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Compression strength of
pultruded equal leg angle sections

D. PolyzoisT and I.G. Raftoyiannis*

Department of Civil & Geological Engineering, University of Manitoba, Winnipeg, Canada

Abstract. Pultruded cross-sections are always thin-walled due to constraints in the manufacturing
process. Thus, the buckling strength determines the overall strength of the member. The elastic buckling
of pultruded angle sections subjected to direct compression is studied. The lateral-torsional buckling, very
likely to appear in thin-walled cross-sections, is investigated. Plate theory is used to allow for cross-
sectional distortion. Shear effects and bending-twisting coupling are accounted for in the analysis because
of their significant role. A simplified approach for determining the maximum load of equal leg angle
sections under compression is presented. The analytical results obtained in this study are compared to the
manufacturer’s design guidelines for compression members as well as with the design specifications for
steel structural members. Experimental results are obtained for various length specimens of pultruded
angle sections. The results presented in this paper correspond to actual pultruded equal leg angle sections
being used in civil engineering structures.
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1. Introduction

Various pultrusion manufacturers produce on an industrial basis structural members with a variety
of cross-sectional shapes and dimensions (e.g., I-sections, channels, box-type sections, tubes, etc.).
These products are made from polymers (usually called resin in the uncured state and matrix in the
cured state) with fiber reinforcement. Polyester, vinylester or epoxy are used as a matrix to hold
together E-glass, S-glass, aramid or carbon fibers used as reinforcement. Fibers and polymer are
joined through the pultrusion process to form the desired cross-section. The present study is
concerned with the design and strength of pultruded equal leg angle sections under direct
compression.

An angle section column under compression can buckle with various modes depending on the
geometry of the cross-section, the material properties, and the boundary conditions (Eterovic et al.
1990). The column can buckle either locally or globally, or with a combination of local and global
modes. In local buckling, changes in the geometry of the cross-section occur, but not accompanied
by lateral displacement or twist. Each leg of the angle section may buckle as a plate, where
instability of both legs is coupled. In the case of global buckling, the cross-section may displace
laterally and twist without local changes in the geometry or it may buckle about the weak axis in an
Euler-type mode. Possible interaction between local and global modes is also investigated. Only
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equal leg angle sections are studied herein.

A number of studies have been conducted separately on the buckling of thin-walled sections such
as I-sections and angle sections made from steel as well as composite I-section beams and columns
(Raftoyiannis 1994), but only a few on angle sections. In fact, the vast majority of studies are
concerned with steel members (homogeneous and isotropic material). Pultruded cross-sections are
thin-walled and each leg of the cross-section is treated in this study as a laminated plate. Each
lamina can be specially orthotropic or generally orthotropic. The stiffness coupling terms are
important, especially when bending-twisting coupling terms are present because they produce higher
instability. A simplified approach is presented herecin for the determination of the critical load and
simple guidelines are proposed. The results presented in this study correspond to actual pultruded
equal leg angle sections (see Table 1).

2. Theoretical analysis

Pultruded cross-sections are usually thin-walled due to manufacturing constraints. Angle sections
are produced with various dimensions and thicknesses. A typical equal leg angle cross-section is
shown in Fig. 1(a). Each leg of the angle section can be considered as a laminate plate composed of
different layers. For the Fiber Reinforced Plastic (FRP) angle sections studied herein, the laminate

Table 1 Sectional properties of equal leg angle sections

Section t b Area L Xo I, J C,
(in) (in) (in%) (in*) (in (in*) (in*) (in®)
4x4xY 0.250 4.00 1.938 3.039 0.968 1.225 0.042 0.056
4 x4 x5 0.375 4.00 2.859 4.359 0.951 1.774 0.141 0.188
4x4xY 0.500 4.00 3.750 5.561 0.933 2.295 0.333 0.444
6X6X%X% 0.250 6.00 2.938 10.575 1.468 4.244 0.063 0.188
6x6x%xY, 0.375 6.00 4.359 15.387 1.452 6.201 0.211 0.633
6x6xY% 0.500 6.00 5.750 19.908 1.435 8.071 0.500 1.500
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Fig. 1 (a) Geometry of a typical equal leg angle, (b) Lay-up of the % in laminate
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consists of two layers with fiber volume fraction 30% called roving and one layer with fiber volume
fraction 50% called strand-mat. The stacking sequence as well as the layer thickness for a 4 x 4 x 1/,
in (10 x 10 x 0.65 cm) angle section is shown in Fig. 1(b). Using classical lamination theory, the
stiffness components of an anisotropic plate can be determined. The constitutive equation for the
laminate is (Gibson 1994)

