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Abstract.  This article aims to quantitatively predict the snowmelt in extreme cold regions, considering a 

combination of grayscale and neural models. The traditional non-equidistant GM(1,1) prediction model is optimized 

by adjusting the time-distance weight matrix, optimizing the background value of the differential equation and 

optimizing the initial value of the model, and using the BP neural network for the first. The adjusted ice forecast 

model has an accuracy of 0.984 and posterior variance and the average forecast error value is 1.46%. Compared with 

the GM(1,1) and BP network models, the accuracy of the prediction results has been significantly improved, and the 

quantitative prediction of the ice sheet is more accurate. The monitoring and maintenance of the structure by 

quantitative prediction model by gray models was clearly demonstrated in the model. 
 

Keywords:  BP network; combined prediction; gray optimization; prediction; structural monitoring and 

maintenance 

 
 
1. Introduction 

 
Frost heaving of railway subgrades leads to uneven longitudinal settlement or uplift of rails, 

which in some cases causes train safety accidents and brings serious safety hazards. Some scholars 

have conducted related research on the detection of frost heaving of railway subgrades. Wu et al. 

(2022) used the non-contact measurement method of machine vision and optical imaging to realize 

the real-time monitoring and measurement of the frost heave of the Harbin-Dalian subgrade, and 

obtained the detection data of the subgrade surface freeze-thaw displacement (hereinafter referred 

to as the frost heave data). This data reflects the deformation of the railway embankment elevation 

and has an important impact on the smoothness of the track. At the same time, many scholars at 

home and abroad have conducted a lot of research on the subgrade frost heave prediction model. 

Asaoka (2019) proposed the Asaoka method based on the vertical one-way consolidation theory 

and using the measured subgrade deformation data to calculate the post-construction settlement. 

Sun (2020) established the GM(1,1) model to predict the subgrade frost heaving data obtained by 

isochronous sampling of a passenger dedicated line in Northeast my country. Good data has good 

effect, but it is difficult to predict complex data with many factors. Qi et al. (2018) used the inertial 

correction method in the BP neural network, introduced dynamic learning factors and inertial 
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factors, and established a prediction model for the deformation of the frozen soil subgrade of the 

Qinghai-Tibet Railway. The disadvantage of this method is that the training process of the neural 

network model is less stable and has Higher randomness. The prediction model established 

according to the relevant influencing factors of subgrade frost heave can reflect its development 

and change, but some of the influencing factors are difficult to quantify, and the prediction 

accuracy of the model is thus restricted. Most of the subgrade frost heaving prediction methods 

established at present do not reflect the dynamic randomness and many influencing factors of 

subgrade frost heaving well, and the prediction effect and accuracy are not ideal. Therefore, this 

paper adopts the method based on neural network and optimized gray combination model, taking 

the measurement time series of frost heave data as input, and quantitatively predicts non-

equidistant subgrade frost heave data. The advantage of the model in this paper is that the gray 

model is suitable for small sample prediction and has good stability, but the model is relatively 

simple and has poor effect on data sources with complex conditions and multiple factors. The 

model is combined with the neural network to better solve the problem of its application limitation. 

Based on the input of time series, from the mathematical point of view, the statistical law and 

potential relationship between frost heave deformation data under the comprehensive action of 

complex factors can be excavated, so as to achieve the purpose of quantitative prediction with 

higher precision, and at the same time make the model have better versatility. The significance and 

value of this research lies in the prediction of frost heave deformation of subgrade, which can 

assist line maintenance management decision-making, realize early warning of potential safety 

hazards, and is also of great significance for mastering subgrade frost heave deformation laws. 
 
