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Abstract.  Assessing the condition of paint on civil structures is an important but challenging and costly 
task, in particular when it comes to large and complex structures. Current practices of visual inspection are 
labour-intensive and time-consuming to perform. In addition, this task usually relies on the experience and 
subjective judgment of individual inspectors. In this study, hyperspectral imaging and classification 
techniques are proposed as a method to objectively assess the state of the paint on a civil or other structure. 
The ultimate objective of the work is to develop a technology that can provide precise and automatic grading 
of paint condition and assessment of degradation due to age or environmental factors. Towards this goal, we 
acquired hyperspectral images of steel surfaces located at long (mid-range) and short distances on the 
Sydney Harbour Bridge with an Acousto-Optics Tunable filter (AOTF) hyperspectral camera (consisting of 
21 bands in the visible spectrum). We trained a multi-class Support Vector Machines (SVM) classifier to 
automatically assess the grading of the paint from hyperspectral signatures.  
Our results demonstrate that the classifier generates highly accurate assessment of the paint condition in 
comparison to the judgement of human experts. 
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1. Introduction 
 

1.1 Paint condition monitoring 
 
Protective coatings are applied to the vast majority, if not all, steel structures located in outside 

environments. Coatings shield the structure from damaging aspects of the environment including 

sunlight, humidity, corrosive agents such as salts and windborne abrasives. 

Without protective coatings the life of steel structures would be severely shortened. It is crucial 
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therefore that the protective coating is intact and working effectively at all times. The most 

common protective layers are polymer paints. However, polymer paint has a limited lifespan. It 

degrades as it ages, thus requires repairs and repainting. Paint can also be damaged by wear from 

abrasion or contact with vehicles, maintenance personnel and equipment. The effective life of the 

paint will vary significantly across a structure as different components experience varying amounts 

of UV exposure, moisture and physical wear.  

It is important to detect when paint is no longer effective as significant costs may be incurred as 

a result of the effects of corrosion and subsequent repair costs to the structure. Repairing damaged 

paint requires removal of the old paint, preparation of the surface, and application of the new paint. 

The cost of repair may in fact be higher than initial cost of painting. For difficult-to-reach-areas, 

substantial cost, effort and time may be involved in setting up scaffolding, gantries and other 

access equipment for maintenance personnel. An accurate assessment of paint condition allows 

asset owners to repaint only when necessary and before damage is done to structures due to failure 

of protective coatings. 

Thus, it is important to be able to accurately assess paint condition and make informed 

decisions about repainting at the appropriate time. The improvement in productivity from 

improved maintenance planning can have a significant financial benefit. 

Current assessment practises involve trained inspectors performing visual inspections and the 

paint and surface condition using a rating system. Several standards are currently in use for the 

assessment of the condition of protective coatings. These include ASTM D5065 – 13 for aged 

coatings, ASTM D610 – 08 to check the degree of rusting and ASTM D662 – 93 for evaluating the 

degree of erosion, those standards are based on visual inspection (ASTM-D662-93 2011, 

ASTM-D610–08 2012, ASTM-D5065-13 2013). These practises are labour intensive and can be 

subjective in many cases.   

A number of technology based approaches have been proposed for objective assessment of 

paint and coatings. These include Fourier transform infrared (FTIR) (Gerlock et al. 1998, Poliskie 

and Clevenger 2008), scanning electron microscope (SEM) ((Tiong and Clark 2011)), energy 

dispersive x-ray spectroscopy (EDS), and Auger electron spectroscopy (AES) (Bayer and 

Zamanzadeh 2004). These techniques are generally based on chemical analysis of samples and 

require very expensive devices beside a laboratory environment setup in order to obtain results. 

They are therefore not generally suitable for use in situ by maintenance personnel in the field.    

Hyperspectral imaging has been shown to improve the performance of many applications 

including mineralogical mapping of surface soils and crops, biomedical engineering, vegetation, 

etc. (Goetz 2009, Dundar and Landgrebe 2004) and skin biometrics (Huynh and Robles-Kelly 

2010). Here, we investigate the use of inexpensive hyperspectral imaging for paint condition 

assessment. Our motivation is that paint condition degradations (rusting, flacking, and blistering) 

due to the changes in the chemical composition of the paint can be captured through the 

hyperspectral signatures. 