O 0 O O
oM B:BA] [B]JD{E} 0 (1)
O{M} O ([B] [PYO{k} O
where {N}, {M}, {& and {K} are stress resultants, moment resultants, strains and curvatures,

respectively. The stiffness coefficients 4,, B, and D, (i, j=1, 2, 6) correspond to membrane,
membrane-bending coupling and bending actions, respectively, and are defined as follows

4,7 0y (2a)
B~ 0ydz (2b)
D, /:JJ_/’z/z Q,;,-szz (2¢)

where ¢ is the laminate thickness and Q;; are the transformed layer stiffness components.
Taking also into account the out-of-plane shear of the laminate, the relationship between shear
forces and shear strains can be written as follows:

|:A44 Aﬂ% Y- E

gs o
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OS8, O |4ss 4ss|0 Vo O

where S, and S, are the out-of-plane shear resultants, and ), are the shear strains. The stiffness
components A; (i, j=4, 5) are determined using Eq. (2a) with the corresponding stiffness
components ;. Note that Eqs. (1) and (3) are not coupled, i.e., membrane and/or bending
deformations do not produce out-of-plane shear.

L7
4 7 3
8 9 6 £
1 5 2
(a) (b)

Fig. 2 Composite plate element: (a) Nodes; (b) Degrees of freedom
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3. Finite element analysis

A finite element program for buckling analysis of composite plates and plate assemblies (Barbero
et al. 1993 and Barbero ef al. 1996) is used herein to determine the critical buckling load as well as
the buckling mode of FRP angle sections. The program employs a nine-node Lagrangean
anisotropic plate element, see Fig. 2(a), based upon a first-order shear deformation theory. The
displacement filed in this case is

M(X, Y, Z)ZMO(xa y)_Ze.\'

V(X, Y Z)ZVO(XD y)_Zey

W()C, Y Z):WO(X’ y) (4)
where, the subscript ( ), refers to mid-plane values, and 6,, 6, are the average rotations of a line
initially perpendicular to the middle surface of the plate as indicated in Fig. 2(b). The displacement

distributions within the element can be expressed using the nodal displacements with the aid of the
shape functions N, as follows:

(ua v, w, exa 6'9 6:): Ni(uia Vis Wi, exia 9'1’9 6:1') (5)
Yy ) Yy

A strain-displacement relation can be written for this case, where the strains {&} include the linear strains
{&} plus the von-Karman nonlinear strains {&}

o , 00 . O
0 -~ O O Wx 0
o vy OO0 , O
o Y 00 w, O
Ou,+v, O % O
o - -0 wetw, 0
ST
1
{a={a}t+{a}=0 -6, O30 o O (6)
DQ 9 0“0 0
0%, Y0 0O 0 O
O] 0 0 O Ol
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ek gg 0L
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where (),, in Eq. (6) denotes partial differentiation with respect to variable x.
The components of the strain vector {&} are

{e={& & Vi K. K, Ky, Vi Ve O3 (7)

The in-plane rotation @, also known as drilling degree-of-freedom, is included to account for
element connectivity in the three-dimensional space and also to avoid numerical instability of the
solution in the case of plate assemblies.

For the composite plate element formulated herein, the constitutive law is defined combining
Egs. (1) and (3) as follows
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where, the stiffness properties 4, B; and D, are defined in Egs. (2), and C" is a very small number
compared to the stiffness values and corresponds to the in-plane rotation ..

The total potential energy U of the plate assembly subjected to membrane and transverse loading
can now be written as

U=3f, 10} (e} dv-M &} {1} ©

where {J} is the nodal displacement vector, and { /} is the load vector scaled by a single factor A.
The stress vector {0} is in this case

{0g}={N, N, N, M, M, M,, S, S, M.} (10)

Buckling occurs when the second derivative of the total potential energy with respect to the nodal
displacements is zero, that is

%_Ldet([l(] —A[K,])=0 (11)

1
where, [K] is the stiffness matrix and [K/] is the load-geometry matrix of the structure.
The angle column is discretized into 384 elements, a mesh that provides an almost exact solution.
The stiffness coefficients for the laminate with thickness /=0.25 in (0.65 cm) used in this study are
listed in Table 2. Note that for the angle section laminate, no shear or membrane-bending coupling

