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Abstract. In this study, a new functional based on the Reissner theory, for thick plates on a Winkler
foundation is obtained. This functional has geometric and dynamic boundary conditions. In deriving the
new functional, the Gateaux differential is used. This functional which is in polar coordinates is also
transformable into the classical potential energy equation. Bending and torsional moments, transverse
shear forces, rotations and displacements are the basic unknowns of the functional. Two different sectorial
elements are developed with 3x8 degrees of freedom (SEC24) and 4x8 degrees of freedom (SEC32). The
accuracy of the SEC24 and SEC32 elements together are verified by applying the method to some
problems taken from literature.
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1. Introduction

Plates as structural elements find many areas of application in engineering fields. Therefore plenty
of research exist in literature. To provide a more reliable representation of structural behaviour,
several refined theories have attempted to include the effects of transverse shear strain, which
becomes important as the ratio of plate thickness to characteristic length (h/2a) decreases. Mindlin
and Reissner plate theories satisfy these requirements (Reissner 1946, Reissner 1975, Mindlin
1951). The finite element formulation based on these methods requires C° continuity. A problem
known as “Shear Locking” is encountered when the plate thickness approaches zero, thereby giving
incorrect results for thin plates. Shear locking mechanism was studied and explained by numereous
authors (Zienkiewicz et al. 1977, Pugh et al. 1978). We will not attempt to make a detailed review.
Interested readers may find additional information in literature (Zienkiewicz 1977, Gallagher 1975,
Bathe 1982, Reddy 1993). To the best of our knowledge, we can cite the following two basic
approaches in literature to remedy the situation.

In the first approach, a quadrilateral element for thin and thick plates has been developed by
Zienkiewicz et al. (1971). In this formulation the transverse displacement and two rotations are
selected as independent parameters which require only C° continuity in the shape function. Hughes
et al. (1977) have explained the shear locking phenomenon and have developed a very efficient
form of bilinear four-node element in which reduced/selective integration are used. Belytschko et al.
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(1981) have developed a stabilization matrix. This concept was first proposed by Kavanagh and
Kay (1972). In this approach the necessity for a free parameter may be a disadvantage.

The second approach to tackle these problems is the discrete Kirchhoff plate theory (DKT). To
capture the behaviour of thin plate theory, the constraint of zero shear strains is imposed at discrete
number of points by Katili (1993a, b). Imposition of the Kirchhoff constraint at a discrete number
of points leads to expressions for normal rotations and subsequent operation procedure in the
element stiffness matrix.

Recently FErath and Akdz (1997) have developed REC32 and TR48 elements using Gateaux
approaches. This method was tested in various problems. In these problems, shear locking
phenomenon has not been encountered (In test problem, A/r was taken as 0.001). To understand the
shear locking phenomenon, it is helpful to inspect the classical strain energy. The strain energy can
be separated into bending energy and shear energy. When thickness of plate decreases, shear terms
become the dominant part of the energy. On discretization of energy term and subsequent
minimization, a system of equations the form;

[Ky+PK] u=f (1

is obtained. In thin plate solution, [ increases indefinitly. The matrix [K] corresponds to the shear
energy. Such a solution will be over-constrained and an unrealistic answer with #—0 will be
obtained. The inspection of the energy functional (Erath and Ak6éz 1997) shows that when plate
thickness decreases, the shear energy also decreases relative to bending energy. Therefore, the shear
locking is eliminated in this formulation.