 
2. Model building ideas and process 

 

The research object of gray system theory is a small object with known partial information. In 

order to expand gray The scope of application of color theory, many scholars regard the time 

interval as the multiplication sub, which is similar to the method of constructing the gray GM(1,1) 

model to construct A non-equidistant gray GM(1,1) model. The BP network is a Multi-layer 

forward neural network, which can realize any input to output Non-linear mapping, with strong 

nonlinear capabilities. general use package The 3 -layer BP network including input layer, hidden 

layer and output layer can realize Now for any nonlinear signal, the high-precision approximation 

of the system. therefore, Firstly, the non-equidistant gray GM(1,1) is optimized and improved, and 

the The optimized non-equidistant gray model is then combined with the BP network, Use the BP 

network to correct the residual error of the model, learn from each other's strengths, and construct 

Establish a combined prediction model and apply the model to the frost heaving data of railway 

subgrade In the prediction of the data, the flow chart of the established model is shown in Figure 1 . 

The modeling steps for railway embankment frost heave data include: 1) Carry out a grade test 

on the original embankment frost heave collection data x^0 (t_i) , for different Qualified data carry 

out translation transformation; 2) Calculate time-distance weighting matrix P according to its time 

coefficient t(i) of subgrade frost-heave data passing inspection ; 3) Take time distance as multiplier 

for x ^0 (t_i) , and accumulate, Obtain the sequence x^1 (t_i) ; 4) Obtain the constant parameters a 

and u under the condition of the weighted matrix with the least square method ; 5) Calculate the 

time response function to obtain the initial predicted value δ ^0 (t_i) ; 6) Make a difference 

between the initial predicted value and the original data to get the residual sequence Δ d(t_i) ; 7) 

Input the residual sequence into the BP network model for training, and output the predicted  
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Fig. 1 Modeling block diagram 

 

 

residual after correction Δ D(t_i) ; 8) Adding the initial predicted value and the predicted residual 

value to get the final predicted value Q(t_i). 

Not all the data can be used for GM(1,1) modeling, only the data satisfying certain conditions, 

the established GM(1,1) model is meaningful. The 𝑋order 𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)ratio can be 

expressed as formula (1). Only at that time , 𝜙𝑘 ∈ (0.1353,7.389)𝑋non-deformed GM (1,1) 

modeling can be done, which is called the basic condition of GM (1,1) modeling . 

𝜙𝑘 =
𝑥𝑘−1

𝑥𝑘
                                   (1) 

To establish an effective GM(1,1) model, the practical condition should also be met, that is, the 

level ratio should fall in a 𝜑𝑘subinterval close to 1 (1 − 𝜀, 1 + 𝜀)Therefore , this subinterval is 

called the (1 − 𝜀, 1 + 𝜀) ∈ (0.1353,7.389)grade boundary area. The method of determining the 

boundary area of the scale is to 𝑋start from the boundary area of the original sequence, find out 

𝜑𝑘the boundary area at last, and then obtain the practical condition of 𝜑𝑘 ∈ (𝑒−
2

𝑛+1, 𝑒
2

𝑛+1). 

Assuming that [𝑡1, 𝑡2, … , 𝑡𝑛]subgrade frost heave sequences are measured within a certain time 

interval 𝑥0(𝑡𝑖), a grade comparison test is required before using the original sequence. Level ratio 

detection is to check whether the original data sequence calculated by formula (1) 𝜑(𝑖)falls within 

the limited interval (𝑒−
2

𝑛+1, 𝑒
2

𝑛+1), if it falls within the interval, the data can be used directly, 

otherwise translation transformation is required, as shown in formula (2), select an appropriate The 
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constant c, until the calculated 𝜑′(𝑖)new sequence 𝑥′0(𝑡𝑖)falls within the limited interval, at this 

time, the new sequence can be predicted and analyzed, and the predicted analysis is completed, 

and then the inverse transformation is restored. 

𝑥′0(𝑡𝑖) = 𝑥0(𝑡𝑖) + 𝑐 ,  in𝑖 = 1,2,3, … , 𝑛                       (2) 

Calculate the time interval series  𝛥𝑡(𝑘)according to the time series 𝑡(𝑖), where  𝑘 =
2, 3, … , 𝑛. The time interval is used as the multiplier, and 𝑥0(𝑡𝑖)the sequence is accumulated once, 

as shown in formula (3), to obtain the sequence 𝑥1(𝑡𝑖). The differential equation of whitening 

form can be established from the sequence 𝑥1(𝑡𝑖), such as formula (4), where it 𝑎is called the 

development coefficient and 𝑢the gray action. The role of the two is to control the uncertainty 

relationship between the size of the development situation of the gray system and the change of the 

response data. 

