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Abstract.  This study aims to perform damage identification for Da-Sheng-Guan (DSG) high-speed 
railway truss arch bridge using fuzzy clustering analysis. Firstly, structural health monitoring (SHM) system 
is established for the DSG Bridge. Long-term field monitoring strain data in 8 different cases caused by 
high-speed trains are taken as classification reference for other unknown cases. And finite element model 
(FEM) of DSG Bridge is established to simulate damage cases of the bridge. Then, effectiveness of one 
fuzzy clustering analysis method named transitive closure method and FEM results are verified using the 
monitoring strain data. Three standardization methods at the first step of fuzzy clustering transitive closure 
method are compared: extreme difference method, maximum method and non-standard method. At last, the 
fuzzy clustering method is taken to identify damage with different degrees and different locations. The 
results show that: non-standard method is the best for the data with the same dimension at the first step of 
fuzzy clustering analysis. Clustering result is the best when 8 carriage and 16 carriage train in the same line 
are in a category. For DSG Bridge, the damage is identified when the strain mode change caused by damage 
is more significant than it caused by different carriages. The corresponding critical damage degree called 
damage threshold varies with damage location and reduces with the increase of damage locations. 
 

Keywords:  railway bridge; steel truss arch; structural health monitoring; damage identification; fuzzy 

clustering; finite element analysis 

 
 
1. Introduction 
 

In the past few decades, structural health monitoring (SHM) has been one of the most popular 

research areas in the bridge engineering field (Garden and Fanning 2004, Farrar and Worden 2007, 

Ou and Li 2010 and Yu and Xu 2011). SHM process is to collect data from the monitored structure 

using periodically sampled measurements by an array of sensors, then extract features from these 

measurements and conduct statistical analysis of these features to assess the structural degradation 

(Fan and Qiao 2011, Sabatto, Mikhail et al. 2011 and Kovvali, Das et al. 2007).  

The detection of damage is the most fundamental issue in SHM. Damage may be defined as a 

state of change that affects the present or future performance of a system. Implicit in the above 

definition is the fact that damage detection involves comparison with some initial undamaged state 
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(Meyyappan, Jose et al. 2003). In this project the sensors were connected to the bridge, which was 

monitored. SHM system with a great quantity of various types of sensors is usually employed by 

large infrastructure engineering for long-term health monitoring. As an alternative to field 

monitoring method, test and numerical simulation methods are also adopted as a supplement in 

research bridge damage (Yu, Zhu et al. 2011 and Erdogan, Catbas et al. 2014). The numerical 

analysis model is calibrated using SHM data and better represents the existing structure behavior 

under different loading conditions.  

Recently, the fuzzy approaches have been applied to solve damage detection problems. Fuzzy 

logic is utilized to handle uncertainties and imprecision involved. Fuzzy clustering is an 

unsupervised learning operation that aims at decomposing a given set of objects into subgroups or 

clusters based on similarity. The goal is to divide the dataset in such a way that objects or cases 

belonging to the same cluster are as similar as possible, whereas objects belonging to different 

clusters are dissimilar (Kruse, Doring et al. 2007). Fuzzy cluster analysis methods mainly include: 

transitive closure method based on fuzzy equivalence relation, the method based on similarity 

relation and fuzzy relationship, the maximum tree method based on fuzzy graph theory and the 

convex decomposition based on data sets and the dynamic rules (Zhou, Zhang et al. 2015). 

Fuzzy clustering method has been used in many areas by researchers. Tarighat and Miyamoto 

(2009) introduced a new fuzzy method to deal with uncertainties from inspection data, which was 

practically based on both subjective and objective results of existing inspection methods and tools. 

Wang and Elhag (2007) proposed a fuzzy group decision making (FGDM) approach for bridge 

risk assessment. Silva, Dias et al. (2008) compared two fuzzy clustering algorithms: fuzzy 

c-means (FCM) and Gustafson–Kessel (GK) algorithms by applying them to data from a 

benchmark frame structure in the Los Alamos National Laboratory. Palomino, Steffen et al. (2014) 

and Salah, Sabatto et al. (2013) use fuzzy cluster analysis methods for aircraft's damage 

classification. Zhou, Zhang et al. (2015) evaluate health state of shield tunnel SHM using fuzzy 

cluster method. Zhao and Chen (2002) use fuzzy inference system to do concrete bridge 

deterioration diagnosis. Jiao, Liu et al. (2013) assess durability of the bridge based on fuzzy 

clustering and field data. Meyyappaq, Jose et al. (2003) has done damage accumulation analysis 

based on bridge health monitoring vibration data using fuzzy-neuro system.  

Even though many researches have done damage analysis of different kinds of structures using 

fuzzy logic, there are few studies on high-speed railway truss arch bridges according to previous 

studies, especially based on field monitoring data. Nanjing DSG Bridge is a steel truss arch bridge 

with the longest span throughout the world. Its 336 m main span and 6-track railways rank itself 

the largest bridge with heaviest design loading among the high-speed railway bridges by far. And 

the design speed 300 km/h is also one of the most advanced level in the world. Thus damage 

identification of DSG Bridge is important. In this study, long-term field monitoring sensors are 

installed on the Nanjing DSG Bridge to collect strain extreme value caused by high-speed trains. 