One of the greatest advantages of hyperspectral imagery lies in its capability of capturing visual 

data over hundreds or thousands of bands in and beyond the visible spectrum. This capability 

potentially offers extremely rich spectral attributes, some not observable by visible light cameras, 

for classification of with high accuracy. Furthermore, hyperspectral imaging is able to overcome 

the issue of metamerism, i.e., the possibility that two materials with different chemical 

decomposition exhibiting the same colour (Wyszecki and Stiles 2000). Metamerism has been 

known to significantly hinder the performance of material classification using trichromatic colour 

images. With hyperspectral and multispectral images, one can distinguish metameric materials by 
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examining the shapes and spectral variation of their spectra, which is characteristic of their 

chemical compositions. 

 

1.2 Hyperspectral imaging 
 

Conventional colour imaging sensors (“RGB” sensors) are able to capture the three primary 

colours perceived by human eyes. They operate by interlacing photodetectors sensitive to the red, 

green and blue regions of the spectrum on the same sensor array. In contrast with trichromatic 

sensors, multi-spectral and hyper-spectral imagers store colour information in a higher number of 

channels, each of which measures the amount of energy emitted within a specific band of 

wavelengths. The number of bands and the spectral density in such an image are determined by the 

hardware capability of the imaging sensor. In multi-spectral images, the number of bands is in the 

order of tens, whereas in hyperspectral images, there are hundreds or thousands of very narrow 

bands. 

Commonly, hyperspectral images are captured and digitised in a discrete form known as a three 

dimensional image cube, including two spatial dimensions and a spectral one. Fig. 1 illustrates this 

three-dimensional structure. As show on the left-hand side, a spectral image is indexed to the pixel 

location and the central wavelength of each band. In other words, a spectral image can be 

formalised as a function ℒ: ℝ3 ⟼ ℝ. The irradiance spectrum at an image pixel is the collection 

of image intensity (irradiance) values at that pixel across the entire wavelength range, as 

demonstrated on the right-hand side of the figure. 

The image intensity values captured by a camera, also known as irradiance values, are 

dependent on the illumination condition, the object shape and the surface material reflectance. The 

illumination at each surface location is determined by factors such as illumination intensity, 

illumination colour and shadow and is possibly spatially varying. The latter term, i.e., the surface 

material reflectance, is defined as the fraction of light from the illumination source that is reflected 

from a surface. This quantity is an objective measure of the underlying surface characteristics and 

is independent of the illumination condition. Due to this property, material reflectance has been 

employed as a robust feature for material classification. 

In hyperspectral imaging, the intrinsic colour of a material is captured by narrow-band spectral 

filters and resolved into a collection of values corresponding to various wavelengths in the 

spectrum. These wavelength-index values are referred to as the material reflectance spectrum or 

material spectral signature. Material spectral signatures have the advantage of being able to discern 

metamers, i.e., colours with different spectral power distribution but appear to correspond to 

similar trichromatic responses. Since material reflectance spectra are invariant to the illumination 

condition, it has attracted growing interests for applications in the areas of material classification 

and mapping in aerial imaging (Slater and Healey 1997, Healey and Slater 1999, Suen and Healey 

2001) and terrestrial imaging (Angelopoulou 2000, Angelopoulou et al. 2001). 

 

 

2. Case study: The Sydney Harbour Bridge 
 

The Sydney Harbour Bridge was opened to the public in 1932 and is one of the most iconic 

structures in Australia. It is the sixth longest spanning-arch bridge in the world and the tallest steel 

arch bridge, measuring 134 m from the water level to the top of the arch. The bridge plays a 

critical role in connecting the Sydney CBD with the Northern suburbs of Sydney. The total weight 
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of the steelwork of the bridge, including the arch and approach spans, is 52,800 tonnes. The steel 

components are joined together by over six million rivets (NSW 2011a).  

Steel components on the Sydney Harbour Bridge introduces a very a significant challenge in 

terms of protection required to prevent corrosion. This is particularly true given the maritime 

location of the bridge. Over time the paint suffers degradation due to UV light and harsh weather 

conditions and must be replaced to ensure the steel is fully protected. There are approximately 

272,000 litres of paint needed to paint the bridge (primer and final coat) (NSW 2011b).  

Therefore, ensuring a high quality protective coating to seal the steel is essential to prevent rusting 

from occurring. The inspection and replacement of paint is conducted as a regular task of bridge 

structure maintenance. 