𝑥1(𝑡𝑖) = ∑ 𝑥0(𝑡𝑘)𝛥𝑡𝑘
1

𝑘=2
 , 𝑖 = 1,2,3, … , 𝑛                     (3) 

ⅆ𝑥1(𝑡)

ⅆ𝑡
+ 𝑎𝑥′(𝑡) = 𝑣 , 𝑡 ∈ [0, ∞)                       (4) 

Integrate the formula (4) in [𝑡𝑖−1, 𝑡𝑖]the interval to get the formulas (5) and (6), and the 

formula 𝑧1(𝑡𝑖)is the background value on 𝑥1(𝑡𝑖)the interval [𝑡𝑖−1, 𝑡𝑖]. In order to obtain 𝑎and 

 𝑢 2 parameter values, use the least square method to formula (3) to get formula (7) and (8) 2 

formula 

𝑥0(𝑡𝑖)𝛥𝑡𝑖 + 𝑎𝑧1(𝑡𝑖) = 𝑣𝛥𝑡𝑖  , 𝑖 = 2,3, … , 𝑛                   (5) 

𝑧1(𝑡𝑖) = ∫ 𝑥1(𝑡)𝑑𝑡 =
1

2

𝑡𝑖

𝑡𝑖−1
(𝑥1(𝑡𝑖−1) + 𝑥1(𝑡𝑖))                 (6) 

(𝛼, 𝑣)𝑇 = (𝐵𝑇𝐵)−1𝐵𝑇𝑌                          (7) 

𝐵 = [
−𝑧1(𝑡2) ∆𝑡2

⋮ ⋮
−𝑧1(𝑡𝑛) ∆𝑡𝑛

] ,   𝑌 = [
𝑥0(𝑡2)∆𝑡2

⋮
𝑥0(𝑡𝑛)∆𝑡𝑛

]                     (8) 

If the initial value is specified 𝑥1(𝑡𝑖) = 𝑥0(𝑡𝑖), then the time response function of formula (4) 

can be obtained as formula (9). Restore 𝑥0(𝑡𝑖)the non-isochronous GM(1,1) model sequence that 

fits the original sequence 𝛿0(𝑡𝑖)as formula (10) 

𝛿1(𝑡𝑖) = [−𝑥0(𝑡𝑖) −
𝑣

𝛼
] 𝑒−𝛼(𝑡𝑖−𝑡1)                      (9) 

𝛿0(𝑡𝑖) =
𝛿1(𝑡𝑖)−𝛿1(𝑡𝑖−1)

𝛥𝑡𝑖
=

(1−ⅇ𝛼𝛥𝑡𝑖)

𝛥𝑡𝑖
[𝑥0(𝑡1) −

𝑣

𝛼
] 𝑒−𝛼(𝑡𝑖−𝑡1)             (10) 

obtaining the initial prediction sequence 𝛿0(𝑡𝑖), use the MATLAB neural network toolkit t

o establish a BP network model and correct the residual. 

Since the 3-layer BP network can approximate any nonlinear signal and system with arbitrary 

precision, considering the computational efficiency, a 3-layer BP network with a hidden layer is 

established. The input layer input is the residual sequence obtained by comparing the initial 

prediction of the optimized gray prediction model with the original data 𝛥𝑑(𝑡𝑖). The number of 

neurons in the hidden layer of the network is generally selected according to formula (11), where 
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 𝑝and is 𝑞the number of neurons in the input and output layers, and α is a constant between (0,10) 

𝑛 = √𝑝 + 𝑞 + 𝑎                              (11) 

The larger the number of neurons, the higher the training accuracy, but the slower the training 

rate, and it is prone to overfitting. The smaller the number of neurons, the faster the training speed, 

but it may lead to poor learning effect. Therefore, the model α in this paper is set to 9, and the 

number of neurons calculated by formula (11) is 10. The transfer function between the input layer 

and the hidden layer is selected as the tangsig hyperbolic tangent S-type transfer function, and the 

transfer function between the hidden layer and the output layer is a purelin linear transfer function. 