The finite element model of DSG Bridge is also established to study damage as a supplement. 

Then, effectiveness of fuzzy clustering method and FEM results are verified using SHM data. 

Three standard methods are compared in the fuzzy clustering analysis. Finally, the fuzzy clustering 

method is taken to identify damage with different degrees and locations. 

 

 

2. SHM system of DSG Bridge 
 

The panoramic view of Nanjing DSG Bridge is shown in Fig. 1(a), which is a steel truss arch 
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bridge with the span arrangement (108+192+336+336+192+108) m. The elevation drawing of the 

bridge is shown in Fig. 1(b). Due to the remarkable characteristics of DSG Bridge including long 

span of the main girder, heavy design loading and high speed of trains, a long-term SHM system 

was installed on the DSG Bridge shortly after it was opened to railway traffic. As shown in Fig. 

1(b), dynamic strain monitoring of steel truss arch is performed at the 1-1, 2-2, 3-3 and 4-4 

cross-section in the first main span of the bridge. Location of twenty strain sensors on the bridge is 

shown in Fig. 2 and instructions of these sensors are given in Table 1. Sampling frequency of 

dynamic strain data collection is set to 50 Hz. 

 
Table 1 Location instructions of twenty strain sensors 

Cross-section number of bridge Strain sensors number Location instructions 

1-1 cross section Y1
u
,Y1

d
 5-5 section of hanger 

2-2 cross section Y2
u
,Y2

d
 6-6 section of hanger 

3-3 cross section 

Y3
u
,Y3

d
 8-8 section of top chord member 

Y4
u
,Y4

d
 9-9 section of diagonal web member 

Y5
u
,Y5

d
 10-10 section of bottom chord member 

Y6
u
,Y6

d
 11-11 section of deck chord member 

Y7,Y8 on the steel deck plate member 

Y9,Y10 on the horizontal beam member 

4-4 cross section  
Y11

u
,Y11

d
 14-14 section of arch foot chord member 

Y12
u
,Y12

d
 14-15 section of arch foot chord member 

 

 
(a) View of the Nanjing DSG Bridge 

 
(b) Elevation drawing of half part bridge (Unit: m) 

Fig. 1 Nanjing DSG Bridge 
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(a) 1-1 cross-section of steel truss arch (b) 2-2 cross-section of steel truss arch 

 
(c) 3-3 cross-section of steel truss arch 

Continued- 
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(d) 4-4 cross-section of steel truss arch 

Fig. 2 Location of strain sensors on the steel truss arch bridge (unit: mm) 

 

 

 

3. Finite element model of DSG Bridge 
 

As an alternative to the field monitoring method, we can also obtain strain value of DSG 

Bridge by finite element modeling (FEM) method. DSG Bridge operates well and no damage has 

appeared till now in practical. The strain state of DSG Bridge in damage can be obtained through 

finite element simulation. Then damage identification method and damage indicators are 

introduced. Finally, damage can be identified based on SHM data using a certain method when the 

bridge really suffer damage during the future service. 

Fig. 3 shows the three-dimensional finite element model of the DSG Bridge using ANSYS 

software. A total of 59760 nodes and 112706 elements are built in the model, 58370 of which are 

beam elements and 54336 of which are shell elements. The top chords, bottom chords, deck chords, 

diagonal web members, vertical web members, horizontal and vertical bracings of the steel truss 

arch are simulated by BEAM188 element; the diaphragm members and top plates of the steel 

bridge deck are simulated by SHELL181 element. Moreover, the finite element model has 7 

bearings. The restraints of 7 bearings are set as follows: the middle bearing is constrained with 

three degrees of translational freedom in directions of longitudinal X, transverse Y, and vertical Z; 

the other bearings are constrained with two degrees of translational freedom in directions of 

transverse Y and vertical Z. The elastic modulus and Poisson ratio of the steel is assigned as 

210GPa and 0.30. The acceleration of gravity is set to 9.8 m/s
2 
and the damping ratio is set to 0.02. 
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Fig. 3 Three-dimensional FEM of Nanjing DSG Bridge 

 

 

4. Theory of fuzzy clustering 
 

Traditional sample classification method belongs to supervised learning style which realizes the 

classification through specific standards. However, fuzzy clustering method can conduct the 

process based on properties of the sample characteristics, and it is unsupervised. The criterion for 

classification is not consistent and possesses apparent dynamic characteristics. It can establish the 

uncertainty description of samples and more precisely reveals the actual situation (Sebzalli and 

Wang 2001, Podofillini, Steffen et al. 2010 and Li 2004). Steps of one fuzzy clustering analysis 

method named transitive closure method used in this paper are given as follows. 

 

(1) Standardization for clustering data  

1 2{ , , , }nX x x x is the vector of data for classification, and each data possesses m properties. 

ix  can be represented by Eq. (1). 

1 2[ , , , ]i i i imx x x x                          (1)
 

An original data matrix can be constructed as (2). 

11 12 1

21 22 2

1 2

m

m

n n nm

x x x

x x x
X

x x x

 
 
 
 
 
 

                      (2) 

where ijx is the jth property of the ith classification object. 