Being able to accurately predict when repainting will be required would greatly aid 

maintenance planning and result in significant cost efficiencies particularly in the areas of site 

access and preparation.  

We collect data for the study from two locations on the eastern side of the Sydney Harbour 

Bridge. The first location was on the top of the lower arch were the short range images were captured. 

The second location was on the eastern side near the north pylon, in this location the mid-range 

images were captured (shown in Fig. 2). The main reason that those locations were chosen is the fact 

that they contain the four different levels of paint failures described below. Eventually any location 

on the bridge can be selected to capture the data. 

A four level rating system is commonly used for assessing civil structures in Australia – other 

countries and industries adopt similar systems but may have a different number of levels. The four 

rating levels used by bridge inspectors and in our study are as follows: 

 

● Level 1: the protective coating is generally sound and unbroken. 
● Level 2: the protective coating is exhibiting white or red rusting with minor speckles or localised 

pinhead rusting. 
● Level 3: the protective coating is exhibiting speckled white rusting in areas greater than 2% and 

less than 5% of total surface area, or speckled red rusting in areas greater than 0:5% and less than 

5% of total surface area. 
● Level 4: the protective coating is no longer effective, with red and white speckled rust in areas 

larger than 5% of total surface area. 
Any given bridge component may have a mixture of different rating levels such as 70% Level 1, 

20% Level 2 and 10% Level 3. 

 

 

3. Data processing: algorithm development 
  

In this section, we present an image processing and classification procedure to arrive at an 

objective condition rating of steel surfaces. The classification of the acquired images is based on 

the four level rating system described above. We aim to design an automatic data-driven classifier 

based on exemplar surface areas belonging to each level as provided by human experts, e.g., 

bridge inspectors. Therefore we could avoid the need for handcrafting certain correlation criteria 

between rating levels and image features such as reflectance spectra. This strategy relieves some 

unnecessary manual work, while allowing for more generality of the resulting classifier.   

After collecting images on site, the data were processed in two phases, as illustrated in Fig. 3. 

In the training phase, a number of images were randomly selected for training and several image 
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regions are labelled with the respective rating levels. 

 

 

 

 

Fig. 1 Left panel: a hyperspectral image is visualised as a data cube with three dimensions spanning both the 

spatial and spectral domains. Right panel: Intensity values at the same image pixel form the irradiance 

spectrum at that pixel 

 

 

 

Fig. 2 Data capturing - Location 1: on the top of the lower arch and Location 2: near the bottom of the north 

pylon (Australia 2010) 

 

 

Subsequently, the spectral reflectance spectra were extracted, which is invariant to the 

illumination condition, from the training regions. Taking these reflectance spectra as input, a 

Support Vector Machines (SVM) (Cristianini and Shawe-Taylor 2000) was trained in order to 

perform automatic classification of surface condition ratings. This process is depicted in Fig. 3(a). 

In the classification phase, reflectance spectra were first extracted from the image of a novel 

surface and treated as input to the classifier learned previously. At this point, the classifier assigns 
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a surface rating label to each pixel based on its reflectance spectrum. The aggregation of all the 

labels in an image yields the proportion of the surface area belonging to each rating category. The 

classification phase is illustrated in Fig. 3(b). 

 
3.1 Image region labelling 
 
For the labelling task, a number of images were selected randomly as training data and 

subsequently were provided to a human expert, e.g., a bridge inspector. To minimise mislabelling, 

the human expert was present at the collection site to make an observation of the actual surface 

being imaged. The labelling was performed shortly after the acquisition of each training image. At 

this point, the human expert selected pixel regions and assigned a label corresponding to their 

condition ratings, according to his observation of the actual surface. 

To facilitate this task, we have developed a graphical user interface for managing training 

images and rating labels as shown in Fig. 4 (This tool is part of the NICTA's Scyllarus 

hyperspectral image processing pipeline. See http://scyllarus.research.nicta.com.au). Using this 

tool, a human expert is able to select multiple polygonal regions in an image and provide a label 

for each of them. The “Polygon Labels” panel at the top right corner displays various region labels 

for each image and allows the selection and de-selection of region groups sharing the same label, 

by switching on and off the respective label item. The bottom-right panel presents the set of all 

training images to the user. 