The output layer is the residual value of the network fit. The self-adaptive variable step size BP 

algorithm is selected, the learning results are observed, the network training parameters are 

continuously adjusted, the network is trained, and the post-training residual correction sequence is 

obtained  𝛥𝐷(𝑡𝑖). Predicted value of final subgrade frost heave 𝑄(𝑡𝑖). 

After adjusting the parameters several times and observing the test results, the optimal learning 

parameter settings determined in this paper are: learning rate 0.05, model training error precision 

0.000 5, and training times 1000 times. 

In the non-equidistant GM(1,1) model mentioned above, the background value is calculated by 

using the trapezoidal formula to approximate the 𝑥1(𝑡𝑖)area enclosed by the cumulative sequence 

and the x- axis on the interval . [𝑡𝑖−1, 𝑡𝑖]But when the accumulated sequence changes drastically 

within this interval, the background value calculated by formula (6) has a large error. Literature [7] 

proposes a background value calculation method based on integral reconstruction, and proves that 

the background value constructed by this method is more in line with the actual conditions. In this 

method, the exponential function cert is used to approximate the cumulative sequence 𝑥1(𝑡𝑖), 

where the sum 𝑐and 𝑟are both undetermined coefficients, which are substituted into formula (6) 

to obtain the optimized background value calculation as formula (12) 

𝑧1(𝑡𝑖) =
[𝑥1(𝑡𝑖)−𝑥1(𝑡𝑖−1)]𝛥𝑡𝑖

ln 𝑥1(𝑡𝑖)−ln 𝑥1(𝑡𝑖−1)
                          (12) 

In the data sequence used to establish the non-equidistant GM(1,1) model, each data has 

different effects on the model. For the existing data, it can be considered that the detection 

accuracy is the same, so it can be considered that the closer the data is to the prediction time point, 

the greater the role it plays in the prediction model and the higher the reliability. Each item of the 

original data sequence is given a weight value, and the size of the weight value is related to the 

time interval between the item data and the predicted data. Therefore, this paper proposes a 

weighted matrix based on the time interval 

Define the increment factor 𝑊and growth rate 𝑤(𝑗), and 𝑤(1) = 1, 𝑤(2) = 2, where the 

increment factor 𝑊is a constant between (1,2). The value of the increment factor 𝑊can depend 

on time 

The correlation of factors in the model, the larger the value, the more important the time factor. 

The growth rate 𝑤(𝑗)represents the time interval factor, and the smaller the interval between the 

data and the forecast time point, the higher the reliability in the forecast model, and the greater the 

weight value. Therefore, the formula for defining the weighting matrix P is as formula (12) 

𝑃 = [

𝑊𝑤(1) 0 0 0
0 𝑊𝑤(2) 0 0
0 0 ⋱ 0
0 0 0 𝑊𝑤(𝑛)

], 
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𝑤(𝑗) =
𝑡(𝑗)−𝑡(2)

𝑡(2)−𝑡(1)
+ 1 , 𝑗 = 3,4, … , 𝑛                     (12) 

After defining the weight matrix, the least square method is used to calculate the development 

system, 𝑎and 𝑢the formula (7) with the gray action is changed to the formula (13) 

(𝛼, 𝑣)𝑇 = (𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑃𝑌                         (13) 

In the non-equidistant GM(1,1) model, Initial value optimization based on the minimum 

cumulative residual error is defined 𝑥1(𝑡1) = 𝑥0(𝑡1), and the first value of the original data 

sequence is used as the initial value. However, in the actual embankment frost heave data fitting, 

the best fitting curve does not necessarily pass through a certain point on the original data, and the 

initial value in [7] is simply the mean value of the measured data. These initial value selection 

methods lack theoretical basis and will reduce the accuracy of the model. Therefore, this paper 

uses the method of calculating the minimum cumulative residual to determine the initial value. 