The first step for fuzzy clustering analysis is standardization. That is transforming original data 

to the interval [0, 1] in order to eliminate dimensional effect and making each property do same 

contribution to the analysis. There are many standardization methods such as standard deviation 

method, extreme difference method, mean value method, center method, and logarithm method 

and so on. Extreme difference method shown in Eq. (3) is the most widely used in many papers.  

① Standard1-extreme difference method 

 

 

X Y 

Z 
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min'

max min

1,2, , ; 1,2, ,
ij j

ij

j j

x x
x i n j m

x x


  


                  (3)

 

   max 1 2 min 1 2max , , , , min , , ,j j j nj j j j njx x x x x x x x   

Step1:                   
min 1,2, ; 1,2,ij ij jx x x i n j m    

                 
(4a) 

Step2:                   '

max

1,2, , ; 1,2, ,
ij

ij

j

x
x i n j m

x
                      (4b) 

Standard1 method can be divided into two steps just shown as Eqs. (4(a)) and (4(b)). The first 

step shown in Eq. (4(a)) is each member ijx in the original matrix subtracts the minimum member 

minjx of each column. Then we get a new matrix. The second step shown in Eq. (4(b)) is each 

element 
ijx in the new matrix divided by the maximum 

maxjx of each column to transform data to 

the interval [0, 1]. We can see the first step in this place is not necessary to eliminate dimensional 

effect. So we can try to skip the first step and only do the second step. This is standard2 method 

shown in Eq. (5).  

② Standard2-the maximum method 

'

max

1,2, , ; 1,2, ,
ij

ij

j

x
x i n j m

x
                     (5) 

Take each row of the original data matrix for classification as a m dimension vector

1 2{ , , , }, 1,2,i i i imx x x x i n  . Fuzzy clustering analysis is to compare the relationship 

between these different rows according to the m different properties. Then do classification for the 

n row vectors. Both standard methods above have transformed the original data and brought 

changes to some extent about the relationship between the row vectors. And in the problem which 

will be analyzed in this paper, the dimensional for each property is the same. So we could also not 

standardize the original data and not disturb the original characteristic as much as possible. This 

idea brings the third method that is the non-standard method.  

 

(2) Construction of fuzzy similarity matrix 

Fuzzy similarity matrix is constructed mainly according to distance or ratio of data. Similarity 

coefficient ijr  describes the similarity degree between ix and jx . ijr  calculation methods 

mainly include dot product method, angle cosine method, correlation coefficient method, exponent 

similarity coefficient, the maximum minimum method and so on. In this paper, Similarity 

coefficient ijr will be obtained by calculating the angle cosine value between ix and jx . It is 

defined as Eq. (6) 

' '

1

' 2 ' 2

1 1

, 1,2, ,

m

ik jk

k
ij

m m

ik jk

k k

x x

r i j n

x x



 



 





 

  ( )                (6) 
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(3) Calculate fuzzy equivalent matrix  

The fuzzy similarity matrix calculated by Eq. (6) satisfies the reflexivity and symmetry but 

does not satisfy transitivity. The corresponding fuzzy equivalent matrix which satisfies reflexivity, 

symmetry and transitivity must be obtained in order to do clustering analysis. In this paper, the 

successive square method is used to calculate the equivalent matrix as shown in Eq. (7). 

2( ) kR t R R   , 2 2 1k kR R                       (7) 

R is the fuzzy equivalent matrix. By selecting appropriate thresholds  0,1 , truncated 

matrix ( )R t R 

   is obtained. 

 

(4) Determination of best classification 

 1 2, , , nX x x x is the object for classification. 
1 2, , ,j j j jmx x x x    is the jth member of 

( 1,2, )X j n . And jkx is the kth feature of ( 1,2, , ).jx k m  r is the classification number 

corresponding to  , and in is the number for the ith category. The average value for kth 

eigenvalue of ith category can be calculated as shown in Eq. (8). 

1

1
, 1,2, ,

in

ik jk

ji

x x k m
n 

                       (8)

 

The average value for kth eigenvalue of all data can be calculated by Eq. (9). 

1

1
, 1, 2, ,

n

k jk

j

x x k m
n 

                       (9)

 

 

Original data for clustering

Standardization

Fuzzy similarity matrix

Fuzzy equivalent matrix

Dynamic clustering process

Best classification with 

reference to F-statistic

Standard 1: Extreme difference method

Standard 2: The maximum method

Standard 3: Non-standard methodAngle cosine method

Transitive closure method

 

Fig. 4 Flow chart of transitive closure fuzzy clustering analysis method 
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F-statistics analysis is used for determining the best classification threshold; it can be 

calculated by Eq. (10). F-statistics obeys distribution ( 1, )F r n r  . Its numerator stands for the 

distance between different categories while its denominator stands for the distance of samples in 

one category. So, the bigger the F is, the further distance between different categories is. If 

0.05( 1, )F F r n r   , the classification results are reasonable. And the bigger (F-F0.05) value is, the 

better the classification results is. 

2

1 1

2

1 1 1

( ) / ( 1)

( ) / ( )
i

r m

i ik k

i k

nr m

jk ik

i j k

n x x r

F

x x n r

 

  

 



 

 


                   (10) 

The flow chart of transitive closure fuzzy clustering analysis method is summarized in Fig. 4.

