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Abstract. This study aims to perform damage identification for Da-Sheng-Guan (DSG) high-speed
railway truss arch bridge using fuzzy clustering analysis. Firstly, structural health monitoring (SHM) system
is established for the DSG Bridge. Long-term field monitoring strain data in 8 different cases caused by
high-speed trains are taken as classification reference for other unknown cases. And finite element model
(FEM) of DSG Bridge is established to simulate damage cases of the bridge. Then, effectiveness of one
fuzzy clustering analysis method named transitive closure method and FEM results are verified using the
monitoring strain data. Three standardization methods at the first step of fuzzy clustering transitive closure
method are compared: extreme difference method, maximum method and non-standard method. At last, the
fuzzy clustering method is taken to identify damage with different degrees and different locations. The
results show that: non-standard method is the best for the data with the same dimension at the first step of
fuzzy clustering analysis. Clustering result is the best when 8 carriage and 16 carriage train in the same line
are in a category. For DSG Bridge, the damage is identified when the strain mode change caused by damage
is more significant than it caused by different carriages. The corresponding critical damage degree called
damage threshold varies with damage location and reduces with the increase of damage locations.

Keywords: railway bridge; steel truss arch; structural health monitoring; damage identification; fuzzy
clustering; finite element analysis

1. Introduction

In the past few decades, structural health monitoring (SHM) has been one of the most popular
research areas in the bridge engineering field (Garden and Fanning 2004, Farrar and Worden 2007,
Ou and Li 2010 and Yu and Xu 2011). SHM process is to collect data from the monitored structure
using periodically sampled measurements by an array of sensors, then extract features from these
measurements and conduct statistical analysis of these features to assess the structural degradation
(Fan and Qiao 2011, Sabatto, Mikhail et al. 2011 and Kovvali, Das et al. 2007).

The detection of damage is the most fundamental issue in SHM. Damage may be defined as a
state of change that affects the present or future performance of a system. Implicit in the above
definition is the fact that damage detection involves comparison with some initial undamaged state
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(Meyyappan, Jose et al. 2003). In this project the sensors were connected to the bridge, which was
monitored. SHM system with a great quantity of various types of sensors is usually employed by
large infrastructure engineering for long-term health monitoring. As an alternative to field
monitoring method, test and numerical simulation methods are also adopted as a supplement in
research bridge damage (Yu, Zhu et al. 2011 and Erdogan, Catbas et al. 2014). The numerical
analysis model is calibrated using SHM data and better represents the existing structure behavior
under different loading conditions.

Recently, the fuzzy approaches have been applied to solve damage detection problems. Fuzzy
logic is utilized to handle uncertainties and imprecision involved. Fuzzy clustering is an
unsupervised learning operation that aims at decomposing a given set of objects into subgroups or
clusters based on similarity. The goal is to divide the dataset in such a way that objects or cases
belonging to the same cluster are as similar as possible, whereas objects belonging to different
clusters are dissimilar (Kruse, Doring et al. 2007). Fuzzy cluster analysis methods mainly include:
transitive closure method based on fuzzy equivalence relation, the method based on similarity
relation and fuzzy relationship, the maximum tree method based on fuzzy graph theory and the
convex decomposition based on data sets and the dynamic rules (Zhou, Zhang et al. 2015).

Fuzzy clustering method has been used in many areas by researchers. Tarighat and Miyamoto
(2009) introduced a new fuzzy method to deal with uncertainties from inspection data, which was
practically based on both subjective and objective results of existing inspection methods and tools.
Wang and Elhag (2007) proposed a fuzzy group decision making (FGDM) approach for bridge
risk assessment. Silva, Dias et al. (2008) compared two fuzzy clustering algorithms: fuzzy
c-means (FCM) and Gustafson—Kessel (GK) algorithms by applying them to data from a
benchmark frame structure in the Los Alamos National Laboratory. Palomino, Steffen et al. (2014)
and Salah, Sabatto et al. (2013) use fuzzy cluster analysis methods for aircraft's damage
classification. Zhou, Zhang et al. (2015) evaluate health state of shield tunnel SHM using fuzzy
cluster method. Zhao and Chen (2002) use fuzzy inference system to do concrete bridge
deterioration diagnosis. Jiao, Liu et al. (2013) assess durability of the bridge based on fuzzy
clustering and field data. Meyyappaq, Jose et al. (2003) has done damage accumulation analysis
based on bridge health monitoring vibration data using fuzzy-neuro system.