Define the initial value 𝑥1(𝑡1) = 𝑥0(𝑡1) + 𝑏, 𝑏that is, optimize the parameters for the initial 

value. Therefore, the final prediction formula (10) is changed to 

𝜎0 =
(1−ⅇ𝛼𝛥𝑡𝑖)

𝛥𝑡𝑖
[𝑥0(𝑡1) + 𝑏 −

𝑣

𝛼
] 𝑒−𝛼(𝑡𝑖−𝑡1)                 (14) 

The formula for calculating the cumulative residual E is written as 

𝐸 = ∑ [𝑥0(𝑡𝑖) − 𝛿0(𝑡𝑖)]2𝑛

𝑖=2
+ 𝑏2                     (15) 

To make E the smallest, calculate the partial derivative expression of formula (15) with respect 

to b, and set its value to 0 , and the value formula (16) of b under the condition of minimum 

cumulative residual error can be obtained 

𝑏 =
∑

1

𝛥𝑡𝑖
(1−ⅇ𝛼𝛥𝑡𝑖)ⅇ−𝛼𝑡𝑖𝑥0(𝑡𝑖)+∑ [

1

𝛥𝑡𝑖
(1−ⅇ𝛼𝛥𝑡𝑖)ⅇ−𝛼𝑡𝑖]2[𝑥0(𝑡1)−

𝑣

𝛼
]𝑛

𝑖=2
𝑛
𝑖=2

1+[
1

𝛥𝑡𝑖
(1−ⅇ𝛼𝛥𝑡𝑖)ⅇ−𝛼𝑡𝑖]2

           (16) 

 

 
3. A numerical example 

 

In 2012-12, the Harbin-Dalian Passenger Dedicated Line was officially opened for operation. 

The average monthly temperature in winter along the line was -13.5~-17.5°C, the extreme low 

temperature reached -40°C, the maximum freezing depth of the soil reached 205 cm, and frost 

heave was common throughout the subgrade. The data from 2013-12-19 to 2014-01-26 at k 

186+600 in the downlink of Bayuquan on the Harbin-Dalian Passenger Dedicated Line is selected 

as the prediction test value to test the prediction effect of the model in this paper. The actual 

measurement data are shown in Table 1. Table 1 The measured values are all the freeze-thaw 

displacement values of the roadbed surface. 

According to the modeling method mentioned above, the data is firstly tested for grades. The 

number of data 𝑛 = 19 can be calculated to obtain a limited interval of (0.905,1.105). The 

original data calculated by formula (1) 𝜑𝑚𝑎𝑥 = 1.268exceeds the limited interval, so the original 

data is translated and changed, and the translation constant c in formula (2) is set to 5, that is, the 

calculated 𝑥′0(𝑡𝑖) = 𝑥0(𝑡𝑖) + 5data sequence after transformation can be obtained 𝜑𝑚𝑎𝑥 =
1.072, 𝜑𝑚𝑖𝑛 = 1.009, passed the grade ratio test. Therefore, according to the modeling steps 
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Table 1 Actual measurement data 