 

 

 

5. Effectiveness verification for fuzzy clustering method and FEM 
 

8 different load cases of DSG Bridge are shown in Table 2 with reference to Fig. 2.  

Strain value of deck plate members (Y7,Y8) and horizontal beam members(Y9,Y10) is equal to 

stain sensor field monitoring value. But for truss members including hanger(Y1
u
, Y1

d
, Y2

u
, Y2

d
), 

web member(Y4
u
, Y4

d
) and chord member(Y3

u
, Y3

d
 , Y5

u
, Y5

d
 , Y6

u
, Y6

d
 , Y11

u
, Y11

d
 , Y12

u
, Y12

d
), the 

strain value is the mean of strain sensor monitoring value in two sides of each truss member 

because truss members mainly subject axial stress. For example, strain value Y1 is the mean value 

of Y1
u 
and Y1

d
. Y1 is the time history curve of strain value when the train goes through the bridge, 

shown in Fig. 5. MaxY1 and MinY1 is the maximum and minimum value of Y1, respectively.  

Figs. 5(a) and 5(b) show Y1 strain value of signal drive in case 6 by field SHM method and 

FEM simulation method, respectively. From Fig. 5 we can see that: the results by SHM and FEM 

are similar. The SHM data is subject to random disturbance outside, so the strain value appears 

slight fluctuations. But the strain value acquired by the random disturbance is much lower than by 

trains. The slight fluctuations caused by random disturbance can be ignored in this place. The 

curve pattern and strain value in Figs. 5(a) and 5(b) is close. It indicates the FEM results are 

reliable. 

 

  

(a) SHM (b) FEM 

Fig. 5 Time history curve of Y1 strain value of single drive in case 6 

0 5 10 15 20 25 30
-2

0 

2 

4 

6 

8 

10

12

Time (s)

S
tr

a
in

 v
a
lu

e
 (

μ
ε)

0 5 10 15 20 25 30
-2

0 

2 

4 

6 

8 

10

12

Time (s)

S
tr

a
in

 v
a
lu

e
 (

μ
ε)

323



 

 

 

 

 

 

Bao-Ya Cao, You-Liang Ding, Han-Wei Zhao and Yong-Sheng Song 

 

 
Table 2 Load case of DSG Bridge 

Load case Case instruction 

Case1 8 carriage train from north to south on Jing Hu side 

Case2 8 carriage train from south to north on Jing Hu side 

Case 3 16 carriage train from north to south on Jing Hu side 

Case 4 16 carriage train from south to north on Jing Hu side 

Case 5 8 carriage train from north to south on Hu Rong side 

Case 6 8 carriage train from south to north on Hu Rong side 

Case 7 16 carriage train from north to south on Hu Rong side 

Case 8 16 carriage train from south to north on Hu Rong side 

 

 

Strain maximum and minimum in 12 field monitoring locations are shown in Table 3. Column 

1 to column 8 is the year mean value of strain maximum and minimum in 2014. Column X1 and 

X3 is strain maximum and minimum by field SHM under case 1 and case 6 of single drive, 

respectively. Column X2 and X4 is strain maximum and minimum by FEM under case 2 and case 

6 of single drive, respectively. Each column in Table 3 is a kind of strain mode, which is a group of 

24 strain maxima and minima at 12 monitoring locations. If the bridge suffers damage, the strain 

mode will change. 

Standard1 and Standard2 methods are shown in Eqs. (3) and (5), respectively. In the problem 

we considered, the dimension of each property is the same, just dimensionless. So non-standard 

method can be applied. In this part, we take three different standardization methods (standard1, 

standard2 and non-standard method) to conduct fuzzy clustering analysis for the 12 group data in 

Table 3. Fuzzy similarity matrix R, fuzzy equivalent matrix R
*
 and truncated matrix *R

when 

0.9959, 4r    using non-standard method are shown in Eqs. (11)-(13), respectively. Figs. 

6(a)-6(c) show dynamic fuzzy clustering process for the three different standard methods, 

respectively. Fig. 6(d) shows the comparison of (F-F0.05) value of the classification results of the 

three standard methods. The value of F0.05and F in non-standard method are listed in Table 4. 

1.0000  0.9836  0.9968  0.9721  0.3824  0.4017  0.3874  0.3949  0.9993  0.9834  0.3747  0.3973  

0.9836  1.0000  0.9863  0.9959  0.2982  0.3224  0.3070  0.3183  0.9788  0.9996  0.2891  0.3166  

0.9968

R 

  0.9863  1.0000  0.9813  0.3770  0.4011  0.3848  0.3978  0.9961  0.9860  0.3689  0.3959  

0.9721  0.9959  0.9813  1.0000  0.2855  0.3151  0.2970  0.3139  0.9676  0.9953  0.2759  0.3088  

0.3824  0.2982  0.3770  0.2855  1.0000  0.9719  0.9971  0.9695  0.3787  0.3015  0.9996  0.9682  

0.4017  0.3224  0.4011  0.3151  0.9719  1.0000  0.9733  0.9980  0.3999  0.3283  0.9679  0.9988  

0.3874  0.3070  0.3848  0.2970  0.9971  0.9733  1.0000  0.9739  0.3835  0.3113  0.9960  0.9705  