Even though many researches have done damage analysis of different kinds of structures using
fuzzy logic, there are few studies on high-speed railway truss arch bridges according to previous
studies, especially based on field monitoring data. Nanjing DSG Bridge is a steel truss arch bridge
with the longest span throughout the world. Its 336 m main span and 6-track railways rank itself
the largest bridge with heaviest design loading among the high-speed railway bridges by far. And
the design speed 300 km/h is also one of the most advanced level in the world. Thus damage
identification of DSG Bridge is important. In this study, long-term field monitoring sensors are
installed on the Nanjing DSG Bridge to collect strain extreme value caused by high-speed trains.
The finite element model of DSG Bridge is also established to study damage as a supplement.
Then, effectiveness of fuzzy clustering method and FEM results are verified using SHM data.
Three standard methods are compared in the fuzzy clustering analysis. Finally, the fuzzy clustering
method is taken to identify damage with different degrees and locations.

2. SHM system of DSG Bridge

The panoramic view of Nanjing DSG Bridge is shown in Fig. 1(a), which is a steel truss arch
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bridge with the span arrangement (108+192+336+336+192+108) m. The elevation drawing of the
bridge is shown in Fig. 1(b). Due to the remarkable characteristics of DSG Bridge including long
span of the main girder, heavy design loading and high speed of trains, a long-term SHM system
was installed on the DSG Bridge shortly after it was opened to railway traffic. As shown in Fig.
1(b), dynamic strain monitoring of steel truss arch is performed at the 1-1, 2-2, 3-3 and 4-4
cross-section in the first main span of the bridge. Location of twenty strain sensors on the bridge is
shown in Fig. 2 and instructions of these sensors are given in Table 1. Sampling frequency of
dynamic strain data collection is set to 50 Hz.

Table 1 Location instructions of twenty strain sensors

Cross-section number of bridge Strain sensors number Location instructions
1-1 cross section Y4 Y 5-5 section of hanger
2-2 cross section YUY, 6-6 section of hanger
Y34 Yo 8-8 section of top chord member
YUY, 9-9 section of diagonal web member
] Y& Y5t 10-10 section of bottom chord member
3-3 cross section g )
Yo', Yo 11-11 section of deck chord member
Y7, Ys on the steel deck plate member
Yo, Y10 on the horizontal beam member
_ Yt Yo 14-14 section of arch foot chord member
4-4 cross section § )
Y12, Yo 14-15 section of arch foot chord member
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m

Fig. 1 Nanjing DSG Bridge
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(c) 3-3 cross-section of steel truss arch
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Fig. 2 Location of strain sensors on the steel truss arch bridge (unit: mm)

3. Finite element model of DSG Bridge

As an alternative to the field monitoring method, we can also obtain strain value of DSG
Bridge by finite element modeling (FEM) method. DSG Bridge operates well and no damage has
appeared till now in practical. The strain state of DSG Bridge in damage can be obtained through
finite element simulation. Then damage identification method and damage indicators are
introduced. Finally, damage can be identified based on SHM data using a certain method when the
bridge really suffer damage during the future service.

Fig. 3 shows the three-dimensional finite element model of the DSG Bridge using ANSYS
software. A total of 59760 nodes and 112706 elements are built in the model, 58370 of which are
beam elements and 54336 of which are shell elements. The top chords, bottom chords, deck chords,
diagonal web members, vertical web members, horizontal and vertical bracings of the steel truss
arch are simulated by BEAM188 element; the diaphragm members and top plates of the steel
bridge deck are simulated by SHELL181 element. Moreover, the finite element model has 7
bearings. The restraints of 7 bearings are set as follows: the middle bearing is constrained with
three degrees of translational freedom in directions of longitudinal X, transverse Y, and vertical Z;
the other bearings are constrained with two degrees of translational freedom in directions of
transverse Y and vertical Z. The elastic modulus and Poisson ratio of the steel is assigned as
210GPa and 0.30. The acceleration of gravity is set to 9.8 m/s*and the damping ratio is set to 0.02.
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Fig. 3 Three-dimensional FEM of Nanjing DSG Bridge

4. Theory of fuzzy clustering

Traditional sample classification method belongs to supervised learning style which realizes the
classification through specific standards. However, fuzzy clustering method can conduct the
process based on properties of the sample characteristics, and it is unsupervised. The criterion for
classification is not consistent and possesses apparent dynamic characteristics. It can establish the
uncertainty description of samples and more precisely reveals the actual situation (Sebzalli and
Wang 2001, Podofillini, Steffen et al. 2010 and Li 2004). Steps of one fuzzy clustering analysis
method named transitive closure method used in this paper are given as follows.

(1) Standardization for clustering data
X ={X, X,, -+, X, }is the vector of data for classification, and each data possesses m properties.

X; can be represented by Eq. (1).

X =[X Xiz0e e+ X 1)
An original data matrix can be constructed as (2).
Xu X o Xy
R @
X Xip Xom

where X;; is the jth property of the ith classification object.