measurement  

date 

Measured value/ 

mm 

measurement  

date 

Measured value/ 

mm 

measurement  

date 

Measured value/ 

mm 

2 013-12-19 1.83 _ 2 013-12-27 4.30 _ 2 014-01-14 5.78 _ 

2 013-12-20 2.32 _ 2 013-12-29 4.46 2014-01-18 6.18 

2013-12-21 2.56 2014-01-03 4.67 2014-01-19 6.78 

2013-12-22 2.96 2014-01-08 4.97 2014-01-22 6.98 

2013-12-23 3.23 2014-01-09 5.11 2014-01-26 7.28 

2013-12-24 3.63 2014-01-12 5.23   

2013-12-25 4.17 2014-01-13 5.68   

 
Table 2 Fitting effect comparison 

measurement 

date 

time 

factor 
Measurements 

BP network model G M(1,1) model This paper model 

fitted 

value 

Relative 

error% 

fitted 

value 

Relative 

error% 

fitted 

value 

Relative 

error% 

2 December 

19, 2013 

0 1.83 _ 1.8461 _ 0.88 _ 1.8300 _ 0 1.8185 _ 0.6284 

2013/12/20 1 2.32 2.2853 1.50 2.6471 14.1 2.5128 8.3100 

2013/12/21 2 2.56 2.6820 4.77 2.7403 7.04 2.7010 5.5078 

2013/12/22 3 2.96 2.9382 0.74 2.8345 4.24 2.8020 5.3378 

2013/12/23 4 3.23 3.1185 3.45 322953 2.02 3.1411 2.7500 

2013/12/24 5 3.63 3.6037 0.72 3.3255 8.39 3.6669 1.0165 

2013/12/25 6 4.17 4.2666 2.32 3.7224 10.73 4.1517 0.4388 

2013/12/27 8 4.30 4.4246 2.90 3.9196 8.85 4.3062 0.1442 

2013/12/29 10 4.46 4.4387 0.48 4.1961 5.92 4.4603 0.0067 

2013/01/03 14 4.67 4.4942 3.76 4.3761 6.29 4.6710 0.0214 

2013/01/08 19 4.97 4.9553 0.30 5.2531 5.70 4.9339 0.7264 

2013/01/09 20 5.11 5.1206 0.21 5.5815 9.23 5.1455 0.6947 

2013/01/12 23 5.23 5.4829 4.84 5.8068 11.03 5.2460 0.3059 

2013/01/13 24 5.68 5.5974 1.45 6.0358 6.26 5.6444 0.6268 

2013/01/14 25 5.78 5.7124 1.17 6.1521 6.44 5.8398 1.0346 

2013/01/18 29 6.18 6.1075 1.17 6.4486 4.35 6.1456 0.5566 

 

 

introduced above, firstly use the 𝑥′0(𝑡𝑖) first 16 items of the shifted data to establish an 

optimization model, define the weight increment factor in the model 𝑊 = 1.4, and obtain the 

initial predicted value. The initial gray model prediction error is shown in Fig. 2. It can be seen 

from Fig. 2 that the initial residual has a high degree of nonlinearity. Then bring the initial 

prediction value and the residual calculated by the original data into the BP network for training, 

take the number of neurons in the hidden layer as 8, and obtain the residual sequence after training, 

add the residual sequence to the initial prediction value, The fitting sequence of the optimized 

model can be obtained, and finally the translation inverse transformation is performed to obtain the 

final prediction result, which is compared with the actual frost heave data as shown in Fig. 3. 

Table 2 shows the results of comparing the measured values of the optimized model fitting with 

the fitting measured values of the GM (1,1) model in literature [3] and the BP neural network  
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Fig. 2 Gray model fitting error plot 

 

 

Fig. 3 Comparison between prediction model data and actual measurement data 

 

 

model in literature [4]. Afterwards, the remaining three time coefficients were input to the three 

models respectively to obtain three sets of forecast sequences, and the comparison results with the 

original data are shown in Table 3. 

In order to verify the optimization effect of the time-distance weighted matrix optimization 

item proposed in this paper and the optimization item based on the minimum residual initial value, 

the combination model that lacks the time-distance weighted matrix optimization item proposed 

above and retains the remaining optimization items is defined as model A. Define The combination 

model that lacks the initial value optimization item proposed above and retains the rest of the 

optimization items is model B. Compared with the complete optimization combination model in 

this paper, the prediction results are shown in Table 4.  
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Table 3 Comparison of prediction effects (1) 

measurement 

date 

time 

factor 
Measurements 

BP network model G M(1,1) model This paper model 

fitted 

value 

Relative 

error% 

fitted 

value 

Relative 

error% 

fitted 

value 

Relative 

error% 

2 January 19, 

2014 

3 0 6.57 _ 6.1782 _ 6.34 _ 6.7508 2.75 6.4918 1.1903 

2014/01/22 33 6.98 6.3225 10.4 7.3989 6 6.7446 2.9427 

2014/01/26 37 7.28 6.4076 13.62 7.9443 9.12 7.2989 _ 0.2596 _ 

 