0.3949  0.3183  0.3978  0.3139  0.9695  0.9980  0.9739  1.0000  0.3930  0.3243  0.9656  0.9962  

0.9993  0.9788  0.9961  0.9676  0.3787  0.3999  0.3835  0.3930  1.0000  0.9785  0.3710  0.3958  

0.9834  0.9996  0.9860  0.9953  0.3015  0.3283  0.3113  0.3243  0.9785  1.0000  0.2922  0.3235  

0.3747  0.2891  0.3689  0.2759  0.9996  0.9679  0.9960  0.9656  0.3710  0.2922  1.0000  0.9645  

0.3973  0.3166  0.3959  0.3088  0.9682  0.9988  0.9705  0.9962  0.3958  0.3235  0.9645  1.0000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

    (11) 
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Table 3 Strain maximum and minimum in 12 field monitoring locations 

Strain max and min Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 X1 X2 X3 X4 

MaxY1 2.38  2.43  2.76  2.65  20.15  10.43  20.82  11.68  2.09  2.37  22.11  10.26  

MaxY2 3.24  3.02  4.25  2.94  24.55  13.75  25.30  15.84  2.66  2.09  26.41  11.13  

MaxY3 2.01  1.95  2.03  2.20  1.73  2.26  1.87  1.87  1.94  1.78  1.24  1.73  

MaxY4 11.31  7.77  9.48  6.36  21.93  17.05  20.58  16.15  11.47  7.33  24.32  16.61  

MaxY5 5.82  6.22  4.56  5.85  4.86  5.57  5.24  4.08  5.40  6.26  5.06  5.64  

MaxY6 5.08  4.52  6.38  5.72  8.76  7.80  10.41  8.90  5.36  5.11  9.66  7.68  

MaxY7 9.00  3.31  8.81  3.68  3.17  3.22  3.20  3.61  10.36  3.11  3.92  3.16  

MaxY8 2.43  2.44  2.63  2.61  2.41  4.61  2.26  5.30  2.18  2.17  2.37  2.58  

MaxY9 67.73  66.41  67.27  65.85  4.93  7.65  6.22  7.80  66.06  68.10  4.24  7.37  

MaxY10 7.33  3.20  8.03  3.41  58.79  63.37  63.43  67.11  7.31  4.30  62.05  62.52  

MaxY11 2.00  2.03  1.90  2.05  2.10  1.71  2.23  1.91  1.65  2.34  2.31  1.49  

MaxY12 1.94  1.65  1.82  1.51  2.42  1.95  3.01  2.66  1.47  1.79  2.51  2.57  

MinY1 -2.66  -2.20  -2.17  -2.18  -1.69  -1.65  -2.19  -1.85  -2.41  -2.22  -2.00  -1.36  

MinY2 -2.98  -3.09  -2.28  -3.11  -2.54  -2.98  -3.20  -2.35  -3.15  -3.60  -3.05  -4.22  

MinY3 -14.42  -9.73  -14.24  -9.77  -27.64  -21.28  -28.88  -23.17  -14.09  -10.03  -30.15  -21.46  

MinY4 -12.32  -8.17  -9.07  -5.01  -22.42  -16.59  -19.74  -14.17  -11.47  -8.03  -24.22  -15.76  

MinY5 -11.27  -8.61  -10.18  -7.47  -21.63  -16.81  -23.93  -18.28  -10.54  -8.93  -24.52  -16.86  

MinY6 -2.98  -2.73  -2.32  -2.26  -3.61  -2.79  -3.38  -2.10  -2.94  -2.30  -3.55  -2.76  

MinY7 -9.07  -3.04  -8.79  -3.50  -3.31  -3.31  -2.97  -3.24  -10.75  -2.62  -2.93  -2.79  

MinY8 -2.37  -2.36  -2.71  -2.26  -3.34  -3.25  -4.04  -4.10  -2.21  -2.39  -3.35  -3.33  

MinY9 -3.91  -3.23  -3.87  -3.88  -13.72  -7.06  -17.44  -6.85  -3.54  -3.98  -14.36  -7.33  

MinY10 -6.34  -12.24  -6.25  -13.63  -4.81  -4.07  -6.43  -5.22  -5.46  -12.15  -4.36  -3.10  

MinY11 -13.50  -12.76  -15.52  -14.59  -11.45  -11.94  -14.61  -13.98  -13.06  -12.34  -12.37  -11.16  

MinY12 -15.56  -19.58  -19.11  -24.69  -2.91  -5.78  -2.12  -6.06  -15.02  -19.58  -3.04  -5.23  

 

 

 

 

 

325



 

 

 

 

 

 

Bao-Ya Cao, You-Liang Ding, Han-Wei Zhao and Yong-Sheng Song 

 

*

1.0000  0.9863  0.9968  0.9863  0.4017  0.4017  0.4017  0.4017  0.9993  0.9863  0.4017  0.4017 

0.9863  1.0000  0.9863  0.9959  0.4017  0.4017  0.4017  0.4017  0.9863  0.9996  0.4017  0.4017 

0.9968 

R 

 0.9863  1.0000  0.9863  0.4017  0.4017  0.4017  0.4017  0.9968  0.9863  0.4017  0.4017 