The first step for fuzzy clustering analysis is standardization. That is transforming original data
to the interval [0, 1] in order to eliminate dimensional effect and making each property do same
contribution to the analysis. There are many standardization methods such as standard deviation
method, extreme difference method, mean value method, center method, and logarithm method
and so on. Extreme difference method shown in Eq. (3) is the most widely used in many papers.

(D Standardl-extreme difference method
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' Xij_ijin : .
Xij = |=1,2,"';n, J:]-;Zi"'!m (3)
Ximay — X

jmax jmin
X max :max{xijvxzjv""xnj}v X; min :mln{xij’X2j7“"an}

Stepd: x_IJ —X. —X

ij jmin

i=12,---n;j=12,---m (4a)

L X
Step2: X ==— i=12,---,n; j=12,---,m (4b)
X

jmax
Standard1l method can be divided into two steps just shown as Egs. (4(a)) and (4(b)). The first
step shown in Eq. (4(a)) is each member X; in the original matrix subtracts the minimum member

X, min of each column. Then we get a new matrix. The second step shown in Eq. (4(b)) is each

element x_IJ in the new matrix divided by the maximum x; _of each column to transform data to

the interval [0, 1]. We can see the first step in this place is not necessary to eliminate dimensional
effect. So we can try to skip the first step and only do the second step. This is standard2 method
shown in Eq. (5).

@ Standard2-the maximum method

CXe .
X =—— i=12--,n; j=12,---,m (5)

Take each row of the original data matrix for classification as a m dimension vector
X ={X X0 Xty 1=12,---n. Fuzzy clustering analysis is to compare the relationship
between these different rows according to the m different properties. Then do classification for the
n row vectors. Both standard methods above have transformed the original data and brought
changes to some extent about the relationship between the row vectors. And in the problem which
will be analyzed in this paper, the dimensional for each property is the same. So we could also not
standardize the original data and not disturb the original characteristic as much as possible. This
idea brings the third method that is the non-standard method.

(2) Construction of fuzzy similarity matrix

Fuzzy similarity matrix is constructed mainly according to distance or ratio of data. Similarity
coefficient r; describes the similarity degree between X and X;. r; calculation methods
mainly include dot product method, angle cosine method, correlation coefficient method, exponent
similarity coefficient, the maximum minimum method and so on. In this paper, Similarity

coefficient r;will be obtained by calculating the angle cosine value between X;and X;. It is
defined as Eq. (6)

(1,i=12,-,n) (6)
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(3) Calculate fuzzy equivalent matrix

The fuzzy similarity matrix calculated by Eq. (6) satisfies the reflexivity and symmetry but
does not satisfy transitivity. The corresponding fuzzy equivalent matrix which satisfies reflexivity,
symmetry and transitivity must be obtained in order to do clustering analysis. In this paper, the
successive square method is used to calculate the equivalent matrix as shown in Eq. (7).

R* :t(R) — RZk , R2k — RZk—l (7)

R"is the fuzzy equivalent matrix. By selecting appropriate thresholds 2 <[0,1], truncated
matrix R; =t,(R) is obtained.

(4) Determination of best classification
X ={x1,x ,---,xn} is the object for classification. X; =[xj1,xj2,---,x

i |is the jth member of
X(j=12,---n). And X, is the kth feature of X, (k=1,2,---,m). ris the classification number

corresponding to A, and n;is the number for the ith category. The average value for kth
eigenvalue of ith category can be calculated as shown in Eq. (8).

— 18
Xik:n_zxjk’ k=12,-,m (8)
i =l

The average value for kth eigenvalue of all data can be calculated by Eq. (9).

— 1
XKZEZXjk, k=12,--,m (9)
j=1

Original data for clustering

l Standard 1: Extreme difference method
Standardization Standard 2: The maximum method ‘
Angle cosine method l Standard 3: Non-standard method ‘

Fuzzy similarity matrix

Transitive closure method l

Fuzzy equivalent matrix

|

Dynamic clustering process

|

Best classification with
reference to F-statistic

Fig. 4 Flow chart of transitive closure fuzzy clustering analysis method
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F-statistics analysis is used for determining the best classification threshold; it can be
calculated by Eq. (10). F-statistics obeys distribution F(r —1,n—r). Its numerator stands for the
distance between different categories while its denominator stands for the distance of samples in
one category. So, the bigger the F is, the further distance between different categories is. If
F > F,.(r—-1n-r), the classification results are reasonable. And the bigger (F-Fos) value is, the

better the classification results is.

S0 Y (4~ %) (r-1)
F= i=lnv k=1 (10)

i(xjk —%)*/(n=r)

-

The flow chart of transitive closure fuzzy clustering analysis method is summarized in Fig. 4.

5. Effectiveness verification for fuzzy clustering method and FEM

8 different load cases of DSG Bridge are shown in Table 2 with reference to Fig. 2.