 
Table 4 Comparison of prediction effects (2) 

measurement 

date 

time 

factor 
Measurements 

Model A Model B This paper model 

fitted 

value 

Relative 

error% 

fitted 

value 

Relative 

error% 

fitted 

value 

Relative 

error% 

2 January 19, 

2014 

3 0 6.57 _ 6.4762 _ 1.4277 _ 6.4324 _ 2.0440 _ 6.4918 _ 1.1903 _ 

2014/01/22 _ 3 3 6.98 _ 6 .7403 3.4341 _ 6.7136 _ 3.8166 6.7446 2.9427 

2014/01/26 37 7.28 7.1858 1.2940 7.2353 0.6140 7.2989 0.2596 

 

 

By observing the above charts, it can be concluded that the combined prediction model of non-

equidistant gray optimization and neural network established in this paper has an average 

prediction error of 1.46%. It can be seen from Figure 1 that the combined prediction model has 

achieved more accurate fitting and forecasting. However, the GM(1,1) model method established 

in literature [3] has an average prediction error of 5.69%, and the BP neural network model 

method established in literature [4] has an average prediction error of 10.12%, both of which are 

much higher than the model in this paper. It can be concluded that the prediction accuracy of the 

subgrade frost heave combination prediction model proposed in this paper is significantly 

improved compared with the existing methods. However, the average prediction errors of model A 

and model B are 2.052% and 2.1582%, respectively, and the accuracy is slightly lower than that of 

the model in this paper. optimization effect. 

At the same time, in order to verify the reliability and accuracy of the optimized combination 

prediction model in this paper for the prediction of frost heave of railway subgrade, the posterior 

difference ratio in statistics is used to 𝐶verify the accuracy of the model .𝑝 

Relative residuals 

𝜇(𝑡𝑖) =
𝛿1(𝑡𝑖)−𝑥0(𝑡𝑖)

𝑥0(𝑡𝑖)
× 100%                     (17) 

Average Residuals 

𝜇′ =
1

𝑛−1
∑ |𝜇(𝑡𝑖)|𝑛

𝑖=2                         (18) 

Residual variance 

𝑆1 =
1

𝑛
∑ (𝜇(𝑡𝑖) − 𝜇′)2𝑛

𝑖=1
                       (19) 

Assuming the variance of the original data 𝑆2, the posterior difference ratio is expressed as 
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𝐶 = √𝑆1 ∕ 𝑆2                              (20) 

Modeling accuracy 

𝑝 = (1 − 𝜇′) × 100%                          (21) 

The model in this paper is obtained by calculation 𝑝 = 98.4%. The larger the model accuracy 

value, 𝑝 the higher the model accuracy, and the smaller the posterior difference ratio 𝐶, the 

smaller the dispersion of the prediction error. Referring to the model accuracy test table [8], it can 

be concluded that the prediction accuracy and reliability of this model for frost heave of railway 

embankment are high, and the accuracy level reaches level 1. 

 
 

4. Conclusions 
 
1) The background value and initial value of the differential equation of the non-equidistant 

GM(1,1) model were optimized by integral reconstruction and the method based on the minimum 

cumulative residual error, which improved the prediction accuracy of the model. 

2) Set the weight matrix for the non-equidistant GM(1,1) model, fully consider the 

development trend of subgrade frost heave deformation, and improve the reliability of the 

prediction results. 

3) Use the BP neural network residual correction model to correct the initial prediction data of 

the optimized non-equidistant GM (1,1) model, which makes up for the shortcomings of the gray 

prediction model in nonlinear prediction, improves the prediction accuracy of the model, and 

broadens the horizon. range of use of the model. 
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