Table 2 Stiffness coefficients for the 4 x 4 x ¥4 angle specimens

All A22 A12 A66 A16 A26
625000 382500 121635 106250 0 0
Bll BZZ BIZ BG6 Bl6 BZG
0 0 0 0 0 0
Dll D22 D12 D66 D16 D26
32552 1992.2 633.5 553.4 0 0
Ay Ass Ays *) Stiffness are expressed in Ibs and in

88540 88540 0
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Table 3 Critical loads (Ibs) for the angle columns by FE analysis®

L (in) 4x4x1/, 4 x4 x3/g 4 x4 x1/, 6%xX6X%X1/, 6 X6 X3/ 6%x6X%X1/,
24 5339 17956 42322 5354 18070 42824
30 4597 15428 36260 4198 14162 33535
36 4194 14044 32897 3575 12529 28518
42 3949 13191 30781 3201 10785 25502
48 3787 12616 29311 2958 9964 23539
60 3599 11881 27283 2674 8994 21209
72 3471 11376 25754 2519 8460 19907

*Lateral-torsional mode observed in all cases

takes place because the laminate is symmetric with respect to the middle surface. The angle column
is simply supported at both ends. A unit load vector {f'} is applied to the one end of the column
and the load factor A is computed through buckling analysis. The critical buckling loads for various
lengths of commercially available equal leg angle sections are listed in Table 3.

4. Column approach
Consider a composite angle column of length L and cross-sectional area A4 that is subjected to a
compressive load P. The geometric characteristics of the cross-section are shown in Fig. 1a. The

governing equations for combined lateral-torsional instability are (Brush and Almroth 1975)

AT U 110

Elyyy-i‘]) dxz (]2)
o, 0(v=z20)
El.—+P———=0( 13
“ox' o’ (13)
Iy [p_ w9
ECW J- P -P +Pz —=0 14
BG yod de (14)

where, @ is the angle of rotation, £ is the engineering modulus, corresponding to the longitudinal
direction x, G is the in-plane shear modulus, J is the torsion constant, and 7,,, /.. are the moments
of inertia about y and z axes, respectively. The £ modulus and G modulus can be determined by
inverting the [4 B B D] matrix of Eq. (1) and setting £ = 1/a,i¢, and G = 1/ags ¢. The coordinates y,
and z, define the position of the shear center (see Fig. 1a) and [0=Iyy+lz_.+A(y02+zoz). The warping
constant C,, for an equal angle thin-walled section can be determined from

1

=—p'r (15)

Co 18

For the case of simply supported boundary conditions, it is convenient to assume a displacement
field of the following form
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w=A1smf v=Azsmf (p=A3smT 16)

Substitution of Eqgs. (16) into Egs. (12)-(14) result in a linear system of equations with respect to
the coefficients 4,, 4, and A;. Combined instability corresponds to a non-trivial solution of the
system, thus

%(P —P)(P—P)(P—P.)~P’z(P —P,)~Py;(P—P,)=0 a7

where the loads P P, and P- correspond to pure torsional or flexural instability.

OrEC O TEIL TEL
Pféa——§+Gﬁj p=— =— (18)
Lg(kL) 0 (kL) (kL)

For the cross-section under study with one axis of symmetry, zy=0, Eq. (17) simplifies to the form
2 2
(PP -P)(P-P)-Pik0 (19)

Eq. (19) is the buckling equation for combined lateral-torsional instability of equal leg angle columns.
If P- is the smallest of the three roots of Eq. (19), the column will buckle in pure flexure about the
weak axis, while in any other case the column will buckle in a combined lateral-torsional mode.

Using E=2.6 x 10° psi (17.93GPa) and G =4.25x 10° psi (2.93GPa) along with the geometric
characteristics of the angle sections given in Table 1, the critical buckling loads are computed for
various lengths and the corresponding buckling mode is identified. The results are listed in Table 4.

5. Design guidelines

According to the design equations provided by the manufacturer (MMFG 1989), angle section
columns can be treated as short or long depending on the slenderness KL/r, where L is the length, »
is the radius of gyration and K is the effective length factor which depends on the boundary
conditions. For simply supported ends, K= 1.

