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Abstract. As time-variant reliability approaches become increasingly used for service life prediction of the
aging infrastructure, the demand for computer solution methods continues to increase. Effcient computer
techniques have become well established for the reliability analysis of structural systems. Thus far,
however, this is largely limited to time-invariant reliability problems. Therefore, the requirements for time-
variant reliability prediction of deteriorating structural systems under time-variant loads have remained
incomplete. This study presents a computer program for RELiability of Time-Variant SYStems, RELTSYS.
This program uses a combined technique of adaptive importance sampling, numerical integration, and fault
tree analysis to compute time-variant reliabilities of individual components and systems. Time-invariant
quantities are generated using Monte Carlo simulation, whereas time-variant quantities are evaluated using
numerical integration. Load distribution and post-failure redistribution are considered using fault tree
analysis. The strengths and limitations of RELTSYS are presented via a numerical example.
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1. Introduction

As life-cycle cost analysis methods gradually become required for maintenance planning decisions
of infrastructure systems (Yanev 1996, Frangopol ef al. 1997, 1998), the need for predicting the
reliability of deteriorating structures continues to increase. When load and/or resistance vary with
time, time-variant reliability analysis has to be used to predict the service life of structures. In the
past decade, time-variant reliability methods have been developed for deteriorating structures under
time varying loads (Wen and Chen 1989, Mori and Ellingwood 1993). Recently, these methods have
also been applied to deteriorating bridges (Enright 1998, Enright and Frangopol 1998a, b).

Computing the time-variant reliability of deteriorating structures is not a trivial task. For example,
hundreds of millions of computations may be required to predict the reliability of structures
consisting of only a few (say, three to five) members (Enright 1998). Since the limit states cannot
generally be expressed in closed form, computationally efficient algorithms based on the first or
second order reliability method cannot be used (Melchers 1987). Instead, one must resort to
numerical integration or simulation. Ordinary Monte Carlo methods can be used but are impractical
due to the large number of computations required for accurate results. Variance reduction using
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importance sampling is a solution to this problem, because the number of simulations can be
reduced while maintaining the same level of accuracy as compared to ordinary Monte Carlo
simulation. Several importance sampling techniques are available (e.g., adaptive, direct, modified
search, updating, among others). However, with the exception of adaptive techniques, most of these
methods use gradient search algorithms to identify the important regions in which the limit states
must be expressed in closed form (Dey and Mahadevan 1998). Adaptive importance sampling is
therefore a viable alternative to ordinary Monte Carlo simulation for the prediction of time-variant
reliability.

This study presents a computer program for time-variant reliability analysis of general deteriorating
structural systems. The computer program for RELiability of Time-Variant SYStems, RELTSYS,
uses a combined technique of adaptive importance sampling, numerical integration, and fault tree
analysis to compute time-variant reliabilities of components and systems. Time-invariant quantities
are generated using Monte Carlo simulation, whereas time-variant quantities are evaluated using
numerical integration. Load distribution and post-failure redistribution are considered using fault tree
analysis.

2. Time-variant system reliability

Consider the first-failure (also called weakest-link) system of m deteriorating members subjected
to a Poisson live load process with intensity .Sy shown in Fig. 1, where the live load LL and dead
load DL are denoted by S| and S,, respectively. The time-variant failure probability of this system
under S can be expressed as (Mori and Ellingwood 1993):

P = i i = e o= i, B0 g e )
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Fig. 1 General deteriorating weakest-link structural system
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Fig. 2 General deteriorating fail-safe structural system

where S;=time-variant (live) load, Ag, and F§, are the mean load occurrence rate and the cumulative
distribution function of S;, respectively, g/(f)=resistance degradation function for member i, c~=structural
action coefficient for member i, and fR (r) =joint probability density function of the initial strength
of the members in the system.

For service life predictions of deteriorating fail-safe systems, the post-failure material behavior
and load sharing characteristics of members have to be considered. The post-failure behavior
coefficient 1); can be used to represent the post-failure resistance of a member of a fail-safe system.
For perfectly brittle behavior, 1; is assigned a value of 0, and the member carries no load after it
has failed. For perfectly ductile behavior, n; is assigned a value of 1, and the failed member
continues to support a load equal to its resistance.