Strain value of deck plate members (YY) and horizontal beam members(Yg,Y 1) is equal to
stain sensor field monitoring value. But for truss members including hanger(Y,", Y4 v, de),
web member(Y,", Y.%) and chord member(Y3", Y5, Ys', Ys*, Yo', Yo', Yo", Y, Yo', Y1o0), the
strain value is the mean of strain sensor monitoring value in two sides of each truss member
because truss members mainly subject axial stress. For example, strain value Y; is the mean value
of Y,"and Y% Y; is the time history curve of strain value when the train goes through the bridge,
shown in Fig. 5. MaxY and MinY is the maximum and minimum value of Y, respectively.

Figs. 5(a) and 5(b) show Y, strain value of signal drive in case 6 by field SHM method and
FEM simulation method, respectively. From Fig. 5 we can see that: the results by SHM and FEM
are similar. The SHM data is subject to random disturbance outside, so the strain value appears
slight fluctuations. But the strain value acquired by the random disturbance is much lower than by
trains. The slight fluctuations caused by random disturbance can be ignored in this place. The
curve pattern and strain value in Figs. 5(a) and 5(b) is close. It indicates the FEM results are
reliable.

12 ; T 12

10-

(2] ee]
T T

S
Strain value (pe)

Strain value (pe)

N
T

o

-20 5 er 1'5 2'0 2'5 30 _20 5 1r0 1r5 2’0 2r5 30
Time (s) Time (s)
(@) SHM (b) FEM

Fig. 5 Time history curve of Y, strain value of single drive in case 6
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Table 2 Load case of DSG Bridge

Load case Case instruction
Casel 8 carriage train from north to south on Jing Hu side
Case2 8 carriage train from south to north on Jing Hu side
Case 3 16 carriage train from north to south on Jing Hu side
Case 4 16 carriage train from south to north on Jing Hu side
Case 5 8 carriage train from north to south on Hu Rong side
Case 6 8 carriage train from south to north on Hu Rong side
Case 7 16 carriage train from north to south on Hu Rong side
Case 8 16 carriage train from south to north on Hu Rong side

Strain maximum and minimum in 12 field monitoring locations are shown in Table 3. Column
1 to column 8 is the year mean value of strain maximum and minimum in 2014. Column X1 and
X3 is strain maximum and minimum by field SHM under case 1 and case 6 of single drive,
respectively. Column X2 and X4 is strain maximum and minimum by FEM under case 2 and case
6 of single drive, respectively. Each column in Table 3 is a kind of strain mode, which is a group of
24 strain maxima and minima at 12 monitoring locations. If the bridge suffers damage, the strain
mode will change.

Standardl and Standard2 methods are shown in Egs. (3) and (5), respectively. In the problem
we considered, the dimension of each property is the same, just dimensionless. So non-standard
method can be applied. In this part, we take three different standardization methods (standardl,
standard2 and non-standard method) to conduct fuzzy clustering analysis for the 12 group data in
Table 3. Fuzzy similarity matrix R, fuzzy equivalent matrix R* and truncated matrix R; when

A =0.9959,r =4 using non-standard method are shown in Egs. (11)-(13), respectively. Figs.

6(a)-6(c) show dynamic fuzzy clustering process for the three different standard methods,
respectively. Fig. 6(d) shows the comparison of (F-Fg0s) value of the classification results of the
three standard methods. The value of Fqgsand F in non-standard method are listed in Table 4.

[1.0000 0.9836 0.9968 0.9721 0.3824 0.4017 0.3874 0.3949 0.9993 0.9834 0.3747 0.3973
0.9836 1.0000 0.9863 0.9959 0.2982 0.3224 0.3070 0.3183 0.9788 0.9996 0.2891 0.3166
0.9968 0.9863 1.0000 0.9813 0.3770 0.4011 0.3848 0.3978 0.9961 0.9860 0.3689 0.3959
0.9721 0.9959 0.9813 1.0000 0.2855 0.3151 0.2970 0.3139 0.9676 0.9953 0.2759 0.3088
0.3824 0.2982 0.3770 0.2855 1.0000 0.9719 0.9971 0.9695 0.3787 0.3015 0.9996 0.9682
R 0.4017 0.3224 0.4011 0.3151 0.9719 1.0000 0.9733 0.9980 0.3999 0.3283 0.9679 0.9988 (11)
0.3874 0.3070 0.3848 0.2970 0.9971 0.9733 1.0000 0.9739 0.3835 0.3113 0.9960 0.9705