For short columns, it is suggested that the maximum load be taken as

Table 4 Critical loads for the angle columns by simplified analysis

L(in) 4x4x%(lb) 4x4x35(b) 4x4x%(b) 6x6x%(b) 6x6x3(b) 6x6x% (Ib)

24 4000 13786 33164 3029 10416 25128
30 3810 13063 31152 2766 9504 22897
36 3699 12597 29707 2622 9000 21647
42 3622 12239 28463 2535 8688 20854
48 3564 11926 25558° 2477 8476 20297
60 3469 11329 16357 2405 8202 19526
72 3382 8779° 11359 2363 8018 18949

*The column fails in pure flexural mode
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Table 5 Maximum loads (lbs) for the angle columns according to MMFG

L (in) 4x4xY 4 x4 x3/g 4x4xY 6%xX6X%XY 6 X6 X3/ 6%xX6X%xY
24 13273.85" 20098.35 26472.60 13827.90° 30004.43° 50766.56
30 12092.83 17777.06 23415.10 13827.90° 30004.43" 44903.19
36 10939.02 16080.89 21181.00 13827.90° 30004.43" 40618.84
42 10049.80 14773.71 19459.23 13827.90° 28284.93 37317.01
48 9338.17 13727.58 18081.32 13827.90° 26282.07 34674.58
60 8259.65 12142.09 15992.99 13827.90° 23246.58 30669.79
72 7471.57 10983.57 14467.05 13827.90° 21028.55 27743.49

*Maximum load according to Eq. (20)

EA
P=— (20)
27(b/1)*”
whereas, for long columns the maximum load is computed from
EA
P (21)
56(KL/r)

The maximum load depends on the geometric characteristics as well as the longitudinal modulus
E determined by tensile coupon testing. The manufacturer (MMFG) suggests to use £=2.6 x 10°
psi (17.93GPa) and G =4.25 x 10° psi (2.93GPa) for the design of FRP sections. It must be stated
that Eqs. (12) and (13) have been developed especially for pultruded angle columns using
experimental data and curve fitting techniques. The maximum loads determined from Eqgs. (12) and
(13) for various lengths of the angle sections under study are listed in Table 5.

6. AISC specifications

Although the AISC Specifications (1994) applies to steel members that are characterized by
plastic deformations past the yield point, it may be useful to compare the corresponding predicted
loads to the experimental ones. It should be noted that FRP do not have inelastic behavior. In this
case, though, we can employ as g, the critical stress in the uniaxial compression. The maximum
longitudinal stress suggested by the manufacturer is o, = 30,000 psi (207MPa) for the angle sections
under study. For single angle members subjected to compression, the maximum load is

P=4 0, (22)
where, 4 is the cross-sectional area and o, is the critical stress computed as follows:
0,=0(0.658")a, (ksi) for A.JO<1.5 (23)
0.877 .
o.,= Y o, (ksi) for AAJO=1.5 24

c

and
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KL [5;

N E (25)

c

The reduction factor Q is introduced to account for local buckling, and is computed as follows:

0=10  when 2<0.446 [E (262)
t O'y
0-134-07612 |[E when 0446 |E<B<0910 |E (26b)
1o, o, 1 o,
0=133E  pen 250910 £ (26¢)
o,(b/1) t o,

The maximum compressive loads determined by Eq. (22) for various lengths of the 4 x4 x4
angle section are listed in Table 6.

7. Simplified approach

The column approach described previously is used to compute the maximum loads and the
corresponding axial stresses 0, versus the slenderness ratio KL/r, for various values of the ratio b/t.
The results are shown in Fig. 3. It is observed that for L >L_,, the column buckles in a pure
flexural mode about the weak z-axis, while for L<L.. a combined lateral-torsional mode takes place.
The characteristic length L. corresponds to the transition from combined mode to pure flexural
mode. The critical slenderness KL, /r. is related to the ratio b/t as follows

KL, 072
r—“=6.377%§ 27)

where the coefficients in Eq. (27) are determined using curve fitting techniques, see Fig. 4. It is also
observed that the critical loads corresponding to the combined buckling mode are approximately

Table 6 Summary of tested and predicted loads for the 4 X 4 x ¥ angle columns

‘L KL Test Simplified MMFG AISC FEM
(in) (Ibs) Approach (Ibs) (Ibs) (Ibs)
24 302 7337 4000 13274 8644 5339
30 37.8 5967 3810 12093 8259 4597
36 453 5819 3699 10939 7813 4194
42 52.9 5789 3622 10050 7316 3949
48 60.5 5166 3564 9338 6782 3787
60 75.6 - 3469 8260 5645 3599