An idealized deteriorating m-member fail-safe system subjected to a Poisson live load process
with intensity S; is shown in Fig. 2 (Enright and Frangopol 1998b). The cumulative-time failure
probability of the system in Fig. 2 can be expressed as (Enright and Frangopol 1998b):

Py ()= oy S FCIR=r) Ty (2) e @
m—fold
where

! m t
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Pr(t)par represents the probability of failure of the parallel fail-safe system over a duration (0, #7), S;
is time varying live load, Ag, and Fj, are the mean occurrence rate and the cumulative distribution
function of S}, respectively, g,(¢) is the resistance degradation function for member 7 (i.e., fraction of
initial strength of member i remaining at time #), fxz () is the joint probability density function of
the initial strength of the members in the system, m!=number of cut-sets (i.c., failure paths),
RSF ,-d=resistance sharing factor of member i in the damaged state (DS)Z’ where ¢ is the sequence
of [ failed members, 0 = [ <m, 1);=post-failure behavior coefficient of member j, 0 = n; <1, and
g(tHy=resistance degradation function of member ;.

3. Adaptive importance sampling

The failure probability Prof a general structural system can be estimated using importance sampling
(Melchers 1987, 1989):
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where [ [ |=indicator function (i.e., / [ =1 if X is in the failure domain D, I [ |=0 if X is not in the
failure domain), fi( ) is the probability density function in X, and Ay ) is the importance sampling
function. An estimator of failure probability is defined as (Melchers 1987):

~ 1 L0 fX(Vk)D

Pr= k; %1[ ]h (vk) : (%)

where n=n,,,,~~number of trials (i.c., number of samples used for Monte Carlo simulation), and
v=vector of sample values taken from the importance sampling function #4y(). Importance
sampling can be used to solve (1) and (2), provided that an importance sampling function can be
identified. The optimal importance sampling function can be expressed in terms of the failure
probability P; (Melchers 1987):

1] ()

hy(l’) = Pf

(6)

Although P, must be known to evaluate (6), it can be approximated by IA-"_;- which is obtained
initially using Monte Carlo simulation. RELTSYS uses an adaptive importance sampling scheme
suggested by Mori and Ellingwood (1993) in which the importance sampling function is computed
using intermediate failure probability estimates obtained during the simulation procedure. For
example, consider one of the random variables v; of the importance sampling vector v. The mean
value of v, Uy, can be expressed as:

v, O[] (v)
I ey
P, hy(v)
Comparing (4) and (5), it follows that, from (7), an estimator for {1, can be expressed as follows:
:Al D1_ z D"k, [ ] UX(Vk) 0
ny h /(Mk)

where Hv —estlmator for Hy > 1= Nypope= number of trials, 13/ (intermediate) estimate of failure
probability (5), and v, =vector of sample values taken from the importance sampling function 7;( ).

Chy(v)dy (7N

i (8)

4, Overview of RELTSYS

The flowchart of the RELTSYS computer code is shown in Fig. 3. This program consists of four
main modules: (a) importance sampling, (b) numerical integration, (c) fault tree analysis, and (d)
adaptive algorithm. The initial mean value of the importance sampling function vector is user
defined, and is included as part of the input data file. The importance sampling function coefficient
of variation (COV) vector is set to an initial value which is proportional to the value of the initial
resistance COV vector. Covariance matrices and their associated determinants and inverses are
computed for the importance sampling function and initial resistance using orthogonal transformation
(Melchers 1987) and general matrix solver algorithms (Press ef al. 1992).
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Fig. 3 Flowchart for the RELTSYS computer program
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Fig. 3 Flowchart for the RELTSYS computer program: (d) Part 4 of 5; (e) Part 5 of 5

Using the initial values for the main descriptors of the importance sampling function, an
intermediate estimate for the system failure probability is computed using Monte Carlo simulation.
The time-invariant random importance sampling function vector v, is created by the inverse
transformation method (Fig. 4, adapted from Melchers 1987) using a random number generator, and
the multi-variate initial resistance and importance sampling probability density functions (f,( ) and
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Fig. 4 Inverse transformation method of obtaining random samples in RELTSYS (adapted from

Melchers 1987)
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hy (), respectively) are evaluated at the values contained in v,. Additional time-invariant random
variables, such as the dead load and strength degradation random variables are also generated using
the inverse transformation method.

The expression ’[;"FSI( - ) dt is evaluated using numerical integration. At each time increment, the
normalized resistance 7; ,.., of each member is computed based on the value of the resistance
degradation function g(r), the deterministic initial resistance value from the time- mvar1ant initial
resistance vector r;, a structural action coefficient or resistance sharing factor c; =RSF! ., and the
post-failure behavior coefficient ;.