In this study, first; the plate equations are derived in polar coordinates for thick plates. The polar
coordinates are very suitable for many problems, such as circular plates and sectorial plates. The
closed form eclement equation is obtained, which eliminates the time consuming numerical
integration during FEM analysis. Having the field equations, Hellinger-Reissner, Hu-Washizu or
Gateaux differential approaches can yield a functional that is essential for finite element
formulation. There are classic literature for these methods. Using the Hellinger-Reissner or Hu-
Washizu principles the stationary functional is constructed, by adding equilibrium or kinematic
equations and suitable boundary conditions to the M(u) potential energy or M°(g) complementary
energy by Lagrange multiplier method (Washizu 1975, Dym and Shames 1973, Reddy 1984, Oden
and Reddy 1976). In Gateaux differential approaches, first the field equations must be potential,
which means these field equations must be produced extremizing the functional with respect to
independent parameters. In this study, Gateaux differential approach is employed. This approach is
adopted also for some other studies (Akoz 1985, Ak6z et al. 1991, Akdz and Uzcan (Erath) 1992,
Omurtag and Akoz 1994, Eratl and Akoz; Akéz and Kadioglu 1996). Both Hellinger-Reissner and
Gateaux approaches can produce the same functional, it is believed that Gateaux approach has the
following advantages over Hellinger-Reissner or Hu-Washizu approaches:

e The field equation must be consistent Goldenweizer (1961) and Morris (1973). Gateaux differential
method provides consistency of field equations (Akoz and Oziitok 2000).

e During the potential test, boundary conditions can be constructed.

e All the field equations are enforced to the functional by systematic way.

2. The field equations of thick plate in polar coordinates

The equilibrium equations of a plate element 4 » dr d6 (Fig. 1) in polar coordinates based on
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Reissner theory are taken as follows (Panc 1975),
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The positive directions of internal forces are shown in Fig. 1.
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Q.(r,0,z) and Qg(r,B,z) are the components of the rotation of cross-section plane of plate along
thickness. Average rotations Q.(r,0,0) and Qu(r,0,0) can be defined by employing energy

argument as follows,

h/2
MQ=[ 0 udz

h/2
M@Qe:‘[h/7 09 v dz

Assuming linear stress distribution (Panc 1975) we have,

12M,

0=—7>5"¢2
h
12M,

09: 3 z
h
12M,,

Tg,‘Z—SZ
h
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“4)

And inserting Eq. (4) into Eq. (3), we can obtain the following equation for average rotations,

similar to Panc (1975).
12 +h/2

= zI uzdz
-h/2

12 +h/2
Q5= vzdz
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To obtain stress distribution through thickness, the equilibrium equation in polar coordinates will
be used. Inserting linear stress distribution into equilibrium equations, integrating them and using
the following boundary conditions:

[(E=Fh/2 7,.=T7.~0

O
For (k= h/2 0.=—q (6)
Eg=—h/2 0.=0
we will get;
T 2h Up U
2 h Unp O
__q[, 220, 22
o. 4[2 3 DhD} )

To define the average displacement for the middle plane of plate, we employ energy arguments
again similar to Panc approach (1975) as follows:

hi2
0w (r0.0)=[ 1. wl(r.0.2) dz
-h

/2
hi/2
QGW(’”a 950):‘[—’1/7 Lo WEK}", 692) dz (8)

Inserting the stress distribution for 7,. and T,ginto Eq. (8), we will obtain the following equation for
average displacement w(r; 6);

w(r,@)Zzth:ZwE(r,Q,z)[l - E?h—zg} dz )

To construct the kinematic and constutive equations together, the Panc approach will be accepted
(Panc 1975). Assuming energy arguments we have;

h/2 J 1 hi/2 TZ J 10
rz TI‘Z Z:_ rz z
I—11/2 4 GI-/1/2 (10)
Using Eq. (7) for stress distribution and kinematic relations and substituting;
Ou  owl
=t —
Ve Jz Or (n
into Eq. (10) and taking into account the definitions (5) and (9), we end up with,
ow 6
J’__—_ =
2 or SGhQ” 0 (12)
Similarly we obtain,
1ow 6
+____ —
° o8 SGhQQ 0 (13)

To obtain the next three joint kinematic and constitutive equations we differentiate Eq. (5) and
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suitably combine such that right hand sides must produce &, & Jpas follows:

0Q, 12 h»2

—== E.zdz

o pan

J’_
or radb r P,

If we use stress-strain equations;

£=1[0,~v(0p+ 0)]

£5105-7(0,+ 0]

_Le
Yo G

and introducing the stress distribution Eq. (4) into Eq. (14) and Eq. (15) we obtain;

0Q, 12 _

or Ehg[Mr_lJMG]_O
10Q, Q. 12 B
r 00  r Ehg[MG_IJMr]_O

J’_ ——
or radd r gp’
These equations can be solved for M, and My as follows:

_nP2  poQ  Qn
M=DEs=* %8 MO

0Q 2Q, Q
MQZDHJ -+ 1 g s
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Q, 100, Q
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)

(15)

(16a)

(16b)

(16¢)

)

These are general relations. For axisymmetric case, similar relations are obtained by Wang and Lee

(1996) and Reddy and Wang (1997).