72 90.7 - 3382 7472 4527 3471
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equal to the critical loads corresponding to pure torsional mode. Thus, it is proposed to compute the
maximum load by first determining the critical slenderness using Eq. (27) for the corresponding
ratio b/t, and subsequently the critical length L. and compare it with the column length L. The
maximum load is then determined as

TTEL
max— T for L=2L, (28a)
(KL)
A0tEC, O
==0—=2+GJO  for L<L,, (28b)

" LKLY O

For columns with low values of b/t, Egs. (28) are a very good approximation to the actual critical
load. For short columns, where the shear effect is predominant, the second term in Eq. (28b) with
the shear modulus is important. For high values of b/t, the local effect is very weak and Eqs. (28)
can be simplified to

2

TEL
max:(KL)'_) for L= Lur »
TTEL
= for L<L, (29)
max (KLLr)’_) cr

It must be stated that the characteristic inelastic behavior for steel sections due to the presence of
plastic strains does not appear in composite sections. The yield stress in composite materials
coincides with the ultimate stress, thus the behavior of short members is also elastic.
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0 7 s | 100 | 180 | 200 | 250 300 0 10 20 30 40
kL/r b/t
Fig. 3 Critical stress O, vs slenderness ratio KL /r Fig. 4 Critical slenderness KL, /r versus ratio b/t
for various values of b/t
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8. Experimental analysis

In this study, FRP equal-leg angle sections have been tested in compression. The specimens
measured 4 x4 x ' inches (10 %10 X 0.65 cm) in cross-sectional dimensions that represent the
weakest shape among pultruded equal-leg angle sections. The main parameter varied in the
experimental study was the length of the column. Five different lengths of 24, 30, 36, 42 and 48
inches (0.61, 0.76, 0.91, 1.07 and 1.22 m) are loaded through the centroid of the angle section, see
Fig. 5(a). Each end of the specimen is placed into a steel-plate feature as shown in Fig. 5(b).
Loading through the centroid is accomplished through the use of a bearing ball applied directly onto
the steel loading plate. The purpose of the steel plates was to uniformly distribute the load and
maintain the angle configuration at the extremities of the section. The rounded loading point
allowed the section to rotate freely, thereby modeling a pin-ended structure.

During testing, the rate of load application was approximately 30 Ib/sec (133.5 N/sec). An
electronic device for measuring the axial deformation of the angle section was used. The specimens
were loaded to the point of failure, defined here as the point where large deformations occurred
accompanied by a decrease in the load carrying capacity of the angle sections. All specimens tested
failed by lateral-torsional buckling. No signs of failure at the ends of the specimens, such as
cracking or crushing of the resin and fibers, appeared during tests. Fig. 4 shows the load-deflection
curves for each specimen, while the corresponding critical loads are listed in Table 7. The point
where buckling was initiated corresponds to the critical buckling load. Buckling does not lead to
collapse of the column. The lateral-torsional mode observed in the specimens tested corresponds to
a stable post-buckling behavior (mild buckling). However, further load increase past the critical state
is associated with large deformations. Thus, the column retains a postbuckling strength that is
almost 10% of the critical buckling load. Fig. 7 shows the buckled shape of a 42 in (1.07m) long
angle specimen.

P

% base plate

drotective grid

protective grid

s

centroid axis

angle |section 7

base plate

- (@) (b)
steel ball
F)

Fig. 5 (a) Experimental setup, (b) Base plate and protective grid

!
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Fig. 6 Experimental curves: compression load vs axial displacement

Fig. 7 Buckled shape of a 42 in long specimen under compression

9. Interpretation of the results and discussion

The analytical results obtained by the simplified approach and the MMFG and AISC design
guidelines as well as the numerical and experimental results for the 4 x4 x4 angle section are
presented in Table 6. Fig. 8 shows the maximum loads versus the slenderness ratio KL /r for both
the predicted and the experimental results. It is clear that the maximum loads predicted according to
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Table 7 Load-deflection data for the tested 4 x 4 x V4 FRP angle columns

Deflection L=24 L=30 L=36 L=42 L=48
(in) (in) (in) (in) (in) (in)