The normalized resistance of the overall structure is dependent on the system classification. For
first-failure systems, the normalized resistance of the system r,4 is equal to the minimum value of
normalized resistance for all members in the system:

n B0

n Via mll’l, =1 |:| ¢, D (9)
For fail-safe systems, the normalized res1stance of the system r,; is computed using fault tree
analysis. Resistance sharing factors RSF are computed based on the stiffnesses of the individual
members. The failure path is identified, and the normalized post-failure resistance is computed for
individual members considering the failure sequence and associated load redistribution. The
normalized resistance of the system is computed by performing a complete fault tree analysis as
follows:

m:

s mmk_l[max

m |jﬂl @I(t l
L ;0 B (0] (10)

Numerical integration is performed for each of the n,,,,. samples generated during Monte Carlo
simulation. Once the combined Monte Carlo/numerical integration procedure is complete, the mean
and COV of the intermediate estimate of the system failure probability are computed. The
importance sampling function and associated covariance matrix are updated based on the mean
value of the intermediate failure probability estimate. The combined procedure of Monte Carlo
simulation, numerical integration, and fault tree analysis is repeated for the number of adaptations
N defined by the user. The numbers of simulations and adaptations are selected such that
sufficient accuracy is obtained.

The estimator of the total system failure probability Pf,o, depends on a main failure probability
estimate, P_/,,,a,,,, which is obtained using the most recently upgated value for the importance
sampling function, and a preliminary failure probability estimate, Pj,.., which is an average of all
of the intermediate failure probability estimates obtained during preliminary analysis (Mori and
Ellingwood 1993):

i)fmt:(l _V,;/)ﬁ_/"main + V,i/ﬁ_/‘pre (11)

where w=weighting factor for combining f’;pm and f’f,,,a,n The weighting factor w depends on the
estimated variances of P,,m and P;,,,a,n (see Mori and Ellingwood 1993 for details). Both the mean
E(P/,,,,) and coefficient of variation V(P/,,,,) of P;,U, are provided in the RELTSYS output file.
Users can acjjust Amone and n,q, so that sufficient accuracy is obtained (i.e., adjust 7, and n.4,
such that V(P ) = V*, where V* is the maximum allowable value for computational accuracy (e.g.,



564 Michael P. Enright and Dan M. Frangopol

oz
R, || Ry(t) || Ry(1)
L

S (t)

Fig. 5 Numerical example: 3-member deteriorating parallel system

V#=0.01)).

5. Numerical example

Consider the deteriorating three-member fail-safe system shown in Fig. 5. The element linking the
vertical members is assumed to be perfectly rigid and constrained to remain horizontal so that the
axial deformations of the members are equal. Initially (i.e., at time =0), the means and coefficients
of variation of the members are assumed, respectively, as follows: E(R)=E(R,)=E(R;)= 200 and
NR)=V(R)=V(R;)=0.12 (see Table 1). Also, the initial resistances are assumed to be statistically
independent (i.e., Pr=0). Furthermore, load and resistance are independent variables. Under the
Poisson point process load S((f) shown in Fig. 5, Eq. (2) can be used for time-variant reliability
analysis of the deteriorating fail-safe system. The members are under environmental attack, and the
resistance of each member is a time-variant quantity which can be expressed as:

R()=Ro - (1) (12)

where R(f)=time-variant resistance, Ry=initial resistance, and g(¢)=resistance degradation function.
Many degradation functions (0 =< g(r) = 1) are possible (Enright 1998).
For example:

gO)=1-k; - t+k - t* (13)

where t=elapsed time since degradation initiation, and &, and &, are random variables. Mean values
of k; and k, and the damage initiation time 77 for members 1, 2, and 3 are indicated in Table 2. The
coefficients of variation of these three parameters are set to zero (i.e., V{k))=V{kx)=W(T7)=0, where
W - y=coefficient of variation). For details regarding the development of the resistance degradation
function and the main descriptors of the random variables k; and %, in Eq. (13), see Enright (1998)
and Enright and Frangopol (1998c). System failure is defined as failure of all members in the
system in the interval (0, #7].

In Fig. 6, failure probabilities associated with the three member system (Fig. 5, Tables 1 & 2) are

Table 1 Load and resistance random variables

Variable Description Mean value Coefficient of variation = Density distribution
(M @) 3) “) ®)
R Initial resistance of member i 200.0 0.12 Lognormal

LL° Initial live load 250.0 0.19 Normal
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Table 2 Resistance degradation random variables
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Member E (k) E (k) E(T)
(M ) 3) C)
1 0.0 0.0 -
2 0.0005 0.0 10.0
3 0.005 0.0 5.0
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Fig. 6 Failure probability versus time for 3-member system

shown versus time. Failure probability increases with time, regardless of the post-failure material
behavior 1 of the members in the system. It can be observed that 1 has a significant influence on
the system failure probability, with the largest percentage differences occurring between n=0.5 and
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1.0. Further details regarding the influences of various factors (e.g., load/resistance/strength
degradation random variables, correlation, material behavior) can be found in Hendawi and
Frangopol (1994), Enright (1998), and Enright and Frangopol (1998b).