In obtaining Eq. (16a) and Eq. (16b), the effect of 0. on the bending moments were ignored
because of the terms relating this effect is small comparing with remaining terms. Otherwise these
field equations would not pass the Gateaux potential test as we will see later. The necessity of the
neglection of these terms can be detected only by Géteaux differential approach and it is an
evidence of the power of the method as stated in the introduction. If we had used Hellinger-
Reissner, Hu-Washizu or weak formulation theories, we could have not recognized incompatibility

of this term.
In symbolic form, dynamic boundary conditions can be written as,
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M—-M=0

Q-0-0 (18)
and geometric boundary conditions are,

-w—-w=0

~Q-Q=0 (19)

The explicit form of the boundary conditions will be obtained after some variational manipulations. In
Eq. (18) and Eq. (19) quantities with hat are known values on the boundary. M, Q, Q, w are the
moment, force, rotation and deflection vectors, respectively. Field equations for Reissner plate in
polar coordinates can be written in operator form as,

o=Ly-f (20)

The matrix form of the operator is given in Appendix 11.

3. Functional for thick plates in polar coordinates
If the operator Q in Eq. (20) is potential, the equality

HQ(y.y).y Lo (y.yD).p0 e2y)

must be satisfied (Oden and Reddy 1976). dQ(y.y) and dQ(y,yl) are Gateaux derivatives of the
operator in directions of y and y* which are constant elements in the domain. Gateaux derivative of
the operator is defined as;

dQ(u,ﬁ)=a—Q(l;: L)
=0

where T is a scalar. Using this definition, after some simple manipulations it can be shown that the
Eq. (21) holds and the operator @ is a potential operator. To satisfy this equality the explicit forms
of the boundary conditions must be as follows;

e[+ L ] [ ]

[Q.w]=[(Q, + Qg).W] (23)

Since the operator is potential then the functional corresponding to the field equations is obtained as;

(22)

1(7)=], [Q(sp), ylds (24)

where s is a scalar quality. Functional I(y) can be obtained after some manipulations as;
1 0 1
= + + +- + +| = +
I [Qr:(Qr W,r)] |:Q95 %29 rw,elj [MI‘BQI‘_,_] |:’/,M95(Q9‘9 Qr):|

1 6
+[M,0.5.9, Q0,5 Q]| (M, M1+ Mo, Mol -26(,. MI+2(1 + )Mo, M,
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~=2{10,0, 14106 0} 5 Lhw.w]~[g.w]-[(Q = Q). ML~ (w =), O1~{#1.Q)o~[ O]
25)

The braces with the 0 index and € index are valid on the boundary where the dynamic boundary
conditions and the geometric boundary conditions are prescribed, respectively. Where [ , | is the
inner product and defined as follows;

[ 7.£] =Hf(r, O)g(r,0)rdrdf (26)

If the variational derivative of the functional in Eq. (25) is taken, all the field equations and
boundary conditions can be reproduced.

The same functional can be obtained by Hellinger-Reissner principle. In this functional the first
five terms come directly by adding kinematic Eq. (16) using Lagrange multipliers to the strain
energy where Q,, Qo, M,, My, M,g play the Lagrange multiplier role. The sum of other terms in
the functional represent the strain energy of the plate in polar coordinates.