0.000 241.2 0.0 10.1 0.0 100.5
0.005 712.0 201.0 50.3 180.9 301.5
0.010 1346.7 542.7 110.5 422.1 603.0
0.015 2311.5 924.6 351.8 783.9 1085.4
0.020 3035.1 1326.6 693.5 1085.4 1487.4
0.025 3939.6 1989.9 1155.8 1527.6 1929.6
0.030 4824.0 2532.6 1618.1 1969.8 2432.1
0.035 5688.3 3035.9 2100.5 2432.1 3015.0
0.040 6492.3 3758.7 2723.6 2994.9 3437.1
0.045 7336.5 4341.6 3226.1 3477.3 3899.4
0.050 7577.8 51054 3949.7 4221.0 4422.0
0.055 7597.6 5668.2 4512.5 4723.5 4864.2
0.060 7597.6 5967.0 5115.5 5185.8 5165.7
0.065 7660.0 61104 5819.0 5788.8 5406.9
0.070 7738.1 6170.7 5959.7 5949.6 5467.2
0.075 7798.8 6251.1 6040.1 6050.1 5607.9
0.080 7899.3 6331.5 6140.6 6130.5 5678.0
0.085 7979.7 6452.1 6160.7 6150.5 5728.5
0.090 8100.3 6532.5 6221.0 6190.5 5768.5
0.095 8160.6 6633.0 6241.1 6210.9 5808.9
0.100 8261.1 6673.2 6321.5 6190.8 5829.9
0.105 8301.3 6753.2 6381.6 6170.9 5829.9
0.110 8361.6 6763.2 6422.0 6150.6 5829.9
0.115 8401.8 6773.7 6482.3 6090.3 5808.9
0.120 8361.6 6834.0 6542.6 - 5728.5
0.125 8381.7 6813.9 6582.8 - -

0.130 8301.3 6813.9 6643.1 - -

0.135 8301.3 6813.9 6582.8 - -

0.140 - 6757.3 6582.8 - -

0.145 - - 6562.7 - -

0.150 - - 6482.3 - -

0.155 - - 6642.1 - -

the manufacturer’s guidelines are not reliable, compared to other analytical and experimental results.
The experimental results do not correlate well with the AISC predictions. In fact, AISC guidelines
predict 30% to 50% higher loads compared to the experimental ones. AISC methodology for design
of angle columns is not valid for composite members because the longitudinal modulus for
composite materials is at least ten times less than the steel modulus. Also, the effect of residual
stresses built into the AISC expressions is not the same as in the composite angles. Thus, the
slenderness required for pure flexural buckling is smaller than the one corresponding to an identical
composite member. This effect is shown in Fig. 3, where the critical stress g, is plotted versus the
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Fig. 8 Predicted and experimental maximum loads vs slenderness ratio KL /r

member slenderness KL /r for various cases of b/t. It is observed that transition from combined
lateral-torsional to pure flexural mode occurs for KL../r, where the critical slenderness can be
related to b/t. Furthermore, the shear modulus G for composite materials takes low values and the
combined buckling load is significantly affected for small values of b/z.

The critical mode predicted by the finite element method for all models was lateral-torsional
buckling, that is in full agreement with the experimentally observed failure mode. The finite
element results and the simplified approach values are in good correlation with each other. For the
sections under study, both methods resulted in conservative values. Thus, the simplified approach
can safely be adopted for the design of pultruded angle columns.

10. Conclusions

An experimental study is used herein to validate the predicted maximum loads for equal leg angle
section composite members subjected to axial compression. Prediction of the buckling load and the
corresponding mode is very important for the determination of the axial strength of pultruded
members because instability failure leads to collapse of the whole member. The finite element
method has been employed to predict the buckling loads as well as the buckling mode failure for
commercially available pultruded angle sections. The analytical methods presented here are based
on the description of the cross-section used by the manufacturer. Thin-walled angle sections used as
compression members fail primarily due to lateral-torsional buckling, while if the legs are relatively
thick, flexural buckling is the critical mode. A simplified approach is proposed for determining the
maximum compressive load of angle sections. Comparison between experimental and analytical
results shows that the proposed simplified approach can be efficiently used for the design of
pultruded angle sections.
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Notation

A cross-sectional area

Ay membrane stiffness coefficients
By membrane-flexural coupling stiffness coefficients
C, warping constant

{& nodal displacement vector

Dy, flexural stiffhess coefficients

& strains

E longitudinal modulus of elasticity
{f} nodal force vector

Q angle of twist

G shear modulus

1 moment of inertia

J torsion constant

o) transformed layer stiffness

K; curvatures

[K] stiffness matrix

[K4] load-geometry matrix

A load factor

L column length

{M} moment resultant vector

{N} stress resultant vector

P applied load

fo2 stresses

S; out-of-plane shear resultants

t thickness

U total potential energy

1 lateral deflection along y-direction
w lateral deflection along z-direction