 

 

 
(a) 

 
(b) 

Fig. 3 The process of hyperspectral image analysis for surface condition rating. Top: The (off-line) 

training phase consists of the labelling of image regions with surface condition ratings by human 

experts, the extraction of material reflectance features from the labelled image regions and the 

supervised training of a classifier. Bottom: in the (online) classification process, material spectral 

signatures are extracted from a novel image and passed to the learned classifier as features for 

classification 
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3.2 Extracting material reflectance 
 
In this section, we describe a method for extracting reflectance spectra from a given 

hyper-spectral image. As mentioned earlier, reflectance is a material intrinsic property that is 

invariant to the illumination variation. Therefore, we choose to employ reflectance as a robust 

feature for the classification of surface condition ratings. 
To this end, we depart from an image formation model that decomposes a hyper-spectral image 

into the illumination power spectrum and the underlying surface material reflectance. Here, we 

assume that the scene is uniformly illuminated by a single light source and the irradiance arriving at 

the camera sensor is proportional to the scene radiance. We denote the radiance reflected from a 

scene location 𝑢 and a wavelength 𝜆 as 𝐼(𝑢, 𝜆). In addition, 𝐿(𝜆) denotes the (spatially uniform) 

illumination power spectrum and 𝑆(𝑢, 𝜆) is the surface reflectance function at the above location 

and wavelength. The relationship between the scene radiance and the latter two terms is 

well-understood by numerous works in colour constancy (Land and McCann 1971), (Land 1986) 

and illumination recovery (Kimmel et al. 2003), and is mathematically expressed as follows  

  𝐼(𝑢, 𝜆)  =  𝐿(𝜆)𝑆(𝑢, 𝜆)                   (1) 

The matter of separating the material reflectance from the illumination power spectrum given the 

irradiance image is closely related to the large body of works in computational colour constancy. 

This area of research aims to resolve the intrinsic material colour from images captured under 

varying illumination conditions. To this end, we leverage a simple and widely adopted approach 

known as the Grey-World method (Buchsbaum 1980). This method relies on the hypothesis that the 

spatial average of surface reflectances in a scene is achromatic, i.e., the illuminant spectrum can be 

estimated by taking the average of the sensor responses in the image. It is a member of a wider 

family of color constancy methods directly applicable to single images with no requirements for 

pre-processing or prior knowledge gathered from training data. Other popular methods in this group 

include the White-Patch approach (McCann et al. 1977), the Shade-of-Gray method (Finlayson and 

Trezzi 2004), and the Grey-Edge method (Van de Weijer et al. 2007). 
Using the Grey-World method, the illumination power spectrum is estimated as 

 𝐿̂(𝜆) = 〈𝐼(𝑢, 𝜆)〉𝑢           (2) 

where 〈⋅ 〉𝑢 is an abbreviation for  the average of the argument over all the pixel locations. 
With this estimate of the illumination power spectrum, the spectral reflectance can be computed 

as 

                      𝑆(𝑢, 𝜆) =  
𝐼(𝑢,𝜆)

𝐿̂ (𝜆)
                                (3) 

 

3.3 Training a classifier 
 
In the previous section, we have obtained a reflectance spectrum 

𝑆𝑢 ≜  ,𝑆(𝑢, 𝜆1), 𝑆(𝑢, 𝜆2) …  𝑆(𝑢, 𝜆𝑁)- per pixel 𝑢 assuming that the input hyper-spectral images 

are sampled at 𝑁 wavelengths 𝜆𝑖, 𝑗 =  1, 2, … 𝑁. 
At the training phase, we take input from these reflectance spectra and their associated labels, 

which have been provided by the human expert. Here, we denote the label associated with the 

spectrum   𝑆𝑢 as  𝑦𝑢, where 𝑦𝑢  ∈  *1, … , 𝐾+ and 𝐾 is the number of condition rating levels. At 
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this point, we tackle this multi-class classification problem by adopting the “one-against-one” 

approach in which we perform binary classification for every pair of classes. In other words, the 

approach constructs 𝐾(𝐾 − 1)/2 binary classifiers in total. For a pair of 𝑝-th and 𝑞-th classes, the 

optimal Support Vector Machines (SVM) binary classifier (Cristianini and Shawe-Taylor 2000) is 

represented as a separating hyperplane that maximises the margin between samples in the two 

classes. Formally, we find this classifier by solving the following problem. 