0.3949 0.3183 0.3978 0.3139 0.9695 0.9980 0.9739 1.0000 0.3930 0.3243 0.9656 0.9962
0.9993 0.9788 0.9961 0.9676 0.3787 0.3999 0.3835 0.3930 1.0000 0.9785 0.3710 0.3958
0.9834 0.9996 0.9860 0.9953 0.3015 0.3283 0.3113 0.3243 0.9785 1.0000 0.2922 0.3235
0.3747 0.2891 0.3689 0.2759 0.9996 0.9679 0.9960 0.9656 0.3710 0.2922 1.0000 0.9645
10.3973 0.3166 0.3959 0.3088 0.9682 0.9988 0.9705 0.9962 0.3958 0.3235 0.9645 1.0000
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Table 3 Strain maximum and minimum in 12 field monitoring locations
Strain maxand min  Casel  Case2 Case3 Case4 Case5 Case6 Case7  Case8 X1 X2 X3 X4
MaxY; 238 243 276 265 2015 1043 2082 1168 209 237 2211 1026
MaxY, 324 302 425 294 2455 1375 2530 1584 266 209 2641 1113
MaxY; 201 195 203 220 173 226 187 18 194 178 124 173
MaxY, 1131 777 948 636 2193 1705 2058 1615 1147  7.33 2432 1661
MaxYs 582 622 456 58 48 557 524 408 540 626 506 564
MaxYs 508 452 638 572 876 780 1041 890 536 511 966  7.68
MaxY- 900 331 881 368 317 322 320 361 1036 311 392 316
MaxYsg 243 244 263 261 241 461 226 530 218 217 237 258
MaxYyq 6773 6641 6727 6585 493 765 622 780 6606 6810 424 737
Max Yo 733 320 803 341 5879 6337 6343 6711 731 430 6205 6252
MaxY; 200 203 190 205 210 171 223 191 165 234 231 149
MaxY1; 194 165 182 151 242 195 301 266 147 179 251 257
MinY; 266 -220 217 -218  -169 -165 -219 -1.85 241 -222 200 -1.36
MinY, 298 309 228 311 254 298 -320 235 315 -360 -3.05 -4.22
MinYs 1442 973 -1424 -977 2764 2128 -2888 2317 -1409 -1003 -30.15 -21.46
MinY, 1232 817 907 501 2242 -1659 -19.74 -1417 -1147 -803 -2422 -1576
MinYs 1127 861 -1018 747 2163 -1681 -2393 -1828 -1054 893 2452 -16.86
MinYs 298 273 232 226 361 279 -338 210 294 230 -355 -2.76
MinY; 907 304 879 -350 331 331 -297 324 -1075 -262 293 279
MinYs 237 236 271 -226 334 325 -404 410 221 -239 -335 -333
MinYs 391 323 387 -38 -1372 -7.06 -1744 685 354 -398 -1436 -7.33
MinYig 634 -1224 625 -1363 481 -407 -643 522 546 -1215 436 -3.10
MinYs; 21350 -12.76  -1552 -1459 -1145 -1194 -1461 -1398 -13.06 -12.34 -12.37 -11.16
MinYs, 1556 -19.58 -19.11 -2469 291 578 -212 606 -1502 -1958 -3.04 523
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[1.0000 0.9863 0.9968 0.9863 0.4017 0.4017 0.4017 0.4017 0.9993 0.9863 0.4017 0.4017 ]
0.9863 1.0000 0.9863 0.9959 0.4017 0.4017 0.4017 0.4017 0.9863 0.9996 0.4017 0.4017
0.9968 0.9863 1.0000 0.9863 0.4017 0.4017 0.4017 0.4017 0.9968 0.9863 0.4017 0.4017
0.9863 0.9959 0.9863 1.0000 0.4017 0.4017 0.4017 0.4017 0.9863 0.9959 0.4017 0.4017
0.4017 0.4017 0.4017 0.4017 1.0000 0.9739 0.9971 0.9739 0.4017 0.4017 0.9996 0.9739
. [0.4017 0.4017 0.4017 0.4017 0.9739 1.0000 0.9739 0.9980 0.4017 0.4017 0.9739 0.9988
~10.4017 0.4017 0.4017 0.4017 0.9971 0.9739 1.0000 0.9739 0.4017 0.4017 0.9971 0.9739
0.4017 0.4017 0.4017 0.4017 0.9739 0.9980 0.9739 1.0000 0.4017 0.4017 0.9739 0.9980
0.9993 0.9863 0.9968 0.9863 0.4017 0.4017 0.4017 0.4017 1.0000 0.9863 0.4017 0.4017
0.9863 0.9996 0.9863 0.9959 0.4017 0.4017 0.4017 0.4017 0.9863 1.0000 0.4017 0.4017
0.4017 0.4017 0.4017 0.4017 0.9996 0.9739 0.9971 0.9739 0.4017 0.4017 1.0000 0.9739