4. Finite element formulation for sectorial geometry

Let w be the displacement in z-direction, Q, and Qg being the rotations of the cross-sections
normal to in rz and Oz planes. Q,, Qg are shear forces in polar coordinates, and M,, My, M,q are
the bending and torsional moments in polar coordinates. They are the nodal unknowns of the
generated finite element and expressed by shape function ; in the element. For example, w=) w; ),
where w; are the nodal values and i=1,..., n (n=number of nodes of the element). In the solution of
thick plates, two different elements are developed. One of them is SEC24 which has an element
with 24 degrees of freedom, and with 8 degrees of freedom per node. The other one is SEC32
which has 32 degrees of freedom element with 8 degrees of freedom per node. The shape functions
are given for SEC24 element (Fig. 2) as,

=1 -5s)
W=s(1-n)
Ys=sn 27
where,
= i (28)
For SEC32 element (Fig. 3),
P=(1-s)(1-n)
Wr=s(1-n)
Ys=sn
Y=(1-s5)n (29)
where,
r—r 6-6,
“a T he 39)
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YA
r2 [3 (1,1)] vA
2 [3 (1LD]
2(10)] i
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do 0,
o > X {3 11 [1(0,0]
Iy [1 (an)] 91 -~
Fig 2 SEC24 element Fig 3 SEC32 element

By variational principles, from Eq. (24), the element matrices [k],4, [k]:» for SEC24 and SEC32 are
obtained as follows:

Mr MG Mre Qr

Qg Q, Qg w
! l v \ 1 ! v !
nlkl wlkl, 0 0 0 [kl 0 0 ]
vilkil, 0 0 0 [hslos  [haln 0
[k]24= y3[kl]24 0 0 [k4]24 [kz_k3]24 0 (31)
Vlkilyy 0O (1] 0 (42124
ilkl,, 0 [kila [hala
Symmetrical 0 0 0
0 0
L Vslkils |
M, My M, o Qs Q, Qy w
o ! oLy
vilkils, ylkils, 0 0 0 [klsy 0 0
vilkils, 0 0 0 [kl [kl 0
[k]32= y3[k1]32 0 0 [k4]32 [kz_k3]32 0 (32)
lkil, 0 [£1]5 0 [£2]5
Blkil, 0 k1] [kals
Symmetrical 0 0 0
0 0
L yslkils ]

where,

y=-12/ER, y= =12 VIER’, y= 24(1+v)/ER’, y;= =12(1+v)/5Eh, Y=k (33)
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The explicit form of the submatrices [ki]24, [k2)oa, [K3]24, [Kaloas [k1]32, [K2l32, [K3]32. [Kal32 are given
in Appendix II.

5. Numerical examples

The applicability and accuracy of the proposed sectorial mixed finite element formulation of thick
plates are shown on the following plate problems;

5.1. Example 1: The simply supported - clamped circular plates and shear locking test

The formulation obtained for thick plates is applied to thin plate (#/a=10°) and then The simply
supported and clamped circular thick plates subjected uniform loading are analyzed with different
meshes. As the plate thickness approaches zero, shear locking might have been encountered, but
efficiency of the formulation obtained in this study prevents shear locking phenomenon and Fig. 4
shows the manner in which the sectorial elements behave for a given mesh subdivision (VEL=285)
in full plate as #/a decreases. The thicknesses of plate are taken as 4#=0.005, h=0.1, A=1, h=2,
respectively. The convergence of displacement w, moment M, at the center are shown for simply
supported and clamped plates in Table 1, 2, and Table 3, 4, respectively. Exact results in these
Tables are taken from Katili (1993). Moment parameter should take the same value, irrespective of
radius to thickness ratio. Also, the convergence of moment M, is sketched in Fig. 5a. The results
converge to exact value from above and below depending on even or odd number of element used
in the calculation. The radial Q, shear force converge to exact value (Q,=ga/2=2.5) very rapidly as
shown in Fig. 5b. In comparison with the other studies (Katili 1993, Papadopoulos and Taylor 1990,
Batoz and Lardeur 1989, Batoz and Katili 1992) for the same data, the results obtained in this study
show that the convergence of results is good. The results of bending moment A,, shear force O,
and displacement w along radial direction are given in Figs. 6-11. Typical circular plate mesh is
shown in Fig. 12.
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Fig 4 Behaviour of solution for decreasing values #/a for a given NEL=288
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Table 1 Central displacements for the simply supported plate under uniform loading (v=0.3)