min  𝑤𝑝𝑞,𝑏𝑝𝑞,𝜉𝑝𝑞   
1

2
‖𝑤𝑝𝑞‖2 + 𝐶 ∑ 𝜉𝑢

𝑝𝑞

𝑢

 

subject to   (𝑤𝑝𝑞)𝑇ϕ (S𝑢) +  𝑏𝑝𝑞 ≥     1 −  𝜉𝑝𝑞 , if y𝑢 = p             (4) 

and         (𝑤𝑝𝑞)𝑇ϕ (S𝑢) +  𝑏𝑝𝑞 ≥ −1 +  𝜉𝑝𝑞 , if y𝑢 = q, 

where 𝑤𝑝𝑞  is the normal vector of the separating hyperplane between the classes, ‖ ⋅  ‖denotes the 

𝐿2-norm of a vector, 𝑏𝑝𝑞  is an offset from the origin, 𝜉𝑢
𝑝𝑞

 is a non-negative slack variable for each 

pixel 𝑢 and 𝜉𝑝𝑞 is a vector formed by concatenating the slack variables over all the training pixels 

in the mentioned classes. 
In the case where the classes are non-separable, the slack variables accounts for margin 

violations caused by training samples. The total error due to margin violations, i.e., ∑ 𝜉𝑢
𝑝𝑞

𝑢 , is 

weighted by a factor 𝐶. In the formulation above, we note that the function 𝜙 ∶  ℝ𝑁 ⟼ ℋ  maps 

the reflectance spectra 𝑆𝑢  ∈ 𝑅𝑁 to a high-dimensional space ℋ, in which the training samples of 

the 𝑝-th and 𝑞-th classes are separable. 
The above problem is convex and can be reformulated in the dual form as follows (Boyd and 

Vandenberghe 2004) 

min 𝛼𝑝𝑞 
1

2
(𝛼𝑝𝑞)𝑇𝑄(𝛼𝑝𝑞) − 𝑒𝑇𝛼𝑝𝑞 

subject to  (𝑦𝑝𝑞)𝑇𝛼𝑝𝑞 = 0,                             (5) 

  0 ≤ 𝛼𝑢
𝑝𝑞

≤ 𝐶, 

for pixel 𝑢 in the 𝑝-th and 𝑞-th classes where 𝑒 is the vector of all ones. 

 
 
 
 

Fig. 4 The graphical user interface for labelling image regions with condition ratings 

188



 

 

 

 

 

 

Multi-class support vector machines for paint condition assessment… 

 

In the dual form, we aim to solve for the dual variable 𝛼 whose element 𝛼𝑝𝑞 is indexed to a 

training pixel 𝑢 in the 𝑝-th and 𝑞-th classes. Here, 𝑦𝑢
𝑝𝑞

 is a vector indexed to the training pixel, 

where 𝑦𝑢
𝑝𝑞

= 1  if 𝑦𝑢  =  𝑝  and 𝑦𝑢
𝑝𝑞

= −1  if  𝑦𝑢  =  𝑞 . We also denote the kernel function 

𝐺 ∶  ℝ𝑁 × ℝ𝑁 ⟼ ℝ for each pair of pixels 𝑢 and 𝑣 as 𝐺(𝑢, 𝑣)  =  𝜙(𝑢)𝑇𝜙(𝑣). In addition, Q 

is an 𝑀 × 𝑀 matrix with rows and columns indexed to the training pixels in the 𝑝 − 𝑡ℎ and 

𝑞 − 𝑡ℎ classes and 𝑀 is the number of training samples in both classes. Each element of Q is 

related to the kernel function by 𝑄𝑢,𝑣 = 𝑦𝑢
𝑝𝑞

𝑦𝑣
𝑝𝑞

𝐺(𝑢, 𝑣) = 𝑦𝑢
𝑝𝑞

𝑦𝑣
𝑝𝑞

𝜙(𝑢)𝑇𝜙(𝑣). In our experiment, 

we employ a linear kernel for the SVM classifier. 

To solve the problem in Eq. (5), we employ the Sequential Minimal Optimization (SMO) 

approach (Platt 1999) implemented by the LibSVM software library (Chang and Lin 2011). The 

SMO technique is an iterative one, modifying a subset of dual variables in each iteration. By 

exploiting the fact that the original problem in Eq. (5) can be decomposed into small sub-problems, 

the SMO approach is able to deal with its scale efficiently. 