0.9863  0.9959  0.9863  1.0000  0.4017  0.4017  0.4017  0.4017  0.9863  0.9959  0.4017  0.4017 

0.4017  0.4017  0.4017  0.4017  1.0000  0.9739  0.9971  0.9739  0.4017  0.4017  0.9996  0.9739 

0.4017  0.4017  0.4017  0.4017  0.9739  1.0000  0.9739  0.9980  0.4017  0.4017  0.9739  0.9988 

0.4017  0.4017  0.4017  0.4017  0.9971  0.9739  1.0000  0.9739  0.4017  0.4017  0.9971  0.9739 

0.4017  0.4017  0.4017  0.4017  0.9739  0.9980  0.9739  1.0000  0.4017  0.4017  0.9739  0.9980 

0.9993  0.9863  0.9968  0.9863  0.4017  0.4017  0.4017  0.4017  1.0000  0.9863  0.4017  0.4017 

0.9863  0.9996  0.9863  0.9959  0.4017  0.4017  0.4017  0.4017  0.9863  1.0000  0.4017  0.4017 

0.4017  0.4017  0.4017  0.4017  0.9996  0.9739  0.9971  0.9739  0.4017  0.4017  1.0000  0.9739 

0.4017  0.4017  0.4017  0.4017  0.9739  0.9988  0.9739  0.9980  0.4017  0.4017  0.9739  1.0000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       (12) 

*

1    0    1    0    0    0    0    0    1    0    0    0

0    1    0    1    0    0    0    0    0    1    0    0

1    0    1    0    0    0    0    0    1    0    0    0

0    1    0    1    0    0  

R 

  0    0    0    1    0    0

0    0    0    0    1    0    1    0    0    0    1    0

0    0    0    0    0    1    0    1    0    0    0    1

0    0    0    0    1    0    1    0    0    0    1    0

0    0    0    0    0    1    0    1    0    0    0    1

1    0    1    0    0    0    0    0    1    0    0    0

0    1    0    1    0    0    0    0    0    1    0    0

0    0    0    0    1    0    1    0    0    0    1    0

0    0    0    0    0    1    0    1    0    0    0    1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      (13) 

From Fig. 6 and Table 4, the following observations can be made: 

(1) From the same characteristics observed for the three standard methods 

① X1 gets into case 1 before others, and X3 gets into case 5 before others. Therefore, X1 

belongs to case 1 and X3 belongs to case 5. Clustering results are consistent with field SHM 

results. So, this clustering method is credible. 

② X2 gets into case 2 before others, and X4 gets into case 6 before others. Therefore, X2 

belongs to case 2 and X4 belongs to case 6. Clustering results are consistent with FEM results. So, 

FEM results are credible. 

③ As it is mentioned above, the bigger (F-F0.05) value is, the better the clustering result is. For 

these three methods, (F-F0.05) gets the maximum value 380 when classification member r equals to 

4. The corresponding truncated matrix R

  is shown in Eq. (13). At this time the clustering result 

is: {case 1, X1, case3}, {case 2, X2, case4}, {case 5, X3, case7}, {case 6, X4, case8}. It means 

that the clustering result is the best when 8 carriage and 16 carriage train in the same line are in a 

category. 

④ At last, {case 1, X1, case3, case 2, X2, case4} and {case 5, X3, case7, case 6, X4, case8} 

become a big category, respectively. It means Jing Hu side and Hu Rong side become a category, 

respectively. At this time, classification member r equals to 2, (F-F0.05) value is 191.48. This 

category result is not good. 
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(a) Standard 1 (b) Standard 2 

  
(c) Non-standard (d) Compare of different standard method 

Fig. 6 Dynamic clustering process 

 

 
Table 4 The value of 𝐹0.05 and 𝐹 in non-standard method 

r 2 3 4 5 6 7 8 9 10 11 

F 196.44 227.87 384.07 309.27 260.37 267.83 361.47 301.70 217.21 113.46 

F0.05 
 

4.96 4.26 4.07 4.12 4.39 4.95 6.09 8.85 19.40 242 

F-F0.05 191.48 223.61 380.00 305.15 255.98 262.88 355.38 292.85 197.81 -128.54 

 

 

(2) From the different characteristics observed for the three standard methods 

① The bigger (F-F0.05) value is, the better the clustering result is. It means that the higher the 

curve in the Fig. 6(d) is, the better the standard method is. So from Fig. 6(d) we can get the 

conclusion that: standard2 method is better than standard1 and non-standard method is the best.  

② In the Fig. 6(d), for non-standard method the curve gets another extreme value 355.38 when 

classification member r equals to 8. This extreme value is just a little less than the maximum value 

380 and more than others. It indicates that the clustering result is also good when classification 

number r equals to 8. At this time the clustering result is: {case 1, X1}, {case3}, {case 2, X2}, 

{case4}, {case 5, X3}, {case7}, {case 6, X4}, {case8}. This clustering result means each case in 

Table 1 is in a category. The result is reasonable according to practical situation. However, 

standard1 and standard2 methods can’t recognize this extreme point when r equals to 8. It also 

indicates that non-standard method is better than the other two methods in this problem. 