NEL a/h=50 ah=5 ah=2.5

3 0.7104 0.7345 0.8080

0.6987 0.7226 0.7948

11 0.6971 0.7208 0.7929

15 0.6964 0.7202 0.7924

19 0.6963 0.7200 0.7921

23 0.6963 0.7198 0.7920

41 0.6961 0.7197 0.7917

43 0.6959 0.7197 0.7917

Exact (Katill 1993) 0.6959 0.7268 0.8205
Multiplier E Wlgd*

Table 2 Central moment M, for the simply supported plate under uniform loading (v=0.3)

NEL a’h=50 a’h=5 a/h=2.5

3 0.2248 0.2219 0.2180

7 0.2127 0.2113 0.2094

11 0.2094 0.2087 0.2077

15 0.2082 0.2077 0.2071

19 0.2076 0.2072 0.2068

23 0.2072 0.2069 0.2067

41 0.2066 0.2065 0.2004

43 0.2065 0.2065 0.2064
Exact (Kat1ll 1993) 0.2064 0.2064 0.2064

Multiplier qa®

Table 3 Central displacements for the clamped plate under uniform loading (v=0.3)

NEL a/h=50 a/b=5 a/h=2.5

3 0.1596 0.1946 0.2931

7 0.1711 0.2022 0.2962

11 0.1712 0.2022 0.2959

15 0.1711 0.2020 0.2956

19 0.1711 0.2020 0.2956

23 0.1711 0.2020 0.2955

41 0.1709 0.2018 0.2955

54 0.1709 0.2018 0.2955

Exact (Katil1 1993) 0.1709 0.2018 0.2955

Multiplier E Wlqd*
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Table 4 Central moment M, for the clamped plate under uniform loading (v=0.3)

NEL a/h=50 a/h=5 a/h=2.5

3 0.1924 0.1306 0.0892

7 0.1444 0.1070 0.0912

11 0.1166 0.0959 0.0899

15 0.1038 0.0911 0.0892

19 0.0970 0.0886 0.0889

23 0.0929 0.0872 0.0891

41 0.0859 0.0846 0.0884

54 0.0784 0.0819 0.0880
Exact (Katill 1993) 0.0812 0.0812 0.0812

Multiplier qd*

<230 —
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Fig. 5 Convergence of M,, O, in simply supported circular plate for different meshes

5.2. Example 2: The annular plate

Fig. 13 shows an annular plate under uniform loading with simply supported outer edge r=a, free
inner edge r=b. The solution of annular plate is obtained by using SEC32 and compared with
theoretical solution. The results are given in Table 5. Theoretical results are obtained using general
solution of annular plate given in Panc (1975) for above defined boundary conditions and the
constants of integration calculated with general solution are given in Appendix III.

5.3. Example 3: The sectorial plate

The above obtained sectorial elements can be also applied to sectorial plates in bending. The
numerical solutions for simply supported sectorial plate (Fig. 14) carrying a uniformly distributed
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Fig. 12 Typical circular plate mesh with 5 element Fig. 13 Annular plate

Table 5 Annular plate under uniform load (£=10.92, v=0.3, a=5, b=2.5, h=0.2, g=1)

MV Mg Qr w
r =(a-b)/2 r=b r=a r=b
SEC32 1.033 6.011 1.875 313.5
Panc (1975) 1.033 5.980 1.875 331.7
YA
Radial center line'\ .
0,‘
’
4
o/‘
/7
,
4/.
e
R4
'/
o/'

> X

Fig. 14 Simply supported sectorial plate

load are presented in Tables 6 and 7. The excellent agreement can be observed by comparing the
numerical results with the theoretical solutions (Timoshenko and Woinowisky-Krieger 1959). The
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Table 6 Displacements and moments at points along the radial center line of sectorial plates (v=0.3)