The influence of the number of adaptations used in the importance sampling on system failure
probability estimates is shown in Figs. 7 and 8, for perfectly brittle (n=0) and perfectly ductile (n=
1) material behavior, respectively. In these figures, system failure probability is shown versus the
number of adaptations #n,,, for =25, 50, and 75 years, with 7,,,,,=1000. It can be observed that (a)
the failure probability values differ significantly for the various evaluation times and material
behaviors considered, and (b) the effect of #,4 on the cumulative-time failure probabilities is very
similar (on a percentage basis).

6. Strengths and limitations of RELTSYS

The adaptive importance sampling/numerical integration technique used in RELTSYS for
computing failure probability estimates is mainly based on work reported by Melchers (1989) and
Mori and Ellingwood (1993). Combined with fault tree analysis (as described in Enright 1998), this
technique allows for the efficient computation of failure probabilities of both first-failure and fail-
safe systems. For system reliability analysis, the number of simulations required by RELTSYS is
several orders of magnitude lower than that required for ordinary Monte Carlo simulation. For
example, failure probabilities for fail-safe systems consisting of five uncorrelated members can be
obtained using RELTSYS with #,,,,,=5,000 and 7,;,=40, with a relatively small computational error
(i.e., coefficient of variation of system failure probability, V' [P(¢,)p.], less than 0.02). Over one
hundred million simulations may be required to achieve the same level of accuracy using ordinary
Monte Carlo simulation.

One of the limitations of RELTSYS is related to the initial selection of the importance sampling
function. The importance sampling function currently used is based on the multi-variate initial
resistance probability density function. This importance sampling function appears to be sufficient
for time-variant reliability predictions for systems in which live load and resistance are the only
random variables. When additional random variables must be considered (e.g., dead load, strength
degradation rate, corrosion initiation time, among others), the number of Monte Carlo simulations
generally must be increased by one or more order(s) of magnitude for each additional random
variable to obtain accurate results.

Time-variant reliability predictions using RELTSYS are based on a specific relationship among
load and resistance. As stated previously in the description of Eqgs. (1) and (2), load and resistance
must be independent quantities. Furthermore, for system reliability computations, load effects in all
of the members must be perfectly correlated. Therefore, RELTSYS does not have the ability to
predict the reliabilities of systems in which load and resistance are not independent, and/or load
effects in individual members are less than perfectly correlated. It does, however, have the ability to
compute reliability of systems in which initial resistances are partially correlated.

Another limitation of RELTSYS is the requirement for user-defined control execution parameters.
The total number of simulations g, required for time-variant system reliability results is the
product of the number of Monte Carlo simulations 7,,,.. and the number of adaptations n.4, (i.€.,
Agim™Fmonte * Maap)- Currently, values for n,.. and n,g must be specified by the user. Since the total
number of simulations required for accurate system reliability predictions is dependent on a variety
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of factors (e.g., number of members in the system, total number of random variables, system
behavior, post-failure material behavior, correlation among initial member resistances, among
others), the user may under- or over- estimate the required values for 7, and n,;. However, the
user can adjust these values for sufficient accuracy based on the value of V(P ) provided in the
RELTSYS output file. An algorithm can easily be added to the program to adjust 7., and 7.y,
based on the coefficient of variation of failure probability to achieve satisfactory results, eliminating
the need for user-defined values of 7,0 and 7).

7. Conclusions

RELTSYS is a general computer program which can be used to predict the time-variant reliability
of structural systems. It uses a combined technique of adaptive importance sampling, numerical
integration, and fault tree analysis to compute time-variant reliabilities of individual components and
systems. This approach reduces the number of simulations required for accurate results by several
orders of magnitude as compared to ordinary Monte Carlo simulation.

RELTSYS can be applied to a wide variety of structural systems (e.g., first-failure, fail-safe
systems). It is currently limited to structures in which load and resistance are statistically
independent random variables, and load effects within individual members are perfectly correlated.
This can be a severe limitation for structures whose resistance is dependent on load magnitude or
sequence (e.g., creep, fatigue, earthquake). RELTSYS also has the ability to compute reliability of
systems in which initial resistances are partially correlated.

As illustrated in this study, RELTSYS can be used to predict the life of deteriorating systems
under load, resistance, and damage uncertainties. It can also be combined with finite element
analysis to predict the time-variant reliability of general structures (see Enright 1998 for details). In
either case, time-variant reliability analysis is performed for deteriorating structures which includes
the influences of time-variant loads, time-variant resistance, and post-failure load redistribution.
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