10.4017 0.4017 0.4017 0.4017 0.9739 0.9988 0.9739 0.9980 0.4017 0.4017 0.9739 1.0000 | (12)
1 0 1 00 00010 0 0]
01 0100000T1T00
101000001000
01 0100000T1TQ00
0000101000T10
R*2000001010001
1000010100010
000001010001
101000001000
010100000T1TU00
0000101000T10

00000101000 1] (13)

From Fig. 6 and Table 4, the following observations can be made:

(1) From the same characteristics observed for the three standard methods

(D X1 gets into case 1 before others, and X3 gets into case 5 before others. Therefore, X1
belongs to case 1 and X3 belongs to case 5. Clustering results are consistent with field SHM
results. So, this clustering method is credible.

@ X2 gets into case 2 before others, and X4 gets into case 6 before others. Therefore, X2
belongs to case 2 and X4 belongs to case 6. Clustering results are consistent with FEM results. So,
FEM results are credible.

@ As it is mentioned above, the bigger (F-Fos5) value is, the better the clustering result is. For
these three methods, (F-Fos) gets the maximum value 380 when classification member r equals to
4. The corresponding truncated matrix R’ is shown in Eq. (13). At this time the clustering result

is: {case 1, X1, case3}, {case 2, X2, cased}, {case 5, X3, case7}, {case 6, X4, case8}. It means
that the clustering result is the best when 8 carriage and 16 carriage train in the same line are in a
category.

@ At last, {case 1, X1, case3, case 2, X2, case4} and {case 5, X3, case7, case 6, X4, case8}
become a big category, respectively. It means Jing Hu side and Hu Rong side become a category,
respectively. At this time, classification member r equals to 2, (F-Foos) value is 191.48. This
category result is not good.
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Fig. 6 Dynamic clustering process

Table 4 The value of Fygsand F in non-standard method

r 2 3 4 5 6 7 8 9 10 11
F 196.44 227.87 384.07 309.27 260.37 267.83 361.47 30170 217.21 113.46
Fo.os 4.96 4.26 4.07 412 4.39 4.95 6.09 8.85 19.40 242

F-Fo.os 19148 223.61 380.00 305.15 25598 262.88 355.38 292.85 197.81 -128.54

(2) From the different characteristics observed for the three standard methods

(D The bigger (F-Fogs) value is, the better the clustering result is. It means that the higher the
curve in the Fig. 6(d) is, the better the standard method is. So from Fig. 6(d) we can get the
conclusion that: standard2 method is better than standard1 and non-standard method is the best.

@ In the Fig. 6(d), for non-standard method the curve gets another extreme value 355.38 when
classification member r equals to 8. This extreme value is just a little less than the maximum value
380 and more than others. It indicates that the clustering result is also good when classification
number r equals to 8. At this time the clustering result is: {case 1, X1}, {case3}, {case 2, X2},
{case4}, {case 5, X3}, {case7}, {case 6, X4}, {case8}. This clustering result means each case in
Table 1 is in a category. The result is reasonable according to practical situation. However,
standard1 and standard2 methods can’t recognize this extreme point when r equals to 8. It also
indicates that non-standard method is better than the other two methods in this problem.
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(3) The reason for the difference of the three standard methods

What brings the different results of the three standard methods? As we have mentioned in
section 4, we need to maintain the characteristic of original data and not to disturb the relationship
between the original row vectors as much as possible. The less the original data is disturbed, the
more the result is close to real situation. From standardl to sandand2 to non-standard method, the
results become more and more adequate because the impact of the transform operation is
minimized. So we will use non-standard method to do fuzzy clustering analysis below.

6. Damage identification using fuzzy clustering analysis

Bridge may suffer various degrees of damage after used for a period of time. Damage
identification is a fundamental issue in bridge health monitoring. FEM method is taken to simulate
bridge damage as the FEM results are credible as illustrated in section 5. Then we try to identify
damage by non-standard fuzzy clustering analysis method.

6.1 Damage with different degrees

As a typical representative, all the damage simulation by FEM given below is in the case 6.
Table 5 gives strain maximum and minimum values of the 12 monitoring locations at different
degrees of damage at bottom chord member Y which is at side truss of the mid-span. The variable
name Dam0, Dam10~ Dam50 in Table 5 mean the area of chord member decreases 0, 10%~50%.
Fig. 7 shows the fuzzy clustering process of Ys when the damage degree of Y5 varies from 0 to
50%. Table 6 gives threshold value 2 in different damage degrees when the damage case and case
6 become the same category. F statistical value in Table 6 is used to evaluate the difference
between damage case and other 8 cases. So, value of F and Fqgsis corresponding to classification
number r equals to 9 with damage degree changing.

