFA, DWT and CWT have found an application for the data driven 

degradation evaluation of railway superstructure and substructure and the demand on predictive 

maintenance (Hoelzl 2019). 

The present study exploits the maximal overlap discrete wavelet packet transform (MODWPT) 

as an appropriate tool for feature extraction from complex signal of common crossing inertial 

measurements. The MODWPT preserves the signal energy that is an important property which is 

difficult to realize with conventional bandpass filtering. It is performed with partitioning the 

energy among the wavelet packets at each level so that the sum of the energy over all the packets 

equals the total energy of the input signal.  

The initial information for the feature extraction and the statistical processing are the track-side 

inertial measurements and the impact position measurements on the common crossing over its 

overall lifecycle 29 Mt. The lifecycle is limited by RCF defects that first appeared as the visual 

surface cracks at about 24-26 Mt. The common crossing with rails UIC60 of steel R350 was 

installed in the railway turnout with ratio of inclination 1/12 and branch radius 500 m. The 

operational loading of common crossing is 27 Mt with mixed freight and passenger traffic and 

velocities 50-160 km/h. Overall monitoring statistic consists of 65 time series that corresponds to 

separate trains’ passages each containing 3 components of acceleration. The measurements were 

carried out in 11 days uniformly distributed over the lifecycle. 

As preliminary analysis, the comparison of similar acceleration signals with different lifetime is 

performed for estimation of the lifecycle influence on the MODWPT extracted features. Fig. 3 

shows the vertical acceleration signal fragments for the same rolling stock and almost the same 

velocity but the different lifetimes: near to beginning (Fig. 3(a)) and near to the end (Fig. 3(b)). 

The comparison of acceleration signals with different lifetimes shows the low difference in the 

maximal acceleration values. The peak to peak value are almost the same in range about ±200 g, 

but the negative acceleration for the old crossing has on average 20 g higher amplitude than the 

new one. The MODWPT analysis was performed to find out the difference in spectral features 

between the two cases. The result of MODWPT is an array of coefficients that it is hard to use as 

features. Therefore these coefficients are reduced to a lower number of high-level features with 

energy and entropy measures. Shannon entropy (SE) is widely applied in signal processing, 

information theory, pattern recognition, etc. The wavelet energy for the  coefficient of the  

node at  level is defined as follows (Li and Zhou 2016, Li et al. 2019) 

                                (1) 
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(a) acceleration signal at the beginning of the lifecycle 

 
(b) acceleration signal for the end of the lifecycle 

Fig. 3 The vertical accelerations signal fragments in the frog nose of common crossing for trains ICE with 

velocities about 160 km/h 

 

 

The total energy for the  node at  level can be determined as the sum of the N of the 

corresponding coefficients in the node 

                                (2) 

The probability of the  coefficient for the corresponding node is 
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SE entropy calculated based on the probability distribution of energy  

  (4) 

The calculation of MODWPT coefficients is produced with mathematical libraries of Matlab 

2019. Fig. 4 presents the results of energy and SE estimation for two cases of acceleration (Fig. 3). 

The results are presented for 16 nodes. The energy diagram (Fig. 4(a)) shows some difference 

between the average energy values with the highest relative difference in node 13. Whereas, the SE 
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diagram (Fig. 4(b)) shows additionally the lines for the partitioned signal to estimate the variance 

of the parameter. The highest difference between the SE for old and new crossing is in nodes 6, 7, 

11, 14-16, however only the nodes 6 and 7 have the clear statistical difference. 

The 16 SE values for each acceleration component are used as the spectral features that are 

extracted from all measurements. Altogether 50 features are extracted for one measurement that 

also include the time-domain operational conditions – train velocities and the impact position on 

the frog nose. The following abbreviations are used to mark the features: 

• seX1-seX16 – SE features for the lateral acceleration; 

• seY1-seY16 – SE features for the vertical acceleration; 

• seZ1-seZ16 – SE features for the longitudinal acceleration; 

• mV – train velocity; 

• mAP – impact position on the frog nose. 

The signals of accelerations that include the passage of many train axles are partitioned to 

blocks of width 10000 samples. Thus, the measurement statistic can be expanded from 65 time 

series to 471 observations. It could be potentially possible to extract number of observations equal 

to the 2701 passes wheel axles, that would demand the variable partitioning windows due to 

various train speeds. 

 

 

 
(a) Spectral energy 

 
(b) Shannon entropy 

Fig. 4 Spectral feature estimates for the new and old common crossing for trains ICE with velocities about 

160 km/h 
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3. The structural health indicator development 
 

The structural health (SH) indicator should provide a good relation to the lifetime of common 

crossing. Therefore, relevant features should be selected and the redundant or noise features should 

be rejected before the feature fusion. Additionally, the model of SH indicator should be clear for 

interpretation, that is important for the practical application. In that regard to this demand, the most 

suitable model offers the linear regression based methods.  