- r/a=1/4 r/a=1/2 r/a=3/4 r/a=1
a B Bi a B Bi a B Bi a B B
w3 0.0021 —0.0026 0.0179 0.0091 0.0155 0.0259 0.0107 0.0247 0.0215 0 0 0.0048
Exact
Timoshenkoand 50> 1 6 0025 0.0177 0.0087 0.0149 0.0255 0.0101 0.0243 00213 0 0 0.0044
Woinowisky-
Krieger (1959)
m 0.0666 0.0719 0.0360 0.0904 0.0876 0.0514 0.0622 0.0615 0.0468 0 0 0.0225
Exact
Timoshenko and ) 4643 00692 0.0357 0.0886 0.0868 0.0515 0.0612 0.0617 0.0468 0 0 0.0221
Woinowisky-
Krieger (1959)

Multiplier  gd"EF  qd® gd®  qd'lERW  qd*  qd® qd'EW  gd® qd® qdER qd® qd’

Table 7 Displacements and moments at points along the radial center line
of sectorial plate for different thicknesses (v=0.3 and a=773)

a’h wIm,XEhS/qa4 M,mx/qa2
1000 0.01106 0.02424
50 0.01115 0.02444
5 0.01623 0.02713

same problem is solved by finite strip method and similar results are obtained (Cheung and Chan
1981).

5.4. Example 4: The fan shape plate
The simply supported fan shape plate (Fig. 15) with uniform distributed load is solved and the

results are given in Tables 8§ and 9. Comparison with (Cheung and Chan 1981) shows that an
excellent agreement is obtained for moments and reasonable agreement is obtained for displacements.

YA . . ’
Radial center lne

> x
Fig. 15 Simply supported fan shape plate
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Table 8 Maximum displacements and moments at points along the radial center line of fan shape plate
(v=0.3 and a=173)

4 WaeD/qd M oadga” 3 Manal g
b/a wgglég%a Cheung ang Chan A/é”ﬁaééqf Cheung ancc]l Chan A/gaﬁaééqza Cheung anz Chan
(1981) (1981) (1981)
0.00 0.000975 0.000984 0.02469 0.02494 0.02590 0.02506
0.25 0.000950 0.000927 0.02264 0.02485 0.02414 0.02356
0.50 0.000531 0.000500 0.02121 0.02124 0.01231 0.01220
0.75 0.000053 0.000049 0.00752 0.00789 0.00242 0.002438

Table 9 Displacements and moments at points along the radial center line of fan shape plate for different
thicknesses (v =0.3, a=m1/3 and b/¢=0.25)

ah WaxEl/qd* Myna/qd®
1000 0.01038 0.02505
50 0.01050 0.02518
5 0.01568 0.02857

5.5. Example 5. Nonsymmetrical load

In this study, the circular plate under a linear load varying with 8 according to g=g, r/acosf (Fig.
16) is also solved and the results are given in Table 10. The reasonable agreement is obtained as
compared with the theoretical solution (Timoshenko and Woinowisky-Krieger 1959).

5.6. Example 6: Simply supported circular plate on Winkler foundation

A few studies exist for circular thick plate on Winkler foundation, using boundary elements (EI-
Zafrany et al. 1995, Al-Hosani et al. 1999, Rashed er al. 1998). The studies by finite element
method were not available to compare the results. To check the numerical results, the coefficient k&
is taken zero. In this limit case, numerical values converge on the correct value as expected. The
results for simply supported circular plate with uniform distributed load on Winkler foundation are

A ik
qo

Fig. 16 Nonsymmetrical load
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Table 10 Displacements and M, moments for simply supported circular plate under nonsymmetrical load (v=0.3)

6=0° 6=45°
p B a B
Sectorial EXC;C " Sectorial Exg ot Sectorial EXC;C " Sectorial Exg ot
EL EL EL ElL

r/a=1/4 0.02830  0.02865 0.03308 0.02588  0.02000  0.02026  0.02339 0.01830

ra=1/2 0.04202 0.04185 0.04516 0.04141 0.02970 0.02959  0.03193 0.02928
r/a=3/4 0.03112  0.03079  0.03789  0.03623  0.02201  0.02177  0.02677 0.02562
ra=1 0 0 0 0 0 0 0 0