1 X1 3 2 X2 4 5 X3 7 6 X4 8

┡=0.9862

┡=0.9731

┡=0.9702

┡=0.9687

┡=0.9417
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(3) The reason for the difference of the three standard methods 

What brings the different results of the three standard methods? As we have mentioned in 

section 4, we need to maintain the characteristic of original data and not to disturb the relationship 

between the original row vectors as much as possible. The less the original data is disturbed, the 

more the result is close to real situation. From standard1 to sandand2 to non-standard method, the 

results become more and more adequate because the impact of the transform operation is 

minimized. So we will use non-standard method to do fuzzy clustering analysis below. 

 

6. Damage identification using fuzzy clustering analysis 
 

Bridge may suffer various degrees of damage after used for a period of time. Damage 

identification is a fundamental issue in bridge health monitoring. FEM method is taken to simulate 

bridge damage as the FEM results are credible as illustrated in section 5. Then we try to identify 

damage by non-standard fuzzy clustering analysis method.  

 

6.1 Damage with different degrees 
 

As a typical representative, all the damage simulation by FEM given below is in the case 6. 

Table 5 gives strain maximum and minimum values of the 12 monitoring locations at different 

degrees of damage at bottom chord member Y5 which is at side truss of the mid-span. The variable 

name Dam0, Dam10~ Dam50 in Table 5 mean the area of chord member decreases 0, 10%~50%. 

Fig. 7 shows the fuzzy clustering process of Y5 when the damage degree of Y5 varies from 0 to 

50%. Table 6 gives threshold value λ in different damage degrees when the damage case and case 

6 become the same category. F statistical value in Table 6 is used to evaluate the difference 

between damage case and other 8 cases. So, value of F and F0.05 is corresponding to classification 

number r equals to 9 with damage degree changing. 

As we have illustrated in section 5, an undamaged case must get into one of the 8 cases in Table 

1 before the other 7 cases using this fuzzy clustering analysis method. If an unknown case can’t be 

classified into one of the 8 cases firstly. It means that this unknown case does not belong to the 8 

cases. That is to say, this unknown case is abnormal and the bridge strain mode changes. Bridge 

may be damage. In this paper, simulation by FEM is in the case 6. The threshold value λ is 0.9980 

for case 6 and case 8 getting into the same category. So if threshold value λ of an unknown case 

with case 6 is less than 0.9980. It means that the change of bridge strain mode caused by the 

unknown case is more than it caused by the different carriages in the same lane. So this unknown 

case is abnormal and bridge may be damage. At this time, the unknown case is identified as 

damage. Or just in brief, the damage case is identified.  

From Fig. 7 and Table 6, the following observations can be made: 

(1) When damage degree is no more than 10%, damage case gets into case 6 before the other 7 

cases. Threshold value λ is greater than 0.9980. The damage case can’t be identified in the degree 

of 10%. 

(2) When damage degree reaches 20%, damage case gets into case 6 after case 8. Threshold 

value λ is less than 0.9980. It means that strain mode change caused by damage in this degree is 

more than it caused by different carriages. So the damage case can be identified when the damage 

degree is more than 20%. 

(3) When damage degree reaches 50%, damage case is getting into case 6 just after case 8 and 

before others. It illustrates that strain mode change caused by damage is no more than it caused by 
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different lanes although the damage degree reaches 50%.  

(4) The higher the damage degree is, the lower threshold value λ and (F-F0.05) value is. It means 

that the difference between damage case and case 6 increases with the growth of damage. 

 

 

 
Table 5 Strain maximum and minimum at different degree damage of bottom chord Y5 

Damage degree Dam0 Dam10 Dam20 Dam30 Dam40 Dam50 

MaxY1 10.26 10.26 10.26 10.26 10.26 10.26 

MaxY2 11.13 11.13 11.13 11.13 11.13 11.13 

MaxY3 1.73 1.83 1.96 2.10 2.28 2.48 

MaxY4 16.61 16.57 16.51 16.44 16.34 16.21 

MaxY5 5.64 6.16 6.79 7.52 8.44 9.52 

MaxY6 7.68 7.68 7.68 7.67 7.67 7.66 

MaxY7 3.16 3.14 3.11 3.08 3.04 2.99 

MaxY8 2.58 2.60 2.63 2.65 2.69 2.74 

MaxY9 7.37 7.37 7.38 7.38 7.39 7.40 

MaxY10 62.52 62.52 62.52 62.52 62.52 62.52 

MaxY11 1.49 1.49 1.49 1.49 1.49 1.49 

MaxY12 2.57 2.57 2.57 2.57 2.57 2.56 

MinY1 -1.36 -1.36 -1.37 -1.37 -1.38 -1.38 

MinY2 -4.22 -4.23 -4.25 -4.27 -4.29 -4.32 

MinY3 -21.46 -21.51 -21.58 -21.65 -21.75 -21.86 

MinY4 -15.76 -15.82 -15.87 -15.93 -16.01 -16.09 

MinY5 -16.86 -18.42 -20.30 -22.50 -25.26 -28.47 

MinY6 -2.76 -2.75 -2.75 -2.74 -2.73 -2.72 

MinY7 -2.79 -2.78 -2.78 -2.78 -2.78 -2.77 

MinY8 -3.33 -3.33 -3.34 -3.34 -3.34 -3.34 

MinY9 -7.33 -7.33 -7.33 -7.33 -7.33 -7.34 

MinY10 -3.10 -3.10 -3.10 -3.10 -3.10 -3.09 

MinY11 -11.16 -11.16 -11.17 -11.17 -11.17 -11.17 

MinY12 -5.23 -5.23 -5.23 -5.23 -5.23 -5.23 
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Table 6 threshold value λ and F statistical value in different damage degree 