A multiple linear regression model is defined as follows 

                         (5) 

where  – estimated response;  – the fitted coefficients for p-predictor or feature;  – the 

features of i-observation. 

The feature selection and regression coefficients  calculation is provided with Lasso 

regularization that identifies important and rejects redundant features. It is performed with a 

variation of the regularization coefficient  and the search lowest mean square error in the 

following formula 
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where  – a positive regularization parameter;  – the number of observations; b0 , b – 

regression coefficients. 

The results of the optimal search of shrinkage parameter  that corresponds to the lowest 

mean square error is shown on the Fig. 5. The mean square error falls down almost twice with the 

reduction of the parameter  to the optimal 0.067. The number of considered features 

grows together with the reduction of parameter , as shown on the Fig. 6. Therefore, the optimal 

number of features is 43 from 50. The optimization is carried out many times according to the 

10-fold cross-validation to provide the statistical reliable estimation of the mean square error and 

their prediction bounds. 

The further reduction of parameter  right from  brings almost no change in the 

mean square error. The Fig. 5 shows that the 𝜆 parameter corresponds to the close to the minimal 

error values long before the  is achieved. The higher  corresponds to the lower 

number of the features selected. It is considered that the low parameter models are more robust 

than multiparameter one (Hastie et al. 2009). Therefore, it would be preferable to choose more 

robust model if the error increase would be tolerable. The tolerance for the trade-off considers that 

the increase of deviance is within one standard error relatively to the minimum. The parameter  

for this alternative solution is  is equal to 0.3 that corresponds to 24 selected features which 

allow to receive almost the same error as for the optimal 43 features. 
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Fig. 5 Mean square error (MSE) in relation to the shrinkage parameter 𝜆 

 

 

 

Fig. 6 Lasso regularization plot and optimal number of features 

 

 

Fig. 6 shows the variation of Lasso regression coefficients  that depends on the 

regularization coefficient  and the number of selected features. The first left thick lines 

correspond to the most important features. For higher number of the selected features, more 

pb
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coefficient lines appear. The thin lines are those that appear right of  and are considered as 

redundant. 

The feature importance ranking that is shown in the Fig. 7, is derived as the ratio of the 

coefficient to the mean feature value. The highest influence has the feature of the vertical 

component of acceleration seY7, that could be good explained with the Fig. 4. Another significant 

features of the vertical acceleration are seY5 and seY15. 

Remarkable is the influence of the feature seZ3 of the longitudinal acceleration component. It 

could indicate on the changes of the shear dynamic interaction of wheel and rails during the 

lifetime of crossing. The significant features that are related to the lateral accelerations are seX2 

and seX14. The time-domain features mV and mAP have a relatively low influence. That fact 

could be used for an optimization of the track-side measurement system. The rejection of the 

wheel proximity measurement could significantly simplify the system. 

The data points for the SH indicator that is the estimated response in the formula (5) for the test 

set are depicted in the Fig. 8. The linear regression demonstrates a good relation of the mean value 

to the lifetime with narrow function prediction bounds. The developed SH indicator shows much 

better relation to the lifetime the CWT based indicator, which was developed in the study (Sysyn 

et al. 2019f). The further improvement of the developed SH indicator is possible by combination 

of the significant time-domain features. 

 

 

Fig. 7 Feature importance ranking 

 

 

Fig. 8 Linear regression of the SH indicator for 24 selected features 

1SE
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4. Degradation prognosis and remaining useful life estimation 
 

The performed linear regression (Fig. 8) is an exploratory data analysis that explains the 

relation of SH indicator to the crossing’s lifecycle. The estimation of common crossing RUL 

demands the degradation prognosis that considers only a preceding data available and the 

prognosis update when the new data comes. The linear degradation model is used to prognose the 

common crossing degradation, according to the determined linear relation from the last 

degradation history (Fig. 8). Under the crossing degradation is considered not the specific RCF 

deterioration, but the increase of inertial loading that does not take into account cumulated damage 

and mechanical degradation models. The model is based on Wiener process degradation modeling, 

where stochastic parameters of models are updated via Bayesian approach to incorporate real-time 

condition monitoring information (Si et al. 2017, Kim et al. 2017). The estimation of remaining 

useful lifetime is based on the previous degradation of the system path that is done through the 

combination of Bayesian updating and expectation maximization algorithm. Linear degradation 

model is represented with the following formula 

                          (7) 

where  – the condition indicator as a function of time; 

 – intercept term considered as known constant; 

 – random parameters determining the model slope, is modeled as a lognormal distribution 

with mean 𝜇𝜃 and variance 𝜎𝜃; 

 – time step; 

 – the model additive noise that is modelled as a normal distribution with zero mean and 

variance . 