As we have illustrated in section 5, an undamaged case must get into one of the 8 cases in Table
1 before the other 7 cases using this fuzzy clustering analysis method. If an unknown case can’t be
classified into one of the 8 cases firstly. It means that this unknown case does not belong to the 8
cases. That is to say, this unknown case is abnormal and the bridge strain mode changes. Bridge
may be damage. In this paper, simulation by FEM is in the case 6. The threshold value 4 is 0.9980
for case 6 and case 8 getting into the same category. So if threshold value A of an unknown case
with case 6 is less than 0.9980. It means that the change of bridge strain mode caused by the
unknown case is more than it caused by the different carriages in the same lane. So this unknown
case is abnormal and bridge may be damage. At this time, the unknown case is identified as
damage. Or just in brief, the damage case is identified.

From Fig. 7 and Table 6, the following observations can be made:

(1) When damage degree is no more than 10%, damage case gets into case 6 before the other 7
cases. Threshold value 2 is greater than 0.9980. The damage case can’t be identified in the degree
of 10%.

(2) When damage degree reaches 20%, damage case gets into case 6 after case 8. Threshold
value 4 is less than 0.9980. It means that strain mode change caused by damage in this degree is
more than it caused by different carriages. So the damage case can be identified when the damage
degree is more than 20%.

(3) When damage degree reaches 50%, damage case is getting into case 6 just after case 8 and
before others. It illustrates that strain mode change caused by damage is no more than it caused by
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different lanes although the damage degree reaches 50%.

(4) The higher the damage degree is, the lower threshold value 1 and (F-Fgs) value is. It means

that the difference between damage case and case 6 increases with the growth of damage.

Table 5 Strain maximum and minimum at different degree damage of bottom chord Y5

Damage degree Dam0 Dam10 Dam20 Dam30 Dam40 Dam50
MaxY 10.26 10.26 10.26 10.26 10.26 10.26
MaxY, 11.13 11.13 11.13 11.13 11.13 11.13
MaxY; 1.73 1.83 1.96 2.10 2.28 2.48
Maxy , 16.61 16.57 16.51 16.44 16.34 16.21
MaxYs 5.64 6.16 6.79 7.52 8.44 9.52
MaxY¢ 7.68 7.68 7.68 7.67 7.67 7.66
MaxY; 3.16 3.14 3.11 3.08 3.04 2.99
MaxYg 2.58 2.60 2.63 2.65 2.69 2.74
MaxYg 7.37 7.37 7.38 7.38 7.39 7.40
MaxY g 62.52 62.52 62.52 62.52 62.52 62.52
Maxy gy 1.49 1.49 1.49 1.49 1.49 1.49
MaxY 1, 2.57 2.57 2.57 2.57 2.57 2.56
MinY, -1.36 -1.36 -1.37 -1.37 -1.38 -1.38
MinY, -4.22 -4.23 -4.25 -4.27 -4.29 -4.32
MinY; -21.46 -21.51 -21.58 -21.65 -21.75 -21.86
MinY, -15.76 -15.82 -15.87 -15.93 -16.01 -16.09
MinYs -16.86 -18.42 -20.30 -22.50 -25.26 -28.47
MinYg -2.76 -2.75 -2.75 -2.74 -2.73 -2.72
MinY; -2.79 -2.78 -2.78 -2.78 -2.78 -2.77
MinYg -3.33 -3.33 -3.34 -3.34 -3.34 -3.34
MinY, -7.33 -7.33 -7.33 -7.33 -7.33 -7.34
MinY o -3.10 -3.10 -3.10 -3.10 -3.10 -3.09
MinYy; -11.16 -11.16 -11.17 -11.17 -11.17 -11.17
MinY 3, -5.23 -5.23 -5.23 -5.23 -5.23 -5.23
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Table 6 threshold value 4 and F statistical value in different damage degree

Dam(%) 0 10 20 30 40 50
A 0.9987 0.9984 0.9975 0.9956 0.9922 0.9869
F 306.54 264.63 174.01 100.64 55.56 31.91
Fo.os 237 237 237 237 237 237
F-Foos 69.54 27.63 -62.99 -136.36 -181.44 -205.09
E@@EE@@B E@@E@E@@
I=0.9987 | k=0.9984
‘ I=0.9980 £=0.9980
0.9971 0.9971
=0.9968 0.9968
0.9959 I£0.9959
09863 1=0.9863
%0.9739 ‘ %0.9739
\ l=0.4017 =0.4017
(a) Dam0 (b) Dam10
E@@E@E@@ E@@EE@@@
1=0.9980 1=0.9980
| I=0.9975 =0.9971
}=0.9971 1=0.9968
I=0.9968 =0.9959
=0.9959 =0.9956
0.9863 I=0.9863
0.9739 | I=0.9739
‘ '.!0.4017 1=0.4018
(c) Dam20 (d) Dam30
E@@E@@@@ E@@EE@@@
1=0.9980 =0.9980
l=0.9971 k=0.9971
1=0.9968 =0.9968
10.9959 I=0.9959
1=0.9922 =0.9869
20.9863 =0.9863
!509739 ‘ ’50.9739
‘ 1=0.4032 k=0.4041