Dam(%) 0 10 20 30 40 50 

λ 0.9987 0.9984 0.9975 0.9956 0.9922 0.9869 

F 306.54 264.63 174.01 100.64 55.56 31.91 

F0.05 237 237 237 237 237 237 

F-F0.05 69.54 27.63 -62.99 -136.36 -181.44 -205.09 

 

  

(a) Dam0 (b) Dam10 

  
(c) Dam20 (d) Dam30 

  
(e) Dam40 (f) Dam50 

Fig. 7 Dynamic clustering process of Y5 when damage degree varied from 10% to 50% 
 

 

6.2 Damage at different locations 
 

The same with bottom chord member Y5, we have also simulated damage of top chord member 

Y3 at mid-span side truss and damage of Y3 and Y5 meanwhile by FEM. Simulation damage 

degree is 0, 10%, 20%, 30%, 40% and 50%, respectively. And then fuzzy clustering analysis is 

taken to do damage identification. Threshold value λ of different locations(Y3, Y5, Y3andY5) 

varied with damage degree is shown in Fig. 8. 
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Fig. 8 Threshold value λ of different locations varied with damage degree 

 

 
Table 7 Fitting coefficient 

Coefficient a b c d 

Y3 
-7-1.519 10  -9-3.968 10  -5-4.239 10  0.9987 

Y5 
-8-7.407 10  -7-6.944 10  -5-1.612 10  0.9987 

Y3 and Y5 
-7-1.972 10  -6-1.762 10  -5-1.762 10  0.9987 

 

 
3 2a x b x c x d                             (14) 

Fitting error formula 

100%
fitting value real value

fitting error
real value




 
  

  
 

                  (15) 

From Fig. 8 we can see: 

(1) Each of the three curves presents parabolic shape. So, polynomial fitting is taken for the 

three curves in this paper. Fitting formula is shown in Eq. (14) and fitting coefficient is in Table 7. 

Fitting error formula is shown in Eq. (15) and fitting error γ is no more than 0.01% . 

(2) As it is referred in section 6.1, when threshold value λ of an unknown case getting into case 

6 is less than 0.998, this unknown case is identified as damage. Intersecting x-coordinate of the 

curve Y3, Y5 and (Y3 and Y5) with λ=0.998 is 11.34, 15.64 and 8.80, respectively. It indicates that 

for Y3, Y5, and Y3 and Y5 damage simultaneously, when the damage degree reaches to 11.34%, 

15.64% and 8.8%, respectively, the damage case is identified, which is the strain mode change 

caused by damage is more significant than it caused by different carriages. The corresponding 

critical damage degree is called as damage threshold in this paper. It shows that: The damage 

threshold varies with damage location and reduces with the increase of damage locations. Bridge 

integrity is good, local small degree damage (less than 10%) of one chord member will not bring 

obvious changes of stress distribution mode. But when damage of one member reaches certain 

degree or small damage occurs in two or more places, stress distribution mode will produce 

obvious changes and action should be taken now. 
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(3) For the same degree, threshold value λ is different at different location. Top chord member 

is more sensitive to damage than bottom chord member. 

(4) The threshold value λ of Hu Rong side in the same category is 0.9739. When Y3 and Y5 

damage at the same time, λ is 0.9672 at the damage of 50%, less than 0.9739. That is to say: when 

two locations are damaged at the same time and its damage degree reaches 50%, strain mode 

change caused by damage is more significant than it caused by different lanes. In this case, 

damage is serious.  

 

 

7. Conclusions 
 

 In fuzzy clustering analysis, for the problem which dimension of different properties is the 

same, the first step of standardization can be omitted as standardization is not necessary at this 

time. The results may be better because any standardization method disturbs the characteristic of 

original data while non-standard method keeps the characteristic as much as possible. 

 Clustering result is the best when 8 carriage and 16 carriage train in the same line are in a 

category. If an unknown case gets into one of the 8 cases in Table 1 before the other 7 cases by 

fuzzy clustering analysis, this unknown case belongs to this one. 

 For DSG Bridge, the damage is identified when the strain mode change caused by damage is 

more significant than it caused by different carriages. The corresponding critical damage degree is 

called damage threshold. The damage thresholds are 11.34% for top chord member, 15.64% for 

bottom chord member and 8.8% for these two chord members at side truss of the mid-span 

damage simultaneously respectively. The damage threshold varies with damage location and 

reduces with the increase of damage locations.  

 When damage of two or more locations reaches a certain degree (50% for the top and bottom 

chord members damage simultaneously), the strain mode change caused by damage is more 

significant than it caused by different lanes. In this case, damage is serious. 

 The curve of threshold value λ which is damage case and its corresponding case being the 

same category varied with damage degree presents parabolic shape and can be fitted with a cubic 

polynomial well. 
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