Multiplier wEhS/qo at wEh3/qo 4 M, /qo & M, /qo & wEh3/q0 a* wEhS/qO a* M, /qo & M, /qo &

Table 11 Displacements and moments at middle point of simply supported circular plate for different £ values
k [KN/m’] wER gd’ M, lqd*
0 0.69590 0.20650
100000 0.04956 0.00738

200000 0.02358 0.00191
300000 0.01499 0.00092

wER~3/qa™4

0.70
A
/ !

N

k=0 \

\
\
k=100000 [KN/m"3] A

k=200000 [kN/m"3] \\
\
\

k=300000[kN/m"3] \

teen

/ 020 —

4.00 ” 0.00 4.00

Fig. 17 Displacements along radius of simply supported circular plates for different £ values
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given in Table 11. Fig. 17 shows displacements along radius for different & values.

6. Conclusions

The development of a finite element for the analysis of thick plate structures on Winkler
foundation in polar coordinates has been presented in this paper. To obtain an effective formulation
for thick plates, the field equations are written in polar coordinates for the Reissner plate. In these
field equations, rotations Q,, Qg are introduced similar to Panc approach (Panc 1975). Using field
equations, a new functional has been obtained for thin or moderately thick plates on Winkler
foundation based on Gateaux differential approach. This functional has boundary terms which play
important roles in numerical solutions for some singular loads. These effects are to be the subject of
another paper. A sectorial finite element is obtained which has four nodes and 32 degrees of
freedom and it is called SEC32. This element is singular at the center of the circle. To eliminate the
singularity another element is developed which has three nodes and 24 degrees of freedom called
SEC24. The properties of this formulation briefly are:

e Géateaux differential method has been used. The functional is obtained by enforcing all field
equations in straightforward manner.

e The closed form of element equation is obtained which eliminate the time-consuming numerical
inversion of the element matrix.

e This formulation avoids the shear locking, converges to the Kirchhoff solution as the plate
thickness goes to zero.

e For the accuracy of solution, one of the requirements is: The well-proportioned elements must be
used (Huebner 1975). Five-node elements may be helpful to obtain well-proportioned element.

e This formulation provides accurate and stable solutions.

e This formulation is very suitable for the problem which has symmetry in lateral direction. For this
problem a few elements are sufficient to obtain satisfactory results for engineering purposes.

e This formulation is also applicable to any structure if its domain can be represented by sectorial
element.

e This formulation is also suitable for the dynamic problems which are under study.
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Appendix |
Notation

M, Mg M,e : bending moments
0, Op : shear forces

q : distributed load

k : modulus of subgrade reaction

w : displacement of plate

Q, Q : the components of the rotation of a normal to the middle plane of the plate, respectively
a : radius of plate

h : thickness of plate

EvG : modules of elasticity, Poisson's ratio and shear modules of elasticity respectively
I(y : functional

<,>[,] : inner product

[.]e : geometric boundary condition

[.]o : dynamic boundary condition

Y : shape functions (=1, ..., 3 for SEC24 or /=1, ..., 4 for SEC32)

s, n : nondimensional coordinates of a master element
[K]2s , [K];»  : SEC24 and SEC32 finite element matrices
L : coefficient matrix

f : load vector
y : unknown vectors
Appendix II
The explicit form of the @ operator,
[P, 0 0 0 0 0 P,Ps0 0001 w | a]
0 0 0 PyuPyPy 1 00 O000]| Q 0
0 0 0 0 PPy O 100001 Q 0
0 Py 0 PuPis 0 0 0 0 000 ]| M 0
0 Py Py Py Pss 00 0 0 000 M || ©
0 PoPsy 0 0 P 0 0 0 000 | Mg |_ 8 Al
P, 1 0 0 0 0P, 00000 O 0
Py O 1 0 0 0 0 Psx 0 0001 O X
00 000 0 0 0O0O0O01]| w Q
00000 O0O0O0O0O0I10| @ M
00 0000 0 0O0-100| M]||-0
L 0000000 0-1000J Q]|
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where,
pak il 2 p o 12