At each time step, as the new measured data come, the distribution of model parameters , 

 is updated to the posterior based on the latest observation of SH indicator. The calculation 

algorithm consists of the following subsequent steps:  

1. Bayesian estimation of random parameters θ based on updating the posterior dist

ribution for the parameter via the Bayesian rule; 

2. Estimation of the deterministic parameters in   based on expectation maximi

zation algorithm algorithm; 

3. Path-dependent RUL estimation. 

The linear degradation model also provides the degradation anomaly detection by the 

estimation of the slope significance. After a detecting the significant slope of health indicator, the 

model forgets the previous observations. After that the model restarts the estimation based on the 

original priors. Figure 9 demonstrates the degradation prognosis after about 50% of the common 

crossing lifecycle time. The end of life (EoL) of common crossing estimated 29.3 Mt for the 

accepted threshold of SH indicator 21. The function prediction boundaries provide the uncertainty 

of prognosis that is ±2.1 Mt despite of wide deviation range of the observed points. 

The prognosis of common crossing degradation and the remaining useful life estimation are 

complicated with the uncertain SH indicator threshold values. The first visible cracks have 

appeared at about 23-26 Mt and the rail head spalling after about 28 Mt. Therefore the uncertainty 

of the lifecycle EoL is about 5 Mt. Figure 10 demonstrates the prognosis quality assessment and 

the estimation of the necessary inspection time before the corrective action is required. There are 

many prognostic performance metrics (Saxena et al. 2010) like prognostic horizon (PH), α-λ 

( ) ( )SHI ( )t t t t  = + +

( )SHI t



t
( )t  

2(0 )N ,




( )t

230



 

 

 

 

 

 

Improvement of inspection system for common crossings by track side monitoring and prognostics 

performance, relative accuracy etc. The metric α-λ performance estimates if the algorithm 

performs within desired error margins that are specified by the parameter α, of the actual RUL at 

any given time instant which is specified by the parameter λ. The requirement of the metric is 

remaining the prognosis within a converging cone of the error margin as a system reaches to EoL.  

 

 

 

 

Fig. 9 Common crossing prognosis at 50% of lifetime with linear degradation model 

 

 

 

 

Fig. 10 RUL of common crossing and the inspection time estimation 
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The present RUL prognosis shows the satisfactory deviation from the true RUL for parameter 

 of the α-λ performance after 6 Mt of the crossing lifetime. The last part of prognosis 

cannot be taken into account due to the uncertainty of the lifecycle EoL. However, the wide 

deviation range of the SH indicator points reaches up to half of the lifetime. Taking into account, 

that the SH indicator is a measure of the inertial loading, whose exceed of the threshold would not 

lead immediately to the RCF, the observation confidence interval can be limited with 10-90th 

percentile region. In this case the lower uncertainty bound reaches the EoL after about 22-24 Mt. 

The time can be considered for the conventional visual inspection or with technical means and the 

planning of the corrective action after 3-5 Mt. 

 

 

5. Conclusions 
 
The study has presented an application of PHM approach for the optimization of scheduled 

inspections for the common crossings. The analysis of the present scheduled inspection system 

shows the fundamental problems of the interval inspections for the common crossing with high 

variation of the lifecycles. The possibilities of track-side monitoring techniques are presented for 

the RCF fault detection and RUL prognosis for the common crossings. 

The study has explored the potentials MODWPT analysis for the feature extraction from the 

inertial measurement signals. The analysis of the SE wavelet features shows much better 

suitability for recovering the differences between the signals of new and old crossings than the 

method of conventional maximal acceleration. The applied Lasso regularization selected the best 

24 features from extracted 50. The feature importance ranking analysis indicates the significant 

influence of the features that correspond to the lateral and longitudinal accelerations. The influence 

of the time-domain features train velocity and the impact position is relatively low. This could be 

used for an optimization of the measurement system. The developed SH indicator is based on 

simple linear relation and is simple for the interpretation. RUL prognosis metrics have shown the 

sufficiently good quality of prognosis. The prognosis enables to plan the visual inspections not 

more than 5 Mt before the end of lifecycle of common crossing. The proposed PHM approach can 

reduce the number of time and cost expensive scheduled inspections and at the same time it can 

reduce the expensive unplanned maintenance works and traffic hindrance. However, the presented 

approach has also shortcomings that could be handled in further studies. The high variation of SH 

indicator would need a high number of measurements. An additional improvement of SH indicator 

with an ensemble of multiple time-domain and spectral indicators would be promising. An 

application of hybrid approach modelling that takes into account mechanical relations would bring 

additional improvements. 
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