6.2 Damage at different locations

The same with bottom chord member Y, we have also simulated damage of top chord member

(e) Dam40

(f) Dam50

Fig. 7 Dynamic clustering process of Y5 when damage degree varied from 10% to 50%

Y5 at mid-span side truss and damage of Y; and Ys meanwhile by FEM. Simulation damage
degree is 0, 10%, 20%, 30%, 40% and 50%, respectively. And then fuzzy clustering analysis is
taken to do damage identification. Threshold value A of different locations(Ys, Ys, YazandYs)
varied with damage degree is shown in Fig. 8.



Damage identification for high-speed railway truss arch bridge using fuzzy clustering analysis 331

1.000

0.995 |
0.990 |
0.985 |

0.980 |

Threshold value A

0975 |

0.970 |

—&—Y3 —&Y5 > Y3andY5

0.965

0 10 20 30 40 50
Damage degree(%)

Fig. 8 Threshold value A of different locations varied with damage degree

Table 7 Fitting coefficient

Coefficient a b c d
Y, -1.519x107 -3.968x10° -4.239x10° 0.9987
Y5 -7.407x10° -6.944x107 -1.612x10% 0.9987
Ysand Yg -1.972x107 -1.762x10% -1.762x10° 0.9987
A=a-x*+b-x*+c-x+d (14)

Fitting error formula

fitting value —real value

fitting error y =
real value

x100% (15)

From Fig. 8 we can see:

(1) Each of the three curves presents parabolic shape. So, polynomial fitting is taken for the
three curves in this paper. Fitting formula is shown in Eq. (14) and fitting coefficient is in Table 7.
Fitting error formula is shown in Eq. (15) and fitting error y is no more than 0.01% .

(2) As itis referred in section 6.1, when threshold value A of an unknown case getting into case
6 is less than 0.998, this unknown case is identified as damage. Intersecting x-coordinate of the
curve Ys, Ysand (Ysand Ys) with 1=0.998 is 11.34, 15.64 and 8.80, respectively. It indicates that
for Y3, Ys, and Y3 and Ys damage simultaneously, when the damage degree reaches to 11.34%,
15.64% and 8.8%, respectively, the damage case is identified, which is the strain mode change
caused by damage is more significant than it caused by different carriages. The corresponding
critical damage degree is called as damage threshold in this paper. It shows that: The damage
threshold varies with damage location and reduces with the increase of damage locations. Bridge
integrity is good, local small degree damage (less than 10%) of one chord member will not bring
obvious changes of stress distribution mode. But when damage of one member reaches certain
degree or small damage occurs in two or more places, stress distribution mode will produce
obvious changes and action should be taken now.
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(3) For the same degree, threshold value 4 is different at different location. Top chord member
is more sensitive to damage than bottom chord member.

(4) The threshold value 2 of Hu Rong side in the same category is 0.9739. When Y3 and Y5
damage at the same time, 4 is 0.9672 at the damage of 50%, less than 0.9739. That is to say: when
two locations are damaged at the same time and its damage degree reaches 50%, strain mode
change caused by damage is more significant than it caused by different lanes. In this case,
damage is serious.

7. Conclusions

e In fuzzy clustering analysis, for the problem which dimension of different properties is the
same, the first step of standardization can be omitted as standardization is not necessary at this
time. The results may be better because any standardization method disturbs the characteristic of
original data while non-standard method keeps the characteristic as much as possible.

e Clustering result is the best when 8 carriage and 16 carriage train in the same line are in a
category. If an unknown case gets into one of the 8 cases in Table 1 before the other 7 cases by
fuzzy clustering analysis, this unknown case belongs to this one.

e For DSG Bridge, the damage is identified when the strain mode change caused by damage is
more significant than it caused by different carriages. The corresponding critical damage degree is
called damage threshold. The damage thresholds are 11.34% for top chord member, 15.64% for
bottom chord member and 8.8% for these two chord members at side truss of the mid-span
damage simultaneously respectively. The damage threshold varies with damage location and
reduces with the increase of damage locations.

e When damage of two or more locations reaches a certain degree (50% for the top and bottom
chord members damage simultaneously), the strain mode change caused by damage is more
significant than it caused by different lanes. In this case, damage is serious.

e The curve of threshold value A which is damage case and its corresponding case being the
same category varied with damage degree presents parabolic shape and can be fitted with a cubic
polynomial well.
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