Submatrices for SEC24 element,

1 10

s PZSZ;D stz_;d_e
Y,
45 IE

. A,B,/12 A,B,/24 A,B,/24
[kllszojg YW dr dB=| 4,B,/24 A,B,/12 A,B,/24
A,B,/24 A\B,/24 A,B,/12

W ~B,/6 B,/12 B,/12
[kz]z4:_fo I, W dr dé=| -B,/6 B,/9 B,/18
’ ~By6 By18 B9

e B,/3
[k3]24:IO Ie Yy dr do= B,/12
‘ B,/12

0

r, 6,
[1‘74]24:I0 Ia Yo dr d8=| ¢
0

where,

B,/12 B,/12
B,/9 B,/18
B,/18 B,/9

—ry/6 r,/6
—r, /6  1,/6
—ry/6  r,/6

A1:V22, Bi=6,-6, B,=rB,

Submatrices for SEC32 element,

A,4,By/36 A;ABo/36 A;ABo/T2  A,A,By/T2

r, 6
[kl]szz_rr _rg QU,-ll/,-rdr de=

A3A,By/36  A;ABo/36 AsABo/T2  AiABo/T2
AABoIT2 AABYT2  AABo/36  A3A Bo/36

AsABYT2 A ABYT2  AsABo/36  A3A,Bo/36

A,Bo/18 —A,By/18 —A,Bo/36 A,B,/36

r, 6
[kz],:z:J-r Ig Yy, r dr d6=

A,By/18 —A,Bo/18 —A,Bo/36 A,Bo/36
A,Bo/36 —A,Bo/36 —A,Bo/18 A,B,/18

A,B,/36 —A,By/36 —A,B,/18 A,B,/18

(A2)

(A3)

(A.4)

(A.5)

(A.6)

(A7)

(A.8)

(A.9)
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A/9  Ag/18 A/36  Ag/18

. 6, AJ18 A9 AJ18  Ag/36
k= W, dr do=| 8 s 8 A.10)
sl [ ¥ A5/36 Ag/18 A9 Ag/18 (
A/18  A/36 A/18  Ag/9
A6 AJ12 —A4,712 —A44/6
r, 6, — —
([ 0 dr d6- A12 A6 —A6 —Ay/12 Al

AJ12 A6 =406 —A,/12
A6 A/12 —A,/12 —A,/6

where,

A1:2r1+r2, A2:2I"2+I"1, A3:l"1_l"2, A4:3l"1+l"2, A5:3I’2+I"b A6:r1+r2, AgZA'; Bg, 39:91_92 (A12)

Appendix Il

The solution of annular plate is:

2 2 4 4 2
= r r R r.ga (r _,.rg
+A,—+A;In=+ - +
w=A4, A2a2 AsIn* A4Da2 gE"na Dl 4£a2D (A.13)
2
M=-2(1+v)24,+01 —v)QA3—2A4[(3 +v)+2(1 +v)lnq—(3 L (A.14)
a P d a 16
2
My==2(1 +v)2a,-(1 —V)QZA;%A{(] +3v)+2(1 +v)lnﬂ—(l +3v)% (A.15)
[ r a
4D r
Q,.:—TA4—% (A.16)
avr
where;
3
pe BH_
12(1 —v7)
__ 4
=50 0 (A.17)

The constants 4, 4>, A3 and 4, must be determined from the boundary conditions prescribed at the edges
r=a and r=b. The boundary conditions,

r=b 0,=0, r=a M,=0,
r=a w=0, r=b M,=0

(A.18)
__qa2b2
A== (A.19)
__qapr(3+v), _4b’ (1+v) b
G5 (0 (T "a) (A20
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_ g4 NEEION 46" b
A= 32D[( )(l —v) (a"=b )l a:| (A2D)
ga’ NCERON 4b ml-z
A0—6—4D[( L i - a(1—48)} (A22)