 

3.4 Classification of surface conditions 
 
The above section describes the process of training binary classifiers to distinguish every pairs of 

condition ratings. Given the classifier for the 𝑝 -th and 𝑞 -th condition ratings, the binary 

classification of a test reflectance spectrum 𝑆𝑥 is determined by the following decision function 

𝑠𝑔𝑛(∑ 𝑦𝑢
𝑝𝑞

𝑦𝑣
𝑝𝑞

𝐺(𝑢, 𝑥)),                  (6) 

where the 𝑠𝑔𝑛(⋅) denotes the sign function. 
 
In order to perform multi-class classification, we adopt a voting strategy, where each binary 

classifier contributes a vote on the condition rating (class) of the test spectrum 𝑆𝑥. In the end, the 

votes of all the classifiers are aggregated and the input sample is assigned a condition rating with 

the maximum number of votes. 

 

 
4. Experimental results  

 

In this section, we aim to validate the consistency of the classification performance across two 

acquisition ranges and two lighting conditions. 

 

4.1 Image dataset 
 

To validate our classification approach, we chose to examine two locations on the bridge, one at 

the top of the lower arch on the western side and the other at the north pylon on the eastern side. At 

each location, we collected a set of 14 images of surfaces exhibiting various degrees of corrosion, 

corresponding to the four rating levels described in Section 2.  

We aim to analyse the variation of classification results with respect to the acquisition distance, 

i.e., the distance from the camera and the surface to be imaged. For this purpose, the imaging 

conditions at these two locations differ in the range of acquisition distance and the acquisition time. 

Specifically, the distance was less than 5 metres at the former location and between 10 and 40 

metres at the latter one. Hence, for convenience, we name these two data sets as the short-range 
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and mid-range image sets. In addition, we deliberately chose different acquisition times for the two 

sets, with the first one acquired in the morning and the latter one in the afternoon. This choice 

serves the purpose of validating the robustness of our data processing approach to the illumination 

variation throughout the day.  

The acquisition apparatus consists of a hyper-spectral camera equipped with an Acousto-Optics 

Tunable Filter (AOTF). The filter selects wavelengths using a quartz crystal attached to a 

transducer. When a radio frequency (RF) acoustic wave is applied to the transducer, it causes the 

compression and relaxation of an optically anisotropic crystal (Denes et al. 1998, Gupta et al. 

2002). As a consequence, this mechanism tunes the refractive index of the crystal, creates 

diffraction and separates the broad spectrum of incident light into different bands of wavelengths.  

For the experiments, we opt for the wavelength range of 450-650nm with a 10 nm incremental 

step between successive bands. During our experiments, we found that this choice of sample 

wavelengths yields a sufficient number of bands, i.e., 21, to capture and distinguish the 

characteristic spectra of the four surface level ratings in this study. This number of bands also 

offers a good trade-off between classification accuracy and speed of computation. In Fig. 5, we 

show the typical transmission of the AOTF spectral filters we employed for data acquisition. We 

note that the filter response peaks in the middle of the wavelength range and diminishes 

significantly at both the low and high ends  

 

4.2 Classification results 
 
Having collected data for our study, we aim to verify the consistency of classification 

performance across the short-range and mid-range distances and the illumination variation 

throughout the day. For this purpose, we first train a classifier with a (training) subset from each of 

the short-range and mid-range dataset, and subsequently classify the remaining images (i.e., the 

test set) with the constructed classifier. 

 

 

 

Fig. 5 Optical transmission of an acousto-optic tunable filter (AOTF), depicted as a function of the 

wavelength 

190



 

 

 

 

 

 

Multi-class support vector machines for paint condition assessment… 

 

To obtain training data, we randomly selected four images from each of the short-range and 

mid-range image sets. As described in Section 3.2, reflectance spectra were extracted from the 

selected images and normalised to unit power. We then form the training data from the reflectance 

spectra of the labelled regions in the selected images.  

It is worth mentioning that, so far, the training data only concerns the example surfaces with 

one of the rating levels in our study. However, the data has not included examples of surfaces not 

falling into any of these categories. To gather prior knowledge of these unseen categories, we have 

added training data for a “background” class by randomly selecting image regions that correspond 

to sky areas, shadows etc. With this additional class, the background regions would be 

distinguished from those with the rating levels of interest. Therefore, the data in these regions 

would not interfere with the surface condition rating results. 

In Fig. 6, we present the training reflectance spectra from the mid-range images for the four 

rating levels in consideration. Here, we note that the mean reflectance spectrum for each rating level 

exhibits a distinct trend of spectral variation. Furthermore, when comparing two set of spectra 

belonging to each pair of rating levels (except level 3 and 4), we notice a significant difference in the 

reflectance value over a number of bands, i.e., the difference between the means is above one 

standard deviation of each set. This observation hints at the use of reflectance spectra for classifying 

surfaces into condition rating levels. 

 

 

  
(a) Level 1 (b) Level 2 

  
(c) Level 3 (c) Level 4 

Fig. 6 Means and standard deviations of the training reflectance spectra belonging to surface rating levels 

between 1 and 4 
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Table 1 Classification of pixels in the short-range images into rating levels. We report the percentage of 

pixels classified into the given classes and the overall classification rate 

Classified 

Actual 

Level 1 Level 2 Level 3 Level 4 Background 

Level 1 57.87 32.78 0.15 0.71 8.48 

Level 2 - - - - - 

Level 3 0.07 31.1 0.68 68.14 0.005 

Level 4 0.05 9.98 2.14 76.72 12.10 

Background 3.43 1.72 1.47 0.86 92.52 

Overall 75.19 

 
Table 2 Classification of pixels in the mid-range images into rating levels. We report the percentage of pixels 

classified into the given classes and the overall classification rate 

Classified 

Actual 

Level 1 Level 2 Level 3 Level 4 Background 

Level 1 90.37 5.82 3.72 0.06 0.02 

Level 2 6.75 84.40 1.14 5.41 2.30 

Level 3 16.77 9.21 49.66 24.33 0.01 

Level 4 0.02 0.66 41.99 57.11 0.22 

Background 5.42 1.41 0.04 1.80 91.32 

Overall 85.54 

 

 

With the above training data, we trained a soft-margin Support Vector Machines (SVM) classifier 

with a linear kernel. As shown in Eq. (4), this classifier is parameterised by the weight 𝐶 of the slack 

variables 𝜉𝑢
𝑝𝑞

. We searched for the optimal 𝐶 value within the range of [1; 100] by a five-fold cross 

validation procedure. After training the SVM classifier with this optimal parameter value, we 

employed it to classify the reflectance spectrum at every pixel in novel test images. 
In our experiments, we selected four mid-range images and employed data from their labelled 

regions as input for training an SVM classifier. To quantify the accuracy of this classifier, we 

compare the predicted rating levels in the remaining images with the ground truth given by the 

human expert, at image regions where the expert labels are available. We then report the 

classification accuracy with respect to the ground truth labels in terms of the confusion matrix 

between the rating levels. In Tables 1 and 2, we report the classification accuracy for each class and 

the overall classification rate for both the short-range and mid-range images. The diagonal elements 

show the percentages of pixels correctly classified for each class, whereas the off-diagonal ones 

show the percentages of pixels misclassified into a class other than the ground truth one. Here, the 

rows correspond to the ground truth labels and the columns correspond to the predicted labels, 

respectively. We note that, since no pixels were labelled with a rating level of 2 in the short-range 
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dataset, the classification rate for rating level 2 is not reported in Table 1. 

For both the image sets, the background class is segmented with a high level of accuracy. In 

addition, the pixels of level 1 in the mid-range image set are recognised reasonably well. However, 

a significant proportion (32.78%) of level-1 pixels in the short-range images is misclassified as 

belonging to level 2. Furthermore, it is consistently observed that there is a high level of confusion 

between levels 3 and 4 in both image sets. This confusion can be explained by the fact that the 

training reflectance spectra for these two levels exhibit similar variations across wavelengths, as 

shown in Figure 6. This suggests that more training data is needed for the fine-grained 

classification between intact coating and minor rust, and between the two most severe levels of 

corrosion. Despite this confusion, the classifier is able to achieve reasonable overall classification 

rates of 75.19% and 85.54% for the short-range and mid-range images, respectively.  

Next, we visually examine the surface rating maps that results from the pixel-wise 

classification performed on novel images. Figs. 7 and 8 depict the rating maps for several sample 

short-range and mid-range images, respectively. The top rows of these figures show the input 

images rendered in pseudo-colour, whereas the bottom rows show the segmentation of these 

images into rating levels coded in distinct colours. The colour bar at the bottom displays the colour 

codes of the given rating levels along a scale between 1 and 5. Here, level 5 is an artificial label 

reserved for the “background” class, which is displayed in red. 

 

 

  

  

Fig. 7 Surface rating maps of sample short-range images, resulting from the pixel-wise classification 

using an SVM classifier that we trained on a number of mid-range images. Top row: input spectral 

images rendered in pseudo-colour. Bottom row: surface rating maps of the above images, shown in 

colours corresponding to the rating levels as indicated by the colour bar. The “background” is 

shown in red, with a pseudo rating level of 5 

193



 

 

 

 

 

 

Cong Phuoc Huynh, Samir Mustapha, Peter Runcie and Fatih Porikli 

 

 

  

  

Fig. 8 Surface rating maps of sample mid-range images, resulting from the pixel-wise classification using 

an SVM classifier that we trained on other mid-range images. Top row: input spectral images 

rendered in pseudo-colour. Bottom row: surface rating maps of the above images, shown in colours 

corresponding to the rating levels as indicated by the colour bar. The “background” is shown in red, 

with a pseudo rating level of 5 

 

 

We also ensure the robustness of classification performance to the variation of the viewing 

angle to the surface normal. This robustness is achieved as a result of normalising the reflectance 

spectra to a unit norm in the feature extraction step in Fig. 3. Therefore, the reflectance spectra in 

such a case as in the top-left panel in Fig. 8, are invariant to the viewing angle, yielding consistent 

features for both the learning and classification steps. 

The overall observation is that the classifier excels at distinguishing regions with intact coating 

(level 1) from those with corrosion (levels 3 or 4). In addition, the background class is 

well-segmented from the images in both the short-range and mid-range categories. However, the 

classifier appears to be confounded by surface areas with similar ratings, such as levels 1 and 2, 

and levels 3 and 4. These qualitative observations are consistent with the classification accuracy 

reported earlier. This suggests that additional cues are needed to assist the successful 

discrimination of these rating levels. To improve classification performance, our classification 

framework could be extended to include spatial features of a region, such as textures and gradients, 

in addition to spectral reflectance. 
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5. Conclusions 
 
In this study, we have explored the effectiveness of hyperspectral imaging in the assessment of 

paint conditions on the ionic Sydney Harbour Bridge. A multi-class Support Vector Machines 

classifier was developed for this purpose. We have investigated the classification performance on 

short-range and mid-range images captured on two different locations on the bridge, based on that 

the following conclusions were drawn: 

 
● For both short-range and mid-range images, the “background” class, which consists of 

areas not falling into the four rating levels in our study, was segmented from the other 

classes with a high level of accuracy (more than 90%). 
● The classification of level-1 and level-2 regions in mid-range images is also effective 

(with nearly 85% or more), given the use of training data from the same range. 
● There is still some degree of confusion between level 1 and 2, and level 3 and 4. 
● Despite this confusion, the overall classification rates are promising (over 75%). 

  
The overall classification accuracy using the developed classifier has demonstrated a potential 

application of hyper-spectral imaging to paint condition assessment. In future works, we would 

consider the inclusion of discriminative training data for the fined-grained classification between 

level 1/level 2 and between level 3/level 4. To enhance the classification accuracy, a possibility is to 

combine spatial features, such as texture or image gradients, with the existing spectral reflectance 

feature. To enhance the robustness of the above approach, we would investigate a technique of 

normalising reflectance spectra across different light conditions, such as shadow removal.  

We also envisage an extension of the technique and results described above for paint condition 

assessment of the entire bridge. The framework would involve mapping hyperspectral images onto 

a 3D model of the bridge with the location information of each image. This additional information 

can be obtained in a straightforward manner by incorporating GPS trackers into the image 

acquisition process. A further step is to fuse information from multiple overlapping images by 

stitching them into panoramas. Image stitching method has been well-research and developed into 

mature software such as the Microsoft Image Composite Editor (ICE) (for more information, see 

http://research.microsoft.com/en-us/um/redmond/projects/ice/).  

In this study, we have only acquired images from human-accessible locations with a portable 

camera system. For a comprehensive assessment of the bridge, it is necessary to develop a method 

for acquiring images from various viewpoints and distances. To perform acquire images of 

inaccessible areas, we would resort to an image system mounted on a climbing robot or an 

unmanned aerial vehicle (UAV) with additional telephoto lenses for far range imaging. This 

additional data would open up opportunities for remote inspection of surface areas not easily 

accessible. 
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